made by VocPrez  for NVS

Vocabulary

Climate and Forecast Standard Names

Alternate Formats

Other formats for this page:

RDF/XML Turtle JSON-LD

Alternate Profiles

Other views of this page:

Alternate Profiles ?Different Media Types (HTML, text, RDF, JSON etc.) and different information model views, profiles, are available for this resource.

I-ADOPT view ?I-ADOPT view RDF + XML download.

Members

ID Preferred Label Definition Date
ZM49JDO0 acoustic area backscattering strength in sea water Acoustic area backscattering strength is 10 times the log10 of the ratio of the area backscattering coefficient to the reference value, 1 (m2 m-2). Area backscattering coefficient is the integral of the volume backscattering coefficient over a defined distance. Volume backscattering coefficient is the linear form of acoustic_ volume_ backscattering_ strength_ in_ sea_ water. For further details see MacLennan et. al (2002) doi:10.1006/jmsc.2001.1158. 2023-04-24
3AKCHY57 acoustic signal roundtrip travel time in sea water The quantity with standard name acoustic_ signal_ roundtrip_ travel_ time_ in_ sea_ water is the time taken for an acoustic signal to propagate from the emitting instrument to a reflecting surface and back again to the instrument. In the case of an instrument based on the sea floor and measuring the roundtrip time to the sea surface, the data are commonly used as a measure of ocean heat content. 2016-03-08
MM3VZ038 acoustic target strength in sea water Target strength is 10 times the log10 of the ratio of backscattering cross-section to the reference value, 1 m2. Backscattering cross-section is a parameter computed from the intensity of the backscattered sound wave relative to the intensity of the incident sound wave. For further details see MacLennan et. al (2002) doi:10.1006/jmsc.2001.1158. 2023-04-24
0RYYN1L4 acoustic volume backscattering strength in sea water Acoustic volume backscattering strength is 10 times the log10 of the ratio of the volume backscattering coefficient to the reference value, 1 m-1. Volume backscattering coefficient is the integral of the backscattering cross-section divided by the volume sampled. Backscattering cross-section is a parameter computed from the intensity of the backscattered sound wave relative to the intensity of the incident sound wave. The parameter is computed to provide a measurement that is proportional to biomass density per unit volume in the field of fisheries acoustics. For further details see MacLennan et. al (2002) doi:10.1006/jmsc.2001.1158. 2023-04-24
M4KOX5A0 aerodynamic particle diameter The diameter of a spherical particle with density 1000 kg m-3 having the same aerodynamic properties as the particles in question. 2015-01-07
AKK6D0XA aerodynamic resistance The "aerodynamic_ resistance" is the resistance to mixing through the boundary layer toward the surface by means of the dominant process, turbulent transport. Reference: Wesely, M. L., 1989, doi:10.1016/0004-6981(89)90153-4. 2015-01-07
CFSN0012 aerosol angstrom exponent DEPRECATED 'Aerosol' means the suspended liquid or solid particles in air (except cloud droplets). 2009-07-06
7CUMJMNV aerosol type in atmosphere layer in air A variable with the standard_ name of aerosol_ type_ in_ atmosphere_ layer_ in_ air contains either strings which indicate the type of the aerosol determined following a certain aerosol typing schema, or flags which can be translated to strings using flag_ values and flag_ meanings attributes. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). 2023-04-24
CFV16A1 age of sea ice "Age of sea ice" means the length of time elapsed since the ice formed. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFV8N1 age of stratospheric air "Age of stratospheric air" means an estimate of the time since a parcel of stratospheric air was last in contact with the troposphere. 2008-04-15
CFV16A2 age of surface snow "Age of surface snow" means the length of time elapsed since the snow accumulated on the earth's surface. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
NSQIIIL7 aggregate quality flag This flag is an algorithmic combination of the results of all relevant quality tests run for the related ancillary parent data variable. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. The aggregate quality flag provides a summary of all quality tests performed on the data variable (both automated and manual) whether present in the dataset as independent ancillary variables to the parent data variable or not. 2020-03-09
CFSN0013 air density 2006-09-26
COUQ0FI0 air equivalent potential temperature The "equivalent potential temperature" is a thermodynamic quantity, with its natural logarithm proportional to the entropy of moist air, that is conserved in a reversible moist adiabatic process. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Equivalent_ potential_ temperature. It is the temperature of a parcel of air if all the moisture contained in it were first condensed, releasing latent heat, before moving the parcel dry adiabatically to a standard pressure, typically representative of mean sea level pressure. To specify the standard pressure to which the quantity applies, provide a scalar coordinate variable with standard name reference_ pressure. 2020-03-09
8Z4A6V06 air equivalent temperature The equivalent temperature is the temperature that an air parcel would have if all water vapor were condensed at contstant pressure and the enthalpy released from the vapor used to heat the air. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Equivalent_ temperature. It is the isobaric equivalent temperature and not the adiabatic equivalent temperature, also known as pseudoequivalent temperature, which has the standard name air_ pseudo_ equivalent_ temperature. 2020-03-09
CFSN0014 air potential temperature Air potential temperature is the temperature a parcel of air would have if moved dry adiabatically to a standard pressure, typically representative of mean sea level pressure. To specify the standard pressure to which the quantity applies, provide a scalar coordinate variable with standard name reference_ pressure. 2020-02-03
CFSN0015 air pressure Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFSN0016 air pressure anomaly The term "anomaly" means difference from climatology. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFSN0017 air pressure at cloud base The phrase "cloud_ base" refers to the base of the lowest cloud. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFSN0018 air pressure at cloud top The phrase "cloud_ top" refers to the top of the highest cloud. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFSN0019 air pressure at convective cloud base The phrase "cloud_ base" refers to the base of the lowest cloud. Convective cloud is that produced by the convection schemes in an atmosphere model. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFSN0020 air pressure at convective cloud top The phrase "cloud_ top" refers to the top of the highest cloud. Convective cloud is that produced by the convection schemes in an atmosphere model. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFSN0021 air pressure at freezing level Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
Q9ZYSAOC air pressure at mean sea level Air pressure at sea level is the quantity often abbreviated as MSLP or PMSL. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. 2017-07-24
CFSN0022 air pressure at sea level DEPRECATED sea_ level means mean sea level, which is close to the geoid in sea areas. Air pressure at sea level is the quantity often abbreviated as MSLP or PMSL. 2017-06-26
BDBKOEIB air pressure at top of atmosphere model "Top of atmosphere model" means the upper boundary of the top layer of an atmosphere model. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
1C41FRNL air pseudo equivalent potential temperature The pseudoequivalent potential temperature is the temperature a parcel of air would have if it is expanded by a pseudoadiabatic (irreversible moist-adiabatic) process to zero pressure and afterwards compressed by a dry-adiabatic process to a standard pressure, typically representative of mean sea level pressure. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Pseudoequivalent_ potential_ temperature. A pseudoadiabatic process means that the liquid water that condenses is assumed to be removed as soon as it is formed. Reference: AMS Glossary http:/glossary.ametsoc.org/wiki/Pseudoadiabatic_ process. To specify the standard pressure to which the quantity applies, provide a scalar coordinate variable with the standard name reference_ pressure. 2020-03-09
NEYH0YV3 air pseudo equivalent temperature The pseudoequivalent temperature is also known as the adiabatic equivalent temperature. It is the temperature that an air parcel would have after undergoing the following process: dry-adiabatic expansion until saturated; pseudoadiabatic expansion until all moisture is precipitated out; dry-adiabatic compression to the initial pressure. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Equivalent_ temperature. This quantity is distinct from the isobaric equivalent temperature, also known as equivalent temperature, which has the standard name air_ equivalent_ temperature. 2020-03-09
CFSN0023 air temperature Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0024 air temperature anomaly 'anomaly' means difference from climatology. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0025 air temperature at cloud top cloud_ top refers to the top of the highest cloud. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
LO6V9WKR air temperature at effective cloud top defined by infrared radiation The "effective cloud top defined by infrared radiation" is (approximately) the geometric height above the surface that is one optical depth at infrared wavelengths (in the region of 11 micrometers) below the cloud top that would be detected by visible and lidar techniques. Reference: Minnis, P. et al 2011 CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data x2014; Part I: Algorithms IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4374-4400. doi: http://dx.doi.org/10.1109/TGRS.2011.2144601. 2016-05-17
CFSN0026 air temperature lapse rate Air temperature is the bulk temperature of the air, not the surface (skin) temperature. A lapse rate is the negative derivative of a quantity with respect to increasing height above the surface, or the (positive) derivative with respect to increasing depth. 2006-09-26
CFSN0027 air temperature threshold Air temperature is the bulk temperature of the air, not the surface (skin) temperature. Air temperature excess and deficit are calculated relative to the air temperature threshold. 2006-09-26
CFV10N1 altimeter range An altimeter operates by sending out a short pulse of radiation and measuring the time required for the pulse to return from the sea surface; this measurement is used to calculate the distance between the instrument and the sea surface. That measurement is called the "altimeter range" and does not include any range corrections. 2008-10-21
CFV10N2 altimeter range correction due to dry troposphere The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. To apply the altimeter range correction it must be added to the quantity with standard name altimeter_ range. "Correction_ due_ to_ dry_ troposphere" means a correction for dry gases in the troposphere, i.e. excluding the effect of liquid water. Additional altimeter range corrections are given by the quantities with standard names altimeter_ range_ correction_ due_ to_ wet_ troposphere, altimeter_ range_ correction_ due_ to_ ionosphere, sea_ surface_ height_ correction_ due_ to_ air_ pressure_ at_ low_ frequency and sea_ surface_ height_ correction_ due_ to_ air_ pressure_ and_ wind_ at_ high_ frequency. 2008-10-21
CFV10N3 altimeter range correction due to ionosphere The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. To apply the altimeter range correction it must be added to the quantity with standard name altimeter_ range. "Correction_ due_ to_ ionosphere" means a correction for the atmosphere's electron content in the ionosphere. Additional altimeter range corrections are given by the quantities with standard names altimeter_ range_ correction_ due_ to_ wet_ troposphere, altimeter_ range_ correction_ due_ to_ dry_ troposphere, sea_ surface_ height_ correction_ due_ to_ air_ pressure_ at_ low_ frequency and sea_ surface_ height_ correction_ due_ to_ air_ pressure_ and_ wind_ at_ high_ frequency. 2008-10-21
CFV10N4 altimeter range correction due to wet troposphere The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. To apply the altimeter range correction it must be added to the quantity with standard name altimeter_ range. "Correction_ due_ to_ wet_ troposphere" means a correction for the effect of liquid water in the troposphere. Additional altimeter range corrections are given by the quantities with standard names altimeter_ range_ correction_ due_ to_ dry_ troposphere, altimeter_ range_ correction_ due_ to_ ionosphere, sea_ surface_ height_ correction_ due_ to_ air_ pressure_ at_ low_ frequency and sea_ surface_ height_ correction_ due_ to_ air_ pressure_ and_ wind_ at_ high_ frequency. 2008-10-21
CFSN0028 altitude Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 2006-09-26
6GN00U5J altitude at top of atmosphere boundary layer defined by ambient aerosol particles backwards scattering by ranging instrument The altitude at top of atmosphere boundary layer is the elevation above sea level of the top of the (atmosphere) planetary boundary layer. "defined_ by" provides the information of the tracer used for identifying the atmospheric boundary layer top. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "By ranging instrument" means that the backscattering is obtained through ranging techniques like lidar and radar. 2023-04-24
0FXZI8O8 altitude at top of atmosphere mixed layer defined by ambient aerosol particles backwards scattering by ranging instrument The altitude at top of atmosphere mixed layer is the elevation above sea level of the top of the (atmosphere) mixed layer or convective boundary layer. "defined_ by" provides the information of the tracer used for identifying the atmospheric boundary layer top. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "By ranging instrument" means that the volume backscattering coefficient is obtained through ranging techniques like lidar and radar. 2023-04-24
OEYCNJ15 altitude at top of atmosphere model Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. "Top of atmosphere model" means the upper boundary of the top layer of an atmosphere model. 2017-07-24
CFSN0029 altitude at top of dry convection Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 2006-09-26
ZI76OI29 ambient aerosol particle diameter DEPRECATED "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2019-05-14
ZSDAR2KM amplitude of global average sea level change Global average sea level change is due to change in volume of the water in the ocean, caused by mass and/or density change, or to change in the volume of the ocean basins, caused by tectonics etc. It is sometimes called "eustatic", which is a term that also has other definitions. It differs from the change in the global average sea surface height relative to the centre of the Earth by the global average vertical movement of the ocean floor. Zero sea level change is an arbitrary level. Amplitude is the magnitude of a wave modelled by a sinusoidal function. A coordinate variable of harmonic_ period should be used to specify the period of the sinusoidal wave. Because global average sea level change quantifies the change in volume of the world ocean, it is not calculated necessarily by considering local changes in mean sea level. 2017-07-24
CFV13N42 angle of emergence The angle of emergence is that between the direction of a beam of radiation emerging from the surface of a medium and the normal to that surface. 2010-03-11
CFV13N43 angle of incidence The angle of incidence is that between the direction of approach of a beam of radiation toward a surface and the normal to that surface. 2010-03-11
CFV10N5 angle of rotation from east to x The quantity with standard name angle_ of_ rotation_ from_ east_ to_ x is the angle, anticlockwise reckoned positive, between due East and (dr/di)jk, where r(i,j,k) is the vector 3D position of the point with coordinate indices (i,j,k). It could be used for rotating vector fields between model space and latitude-longitude space. 2008-10-21
CFV10N6 angle of rotation from east to y The quantity with standard name angle_ of_ rotation_ from_ east_ to_ y is the angle, anticlockwise reckoned positive, between due East and (dr/dj)ik, where r(i,j,k) is the vector 3D position of the point with coordinate indices (i,j,k). It could be used for rotating vector fields between model space and latitude-longitude space. 2008-10-21
CPCLLNAV angle of rotation from solar azimuth to platform azimuth An angle of rotation is reckoned positive in the anticlockwise direction. The "angle_ of_ rotation_ from_ solar_ azimuth_ to_ platform_ azimuth" is the angle of rotation between the solar azimuth angle and the platform azimuth angle. Solar azimuth angle is the horizontal angle between the line of sight from the observation point to the sun and a reference direction at the observation point, which is often due north. The angle is measured clockwise, starting from the reference direction. Platform azimuth angle is the horizontal angle between the line of sight from the observation point to the platform and a reference direction at the observation point, which is often due north. The angle is measured clockwise, starting from the reference direction. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CF12S1 angstrom exponent of ambient aerosol in air The "Angstrom exponent" appears in the formula relating aerosol optical thickness to the wavelength of incident radiation: T(lambda) = T(lambda0) * [lambda/lambda0] ** (-1 * alpha) where alpha is the Angstrom exponent, lambda is the wavelength of incident radiation, lambda0 is a reference wavelength, T(lambda) and T(lambda0) are the values of aerosol optical thickness at wavelengths lambda and lambda0, respectively. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2015-01-07
LKV9NXIH angstrom exponent of volume backwards scattering in air due to ambient aerosol particles The Angstrom exponent of volume backwards scattering is the Angstrom exponent related only to the aerosol backwards scattering component. It is alpha in the following equation relating volume backwards scattering (back) at the wavelength lambda to volume backwards scattering at a different wavelength lambda0: back(lambda) = back(lambda0) * [lambda/lambda0] ** (-1 * alpha). "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2023-04-24
3BE43498 apparent air temperature Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The quantity with standard name apparent_ air_ temperature is the perceived air temperature derived from either a combination of temperature and wind (which has standard name wind_ chill_ of_ air_ temperature) or temperature and humidity (which has standard name heat_ index_ of_ air_ temperature) for the hour indicated by the time coordinate variable. When the air temperature falls to 283.15 K or below, wind chill is used for the apparent_ air_ temperature. When the air temperature rises above 299.817 K, the heat index is used for apparent_ air_ temperature. For temperatures above 283.15 and below 299.817K, the apparent_ air_ temperature is the ambient air temperature (which has standard name air_ temperature). References: https://digital.weather.gov/staticpages/definitions.php; WMO codes registry entry http://codes.wmo.int/grib2/codeflag/4.2/_ 0-0-21. 2020-09-14
JEVMTE01 apparent oxygen utilization Apparent Oxygen Utilization (AOU) is the difference between measured dissolved oxygen concentration in water, and the equilibrium saturation concentration of dissolved oxygen in water with the same physical and chemical properties. Reference: Broecker, W. S. and T. H. Peng (1982), Tracers in the Sea, Lamont-Doherty Earth Observatory, Palisades, N. Y. 2015-07-08
CFSN0001 area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. To specify which area is quantified by a variable with standard name area_ fraction, provide a coordinate variable or scalar coordinate variable with standard name area_ type. Alternatively, if one is defined, use a more specific standard name of X_ area_ fraction for the fraction of horizontal area occupied by X. 2019-05-14
CFSN0002 area fraction below surface The quantity with standard name area_ fraction_ below_ surface is the fraction of horizontal area where a given isobaric surface is below the (ground or sea) surface. "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The surface called "surface" means the lower boundary of the atmosphere. 2019-05-14
WSIX6RS1 area fraction of day defined by solar zenith angle "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. A coordinate variable of solar_ zenith_ angle indicating the day extent should be specified. Solar zenith angle is the the angle between the line of sight to the sun and the local vertical. 2019-05-14
UA5EK79W area fraction of night defined by solar zenith angle "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. A coordinate variable of solar_ zenith_ angle indicating the day extent should be specified. Solar zenith angle is the the angle between the line of sight to the sun and the local vertical. 2019-05-14
QUPKH73P area fraction of twilight defined by solar zenith angle "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. A coordinate variable of solar_ zenith_ angle indicating the day extent should be specified. Solar zenith angle is the the angle between the line of sight to the sun and the local vertical. 2019-05-14
CFV11S1 area type A variable with the standard_ name of area_ type contains either strings which indicate the nature of the surface e.g. land, sea, sea_ ice, or flags which can be translated to strings using flag_ values and flag_ meanings attributes. These strings are standardised. Values must be taken from the area_ type table. 2020-06-22
27DLRI6W asymmetry factor of ambient aerosol particles The asymmetry factor is the angular integral of the aerosol scattering phase function weighted by the cosine of the angle with the incident radiation flux. The asymmetry coefficient is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength is included to specify the wavelength. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2018-07-03
CFSN0003 atmosphere absolute vorticity DEPRECATED Absolute vorticity is the sum of relative vorticity and the upward component of vorticity due to the Earth's rotation. 2020-09-14
CFV13N44 atmosphere absorption optical thickness due to ambient aerosol DEPRECATED The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
K733V1TX atmosphere absorption optical thickness due to ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
CFV13N37 atmosphere absorption optical thickness due to black carbon ambient aerosol The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2010-03-11
CFV13N38 atmosphere absorption optical thickness due to dust ambient aerosol DEPRECATED The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
4PKYZCZO atmosphere absorption optical thickness due to dust ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
CFV13N39 atmosphere absorption optical thickness due to particulate organic matter ambient aerosol DEPRECATED The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
7L9GZZ3C atmosphere absorption optical thickness due to particulate organic matter ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
NBNM4BKR atmosphere absorption optical thickness due to sea salt ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-07-24
CFV13N40 atmosphere absorption optical thickness due to seasalt ambient aerosol DEPRECATED The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
EPD9XTVI atmosphere absorption optical thickness due to seasalt ambient aerosol particles DEPRECATED The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-06-26
CFV13N41 atmosphere absorption optical thickness due to sulfate ambient aerosol DEPRECATED The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
35C2WEJP atmosphere absorption optical thickness due to sulfate ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Absorption optical thickness" means that part of the atmosphere optical thickness that is caused by the absorption of incident radiation. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
CFSN0004 atmosphere boundary layer thickness The atmosphere boundary layer thickness is the 'depth' or 'height' of the (atmosphere) planetary boundary layer. 2006-09-26
CFSN0005 atmosphere cloud condensed water content DEPRECATED 'condensed_ water' means liquid and ice. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2011-03-23
CFSN0006 atmosphere cloud ice content DEPRECATED 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2011-03-23
CFSN0007 atmosphere cloud liquid water content DEPRECATED 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2011-03-23
CFSN0008 atmosphere content of sulfate aerosol DEPRECATED 'Content' indicates a quantity per unit area. 'Aerosol' means the suspended liquid or solid particles in air (except cloud droplets). 2009-07-06
7K2ILV7Y atmosphere convective available potential energy Convective(ly) available potential energy (often abbreviated CAPE) is a stability measure calculated by integrating the positive temperature difference between the surrounding atmosphere and a parcel of air lifted adiabatically from a given starting height to its equilibrium level. A coordinate variable of original_ air_ pressure_ of_ lifted_ parcel should be specified to indicate the starting height of the lifted parcel. CAPE exists under conditions of potential instability, and measures the potential energy per unit mass that would be released by the unstable parcel if it were able to convect upwards to equilibrium. 2013-11-28
O65ZBDBA atmosphere convective available potential energy wrt surface Convective(ly) available potential energy (often abbreviated CAPE) is a stability measure calculated by integrating the positive temperature difference between the surrounding atmosphere and a parcel of air lifted adiabatically from the surface to its equilibrium level. CAPE exists under conditions of potential instability, and measures the potential energy per unit mass that would be released by the unstable parcel if it were able to convect upwards to equilibrium. 2013-11-28
CFV8N2 atmosphere convective cloud condensed water content DEPRECATED "condensed_ water" means liquid and ice. Convective cloud is that produced by the convection schemes in an atmosphere model. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2011-03-23
CFV8N3 atmosphere convective cloud liquid water content DEPRECATED Convective cloud is that produced by the convection schemes in an atmosphere model. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2011-03-23
ZFMAMMRI atmosphere convective inhibition Convective inhibition is the amount of energy per unit mass required to overcome the negatively buoyant energy exerted by the environment on a parcel of air. Convective inhibition is often abbreviated as "CIN" or "CINH". It is calculated by integrating the negative temperature difference between the surrounding atmosphere and a parcel of air lifted adiabatically from a given starting height to its equilibrium level. A coordinate variable of original_ air_ pressure_ of_ lifted_ parcel should be specified to indicate the starting height of the lifted parcel. 2013-11-08
MYE6LV8Y atmosphere convective inhibition wrt surface Convective inhibition is the amount of energy per unit mass required to overcome the negatively buoyant energy exerted by the environment on a parcel of air. Convective inhibition is often abbreviated as "CIN" or "CINH". It is calculated by integrating the negative temperature difference between the surrounding atmosphere and a parcel of air lifted adiabatically from the surface to its equilibrium level. 2013-11-08
CFSN0009 atmosphere convective mass flux DEPRECATED In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. The atmosphere convective mass flux is the vertical transport of mass for a field of cumulus clouds or thermals, given by the product of air density and vertical velocity. For an area-average, cell_ methods should specify whether the average is over all the area or the area of updrafts only. 2010-03-11
CFV13N1 atmosphere downdraft convective mass flux In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The atmosphere convective mass flux is the vertical transport of mass for a field of cumulus clouds or thermals, given by the product of air density and vertical velocity. For an area-average, cell_ methods should specify whether the average is over all the area or the area of updrafts and/or downdrafts only. "Downdraft" means that the flux is positive in the downward direction (negative upward). 2010-03-11
CFSN0010 atmosphere dry energy content 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Dry energy is the sum of dry static energy and kinetic energy. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0011 atmosphere dry static energy content 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0748 atmosphere eastward stress due to gravity wave drag The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Atmosphere_ Xward_ stress is a stress which tends to accelerate the atmosphere in direction X. 2006-09-26
CFSN0749 atmosphere energy content 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 'Atmosphere energy content' has not yet been precisely defined! Please express your views on this quantity on the CF email list. 2006-09-26
CFSN0750 atmosphere enthalpy content 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0751 atmosphere heat diffusivity 2006-09-26
XJRFIXKO atmosphere helicity One-half the scalar product of the air velocity and vorticity vectors, where vorticity refers to the standard name atmosphere_ upward_ absolute_ vorticity. Helicity is proportional to the strength of the flow, the amount of vertical wind shear, and the amount of turning in the flow. 2021-09-20
CFSN0752 atmosphere horizontal streamfunction 'Horizontal' indicates that the streamfunction applies to a horizontal velocity field on a particular vertical level. 2006-09-26
CFSN0753 atmosphere horizontal velocity potential A velocity is a vector quantity. 'Horizontal' indicates that the velocity potential applies to a horizontal velocity field on a particular vertical level. 2006-09-26
CFSN0754 atmosphere hybrid height coordinate See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
CFSN0755 atmosphere hybrid sigma pressure coordinate See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
CFSN0756 atmosphere kinetic energy content 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2006-09-26
QJR38PP6 atmosphere layer thickness expressed as geopotential height difference The quantity with standard name atmosphere_ layer_ thickness_ expressed_ as_ geopotential_ height_ difference is the difference of geopotential height between two atmospheric levels. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be "model_ level_ number", but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. "Thickness" means the vertical extent of a layer. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. Geopotential height is the geopotential divided by the standard acceleration due to gravity. It is numerically similar to the altitude (or geometric height) and not to the quantity with standard name "height", which is relative to the surface. 2020-09-14
4JOK2RDN atmosphere level of free convection The level of free convection is the altitude where the temperature of the environment decreases faster than the moist adiabatic lapse rate of a saturated air parcel at the same level. It is calculated by lifting a parcel of air dry adiabatically to the LCL (lifted condensation level), then moist adiabatically until the parcel temperature is equal to the ambient temperature. A coordinate variable of original_ air_ pressure_ of_ lifted_ parcel should be specified to indicate the starting height of the lifted parcel. 2013-11-08
UZBGMNUD atmosphere level of free convection wrt surface The level of free convection is the altitude where the temperature of the environment decreases faster than the moist adiabatic lapse rate of a saturated air parcel at the same level. It is calculated by lifting a parcel of air dry adiabatically from the surface to the LCL (lifting condensation level), then moist adiabatically until the parcel temperature is equal to the ambient temperature. 2013-11-08
CTC0295V atmosphere lifting condensation level The lifting condensation level is the height at which the relative humidity of an air parcel cooled by dry adiabatic lifting would reach 100%. A coordinate variable of original_ air_ pressure_ of_ lifted_ parcel should be specified to indicate the starting height of the lifted parcel. 2013-11-08
K8D5J9EF atmosphere lifting condensation level wrt surface The lifting condensation level is the height at which the relative humidity of an air parcel cooled by dry adiabatic lifting from the surface would reach 100%. 2013-11-08
CFSN0757 atmosphere ln pressure coordinate "ln_ X" means natural logarithm of X. X must be dimensionless. See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
CF12N1 atmosphere mass content of acetic acid "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for acetic_ acid is CH3COOH. The IUPAC name for acetic acid is ethanoic acid. 2009-07-06
CF12N2 atmosphere mass content of aceto nitrile "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for aceto-nitrile is CH3CN. The IUPAC name for aceto-nitrile is ethanenitrile. 2009-07-06
CF12N3 atmosphere mass content of alkanes "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Alkanes are saturated hydrocarbons, i.e. they do not contain any chemical double bonds. Alkanes contain only hydrogen and carbon combined in the general proportions C(n)H(2n+2); "alkanes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual alkane species, e.g., methane and ethane. 2009-07-06
CF12N4 atmosphere mass content of alkenes "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Alkenes are unsaturated hydrocarbons as they contain chemical double bonds between adjacent carbon atoms. Alkenes contain only hydrogen and carbon combined in the general proportions C(n)H(2n); "alkenes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual alkene species, e.g., ethene and propene. 2009-07-06
CF12N5 atmosphere mass content of alpha hexachlorocyclohexane "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for alpha_ hexachlorocyclohexane is C6H6Cl6. 2009-07-06
CF12N6 atmosphere mass content of alpha pinene "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for alpha_ pinene is C10H16. The IUPAC name for alpha-pinene is (1S,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene. 2009-07-06
CF12N7 atmosphere mass content of ammonia "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for ammonia is NH3. 2009-07-06
CF12N8 atmosphere mass content of ammonium dry aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The chemical formula for ammonium is NH4. 2015-01-07
FVM903KE atmosphere mass content of ammonium dry aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for ammonium is NH4. 2015-01-07
CF12N9 atmosphere mass content of anthropogenic nmvoc expressed as carbon "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Anthropogenic" means influenced, caused, or created by human activity. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2015-01-07
CF12N10 atmosphere mass content of aromatic compounds "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Aromatic compounds in organic chemistry are compounds that contain at least one benzene ring of six carbon atoms joined by alternating single and double covalent bonds. The simplest aromatic compound is benzene itself. In standard names "aromatic_ compounds" is the term used to describe the group of aromatic chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual aromatic species, e.g. benzene and xylene. 2009-07-06
CF12N11 atmosphere mass content of atomic bromine "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical symbol for atomic bromine is Br. 2009-07-06
CF12N12 atmosphere mass content of atomic chlorine "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical symbol for atomic chlorine is Cl. 2009-07-06
CF12N13 atmosphere mass content of atomic nitrogen "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical symbol for atomic nitrogen is N. 2009-07-06
CF12N14 atmosphere mass content of benzene "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
CF12N15 atmosphere mass content of beta pinene "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for beta_ pinene is C10H16. The IUPAC name for beta-pinene is (1S,5S)-6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane. 2009-07-06
CF12N16 atmosphere mass content of biogenic nmvoc expressed as carbon "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Biogenic" means influenced, caused, or created by natural processes. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2015-01-07
CF12N17 atmosphere mass content of black carbon dry aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
CF12N18 atmosphere mass content of bromine chloride "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for bromine chloride is BrCl. 2009-07-06
CF12N19 atmosphere mass content of bromine monoxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for bromine monoxide is BrO. 2009-07-06
CF12N20 atmosphere mass content of bromine nitrate "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for bromine nitrate is BrONO2. The chemical formula for the nitrate anion is NO3-. 2009-07-06
CF12N21 atmosphere mass content of brox expressed as bromine "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer are used". "Brox" describes a family of chemical species consisting of inorganic bromine compounds with the exception of hydrogen bromide (HBr) and bromine nitrate (BrONO2). The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Brox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. Standard names that use the term "inorganic_ bromine" are used for quantities that contain all inorganic bromine species including HCl and ClONO2. 2019-03-04
CF12N22 atmosphere mass content of butane "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N23 atmosphere mass content of carbon dioxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for carbon dioxide is CO2. 2009-07-06
CF12N24 atmosphere mass content of carbon monoxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula of carbon monoxide is CO. 2009-07-06
CF12N25 atmosphere mass content of carbon tetrachloride "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula of carbon tetrachloride is CCl4. The IUPAC name for carbon tetrachloride is tetrachloromethane. 2019-04-08
CF12N26 atmosphere mass content of cfc11 "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro(fluoro)methane. 2019-05-14
CF12N27 atmosphere mass content of cfc113 "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The chemical formula of CFC113 is CCl2FCClF2. The IUPAC name for CFC113 is 1,1,2-trichloro-1,2,2-trifluoroethane. 2019-05-14
CF12N28 atmosphere mass content of cfc113a "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The chemical formula of CFC113a is CCl3CF3. The IUPAC name for CFC113a is 1,1,1-trichloro-2,2,2-trifluoroethane. 2019-05-14
CF12N29 atmosphere mass content of cfc114 "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The chemical formula of CFC114 is CClF2CClF2. The IUPAC name for CFC114 is 1,2-dichloro-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12N30 atmosphere mass content of cfc115 "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula of CFC115 is CClF2CF3. The IUPAC name for CFC115 is 1-chloro-1,1,2,2,2-pentafluoroethane. 2019-05-14
CF12N31 atmosphere mass content of cfc12 "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro(difluoro)methane. 2019-05-14
CF12N32 atmosphere mass content of chlorine dioxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for chlorine dioxide is OClO. 2009-07-06
CF12N33 atmosphere mass content of chlorine monoxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for chlorine monoxide is ClO. 2009-07-06
CF12N34 atmosphere mass content of chlorine nitrate "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for chlorine nitrate is ClONO2. 2009-07-06
BBAD2149 atmosphere mass content of cloud condensed water "condensed_ water" means liquid and ice. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical int egral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2011-03-23
BBAD2158 atmosphere mass content of cloud ice "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2011-03-23
BBAD2159 atmosphere mass content of cloud liquid water "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-02-03
CF12N35 atmosphere mass content of clox expressed as chlorine "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Clox" describes a family of chemical species consisting of inorganic chlorine compounds with the exception of hydrogen chloride (HCl) and chlorine nitrate (ClONO2). The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Clox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. Standard names that use the term "inorganic_ chlorine" are used for quantities that contain all inorganic chlorine species including HCl and ClONO2. 2019-03-04
BBAD2100 atmosphere mass content of convective cloud condensed water "condensed_ water" means liquid and ice. Convective cloud is that produced by the convection schemes in an atmosphere model. "Content" indicates a quan tity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2011-03-23
391VFPF4 atmosphere mass content of convective cloud ice "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Convective cloud is that produced by the convection schemes in an atmosphere model. 2018-04-16
BBAD2101 atmosphere mass content of convective cloud liquid water "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Convective cloud is that produced by the convection schemes in an atmosphere model. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CF12N36 atmosphere mass content of dichlorine peroxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for dichlorine peroxide is Cl2O2. 2009-07-06
CF12N37 atmosphere mass content of dimethyl sulfide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for dimethyl sulfide is (CH3)2S. Dimethyl sulfide is sometimes referred to as DMS. 2009-07-06
CF12N38 atmosphere mass content of dinitrogen pentoxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for dinitrogen pentoxide is N2O5. 2009-07-06
CF12N39 atmosphere mass content of dust dry aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
DPJB8SFZ atmosphere mass content of dust dry aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2015-01-07
V4O6KUO9 atmosphere mass content of elemental carbon dry aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
CF12N40 atmosphere mass content of ethane "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N41 atmosphere mass content of ethanol "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for ethanol is C2H5OH. 2009-07-06
CF12N42 atmosphere mass content of ethene "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
CF12N43 atmosphere mass content of ethyne "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. 2009-07-06
CF12N44 atmosphere mass content of formaldehyde "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. 2009-07-06
CF12N45 atmosphere mass content of formic acid "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for formic acid is HCOOH. The IUPAC name for formic acid is methanoic acid. 2009-07-06
CF12N46 atmosphere mass content of gaseous divalent mercury "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Divalent mercury" means all compounds in which the mercury has two binding sites to other ion(s) in a salt or to other atom(s) in a molecule. 2009-07-06
CF12N47 atmosphere mass content of gaseous elemental mercury "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical symbol for mercury is Hg. 2009-07-06
SNE4B1PP atmosphere mass content of graupel "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. Graupel consists of heavily rimed snow particles, often called snow pellets; often indistinguishable from very small soft hail except when the size convention that hail must have a diameter greater than 5 mm is adopted. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Graupel. There are also separate standard names for hail. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. 2018-05-15
3RSDQDI5 atmosphere mass content of graupel and hail "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. Graupel consists of heavily rimed snow particles, often called snow pellets; often indistinguishable from very small soft hail except when the size convention that hail must have a diameter greater than 5 mm is adopted. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Graupel. Hail is precipitation in the form of balls or irregular lumps of ice, often restricted by a size convention to diameters of 5 mm or more. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Hail. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. For models that do distinguish between them, separate standard names for hail and graupel are available. 2018-05-15
RK8QXV5P atmosphere mass content of hail "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. Hail is precipitation in the form of balls or irregular lumps of ice, often restricted by a size convention to diameters of 5 mm or more. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Hail. For diameters of less than 5 mm standard names for "graupel" should be used. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. 2018-05-15
CF12N48 atmosphere mass content of halon1202 "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The chemical formula for Halon1202 is CBr2F2. The IUPAC name for Halon1202 is dibromo(difluoro)methane. 2019-05-14
CF12N49 atmosphere mass content of halon1211 "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The chemical formula for Halon1211 is CBrClF2. The IUPAC name for Halon1211 is bromo-chloro-difluoromethane. 2019-05-14
CF12N50 atmosphere mass content of halon1301 "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer are used". The mass is the total mass of the molecules. The chemical formula for Halon1301 is CBrF3. The IUPAC name for Halon1301 is bromo(trifluoro)methane. 2019-05-14
CF12N51 atmosphere mass content of halon2402 "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The chemical formula for Halon2402 is C2Br2F4. The IUPAC name for Halon2402 is 1,2-dibromo-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12N52 atmosphere mass content of hcc140a "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for HCC140a, also called methyl chloroform, is CH3CCl3. The IUPAC name for HCC140a is 1,1,1-trichloroethane. 2019-05-14
CF12N53 atmosphere mass content of hcfc141b "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for HCFC141b is CH3CCl2F. The IUPAC name for HCFC141b is 1,1-dichloro-1-fluoroethane. 2018-12-17
CF12N54 atmosphere mass content of hcfc142b "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for HCFC142b is CH3CClF2. The IUPAC name for HCFC142b is 1-chloro-1,1-difluoroethane. 2018-12-17
CF12N55 atmosphere mass content of hcfc22 "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer are used". The mass is the total mass of the molecules. The chemical formula for HCFC22 is CHClF2. The IUPAC name for HCFC22 is chloro(difluoro)methane. 2019-05-14
CF12N56 atmosphere mass content of hexachlorobiphenyl "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the molecules. The chemical formula for hexachlorobiphenyl is C12H4Cl6. The structure of this species consists of two linked benzene rings, each of which is additionally bonded to three chlorine atoms. 2018-12-17
CF12N57 atmosphere mass content of hox expressed as hydrogen "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "HOx" means a combination of two radical species containing hydrogen and oxygen: OH and HO2. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2018-12-17
CF12N58 atmosphere mass content of hydrogen bromide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the molecules. The chemical formula for hydrogen bromide is HBr. 2018-12-17
CF12N59 atmosphere mass content of hydrogen chloride "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for hydrogen chloride is HCl. 2018-12-17
CF12N60 atmosphere mass content of hydrogen cyanide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the molecules. The chemical formula for hydrogen cyanide is HCN. 2019-02-04
CF12N61 atmosphere mass content of hydrogen peroxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the molecules. The chemical formula for hydrogen peroxide is H2O2. 2019-02-04
CF12N62 atmosphere mass content of hydroperoxyl radical "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for the hydroperoxyl radical is HO2. In chemistry, a 'radical' is a highly reactive, and therefore short lived, species. 2018-12-17
CF12N63 atmosphere mass content of hydroxyl radical "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for the hydroxyl radical is OH. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N64 atmosphere mass content of hypobromous acid "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for hypobromous acid is HOBr. 2019-02-04
CF12N65 atmosphere mass content of hypochlorous acid "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for hypochlorous acid is HOCl. 2019-02-04
CF12N66 atmosphere mass content of inorganic bromine "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. "Inorganic bromine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "brox" are used for quantities that contain all inorganic bromine species except HBr and BrONO2. 2019-03-04
CF12N67 atmosphere mass content of inorganic chlorine "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. "Inorganic chlorine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "clox" are used for quantities that contain all inorganic chlorine species except HCl and ClONO2. 2019-03-04
CF12N68 atmosphere mass content of isoprene "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for isoprene is CH2=C(CH3)CH=CH2. The IUPAC name for isoprene is 2-methylbuta-1,3-diene. Isoprene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
CF12N69 atmosphere mass content of limonene "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for limonene is C10H16. The IUPAC name for limonene is 1-methyl-4-prop-1-en-2-ylcyclohexene. Limonene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
YVWVY414 atmosphere mass content of liquid precipitation "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Liquid_ precipitation" includes both "rain" and "drizzle". "Rain" means drops of water falling through the atmosphere that have a diameter greater than 0.5 mm. "Drizzle" means drops of water falling through the atmosphere that have a diameter typically in the range 0.2-0.5 mm. 2020-03-09
CF12N70 atmosphere mass content of mercury dry aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
C0R0T8J4 atmosphere mass content of mercury dry aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2015-01-07
CF12N71 atmosphere mass content of methane "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N72 atmosphere mass content of methanol "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for methanol is CH3OH. 2009-07-06
CF12N73 atmosphere mass content of methyl bromide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for methyl bromide is CH3Br. The IUPAC name for methyl bromide is bromomethane. 2009-07-06
CF12N74 atmosphere mass content of methyl chloride "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for methyl chloride is CH3Cl. The IUPAC name for methyl chloride is chloromethane. 2009-07-06
CF12N75 atmosphere mass content of methyl hydroperoxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for methyl hydroperoxide is CH3OOH. 2009-07-06
CF12N76 atmosphere mass content of methyl peroxy radical "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for methyl_ peroxy_ radical is CH3O2. In chemistry, a "radical"is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N77 atmosphere mass content of molecular hydrogen "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for molecular hydrogen is H2. 2009-07-06
CF12N78 atmosphere mass content of nitrate dry aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The chemical formula for the nitrate anion is NO3-. 2015-01-07
8O7ZSO1W atmosphere mass content of nitrate dry aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for the nitrate anion is NO3-. 2015-01-07
CF12N79 atmosphere mass content of nitrate radical "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for nitrate is NO3. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N80 atmosphere mass content of nitric acid "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for nitric acid is HNO3. 2009-07-06
CF12N81 atmosphere mass content of nitric acid trihydrate ambient aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. The chemical formula for nitric acid is HNO3. 2015-01-07
O6MY37CL atmosphere mass content of nitric acid trihydrate ambient aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. The chemical formula for nitric acid is HNO3. 2015-01-07
CF12N82 atmosphere mass content of nitrogen dioxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for nitrogen dioxide is NO2. 2009-07-06
CF12N83 atmosphere mass content of nitrogen monoxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for nitrogen monoxide is NO. 2009-07-06
CF12N84 atmosphere mass content of nitrous acid "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for nitrous acid is HNO2. 2009-07-06
CF12N85 atmosphere mass content of nitrous oxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for nitrous oxide is N2O. 2009-07-06
CF12N86 atmosphere mass content of nmvoc expressed as carbon "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2015-01-07
CF12N87 atmosphere mass content of nox expressed as nitrogen "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
CF12N88 atmosphere mass content of noy expressed as nitrogen "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Noy" describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2) , chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)). The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
CF12N89 atmosphere mass content of oxygenated hydrocarbons "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Oxygenated" means containing oxygen. "Hydrocarbon" means a compound containing hydrogen and carbon. 2009-07-06
CF12N90 atmosphere mass content of ozone "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for ozone is O3. 2009-07-06
CF12N91 atmosphere mass content of particulate organic matter dry aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
LHHVPPON atmosphere mass content of particulate organic matter dry aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
CF12N92 atmosphere mass content of peroxy radicals "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The term "peroxy_ radicals" means all organic and inorganic peroxy radicals. This includes HO2 and all organic peroxy radicals, sometimes referred to as RO2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N93 atmosphere mass content of peroxyacetyl nitrate "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for peroxyacetyl nitrate, sometimes referred to as PAN, is CH3COO2NO2. The IUPAC name for peroxyacetyl_ nitrate is nitroethaneperoxoate. 2009-07-06
CF12N94 atmosphere mass content of peroxynitric acid "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for peroxynitric acid, sometimes referred to as PNA, is HO2NO2. 2009-07-06
CF12N95 atmosphere mass content of primary particulate organic matter dry aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except black carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
LITQW4MX atmosphere mass content of primary particulate organic matter dry aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except elemental carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
CF12N96 atmosphere mass content of propane "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N97 atmosphere mass content of propene "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
CF12N98 atmosphere mass content of radon "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical symbol for radon is Rn. 2009-07-06
J0EYP8G7 atmosphere mass content of sea salt dry aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2017-06-26
FR70ZCPP atmosphere mass content of sea salt dry aerosol particles expressed as cations "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The phrase "sea_ salt_ cation" is the term used in standard names to describe collectively the group of cationic species that occur in sea salt. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Sea salt cations are mainly sodium (Na+), but also include potassium (K+), magnesium (Mg2+), calcium (Ca2+) and rarer cations. Where possible, the data variable should be accompanied by a complete description of the ions represented, for example, by using a comment attribute. 2017-06-26
CF12N99 atmosphere mass content of seasalt dry aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
4RWM7VWJ atmosphere mass content of seasalt dry aerosol particles DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2017-06-26
CF12N100 atmosphere mass content of secondary particulate organic matter dry aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Secondary particulate organic matter " means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
44ANZNZD atmosphere mass content of secondary particulate organic matter dry aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Secondary particulate organic matter " means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
434N7IWH atmosphere mass content of snow "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Snow" refers to the precipitating part of snow in the atmosphere - the cloud snow content is excluded. 2020-02-03
BBAH2155 atmosphere mass content of sulfate "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2011-07-21
CF12S2 atmosphere mass content of sulfate ambient aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. 2015-01-07
7MO18ODI atmosphere mass content of sulfate ambient aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2015-01-07
CF12N101 atmosphere mass content of sulfate dry aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
CFV15A1 atmosphere mass content of sulfate dry aerosol expressed as sulfur DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
FZAT6UAR atmosphere mass content of sulfate dry aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
UKGJEWEU atmosphere mass content of sulfate dry aerosol particles expressed as sulfur "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
CF12N102 atmosphere mass content of sulfate expressed as sulfur dry aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2010-07-26
CF12N103 atmosphere mass content of sulfur dioxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for sulfur dioxide is SO2. 2009-07-06
CF12N104 atmosphere mass content of terpenes "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Terpenes are hydrocarbons, that is, they contain only hydrogen and carbon combined in the general proportions (C5H8)n where n is an integer greater than on equal to one. The term "terpenes" is used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual terpene species, e.g., isoprene and limonene. 2009-07-06
CF12N105 atmosphere mass content of toluene "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. 2019-03-04
KR1V8PXD atmosphere mass content of volcanic ash "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Volcanic_ ash" means the fine-grained products of explosive volcanic eruptions, such as minerals or crystals, older fragmented rock (e.g. andesite), and glass. Particles within a volcanic ash cloud have diameters less than 2 mm. "Volcanic_ ash" does not include non-volcanic dust. 2013-11-08
BBAH2153 atmosphere mass content of water "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Water" means water in all phases. 2011-07-21
CF12N106 atmosphere mass content of water in ambient aerosol DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Water" means water in all phases. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. 2015-01-07
22ZMPG4C atmosphere mass content of water in ambient aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Water" means water in all phases. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2015-01-07
CF12N107 atmosphere mass content of water vapor "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. 2011-07-21
CF12N108 atmosphere mass content of xylene "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
CFSN0785 atmosphere mass of air per unit area "Mass_ of_ air" means the mass due solely to the gaseous constituents of the atmosphere. The standard name for the mass including precipitation and aerosol particles is atmosphere_ mass_ per_ unit_ area. 2007-05-15
CFV16A3 atmosphere mass of carbon dioxide The chemical formula for carbon dioxide is CO2. 2010-10-11
CFSN0758 atmosphere mass per unit area 'X_ area' means the horizontal area occupied by X within the grid cell. 2006-09-26
53GBYLL6 atmosphere mole content of carbon monoxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The construction "atmosphere_ mole_ content_ of_ X" means the vertically integrated number of moles of X above a unit area. The chemical formula of carbon monoxide is CO. 2018-05-15
6JXTFQI7 atmosphere mole content of methane "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The construction "atmosphere_ mole_ content_ of_ X" means the vertically integrated number of moles of X above a unit area. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2018-05-15
D1FW0HCE atmosphere mole content of nitrogen dioxide "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The construction "atmosphere_ mole_ content_ of_ X" means the vertically integrated number of moles of X above a unit area. The chemical formula for nitrogen dioxide is NO2. 2018-05-15
IDDFFADF atmosphere mole content of ozone "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The construction "atmosphere_ mole_ content_ of_ X" means the vertically integrated number of moles of X above a unit area. The chemical formula for ozone is O3. atmosphere_ mole_ content_ of_ ozone is usually measured in Dobson Units which are equivalent to 446.2 micromoles m-2. N.B. Data variables containing column content of ozone can be given the standard name of either equivalent_ thickness_ at_ stp_ of_ atmosphere_ ozone_ content or atmosphere_ mole_ content_ of_ ozone.The latter name is recommended for consistency with mole content names for chemical species other than ozone. 2013-01-11
D8LJCELK atmosphere mole content of water vapor "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The construction "atmosphere_ mole_ content_ of_ X" means the vertically integrated number of moles of X above a unit area. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. The chemical formula for water is H2O. 2018-05-15
CF12N109 atmosphere moles of acetic acid The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for acetic_ acid is CH3COOH. The IUPAC name for acetic acid is ethanoic acid. 2009-07-06
CF12N110 atmosphere moles of aceto nitrile The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for aceto-nitrile is CH3CN. The IUPAC name for aceto-nitrile is ethanenitrile. 2009-07-06
CF12N111 atmosphere moles of alpha hexachlorocyclohexane The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for alpha_ hexachlorocyclohexane is C6H6Cl6. 2009-07-06
CF12N112 atmosphere moles of alpha pinene The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for alpha_ pinene is C10H16. The IUPAC name for alpha-pinene is (1S,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene. 2009-07-06
CF12N113 atmosphere moles of ammonia The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ammonia is NH3. 2009-07-06
CF12N114 atmosphere moles of anthropogenic nmvoc expressed as carbon The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Anthropogenic" means influenced, caused, or created by human activity. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2015-01-07
CF12N115 atmosphere moles of atomic bromine The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical symbol for atomic bromine is Br. 2009-07-06
CF12N116 atmosphere moles of atomic chlorine The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical symbol for atomic chlorine is Cl. 2009-07-06
CF12N117 atmosphere moles of atomic nitrogen The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical symbol for atomic nitrogen is N. 2009-07-06
CF12N118 atmosphere moles of benzene The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
CF12N119 atmosphere moles of beta pinene The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for beta_ pinene is C10H16. The IUPAC name for beta-pinene is (1S,5S)-6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane. 2009-07-06
CF12N120 atmosphere moles of biogenic nmvoc expressed as carbon The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Biogenic" means influenced, caused, or created by natural processes. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2015-01-07
CF12N121 atmosphere moles of bromine chloride The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for bromine chloride is BrCl. 2009-07-06
CF12N122 atmosphere moles of bromine monoxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for bromine monoxide is BrO. 2009-07-06
CF12N123 atmosphere moles of bromine nitrate The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for bromine nitrate is BrONO2. 2009-07-06
CF12N124 atmosphere moles of brox expressed as bromine The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Brox" describes a family of chemical species consisting of inorganic bromine compounds with the exception of hydrogen bromide (HBr) and bromine nitrate (BrONO2). The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Brox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. Standard names that use the term "inorganic_ bromine" are used for quantities that contain all inorganic bromine species including HCl and ClONO2. 2019-03-04
CF12N125 atmosphere moles of butane The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N126 atmosphere moles of carbon dioxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for carbon dioxide is CO2. 2009-07-06
CF12S3 atmosphere moles of carbon monoxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of carbon monoxide is CO. 2009-07-06
CF12S4 atmosphere moles of carbon tetrachloride The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for carbon tetrachloride is CCl4. The IUPAC name for carbon tetrachloride is tetrachloromethane. 2019-04-08
CF12S5 atmosphere moles of cfc11 The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro(fluoro)methane. 2019-05-14
CF12S6 atmosphere moles of cfc113 The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of CFC113 is CCl2FCClF2. The IUPAC name for CFC113 is 1,1,2-trichloro-1,2,2-trifluoroethane. 2019-05-14
CF12N127 atmosphere moles of cfc113a The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of CFC113a is CCl3CF3. The IUPAC name for CFC113a is 1,1,1-trichloro-2,2,2-trifluoroethane. 2019-05-14
CF12S7 atmosphere moles of cfc114 The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of CFC114 is CClF2CClF2. The IUPAC name for CFC114 is 1,2-dichloro-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12S8 atmosphere moles of cfc115 The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of CFC115 is CClF2CF3. The IUPAC name for CFC115 is 1-chloro-1,1,2,2,2-pentafluoroethane. 2019-05-14
CF12S9 atmosphere moles of cfc12 The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro(difluoro)methane. 2019-05-14
CF12N128 atmosphere moles of chlorine dioxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for chlorine dioxide is OClO. 2009-07-06
CF12N129 atmosphere moles of chlorine monoxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for chlorine monoxide is ClO. 2009-07-06
CF12N130 atmosphere moles of chlorine nitrate The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for chlorine nitrate is ClONO2. 2009-07-06
CF12N131 atmosphere moles of clox expressed as chlorine The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Clox" describes a family of chemical species consisting of inorganic chlorine compounds with the exception of hydrogen chloride (HCl) and chlorine nitrate (ClONO2). The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Clox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. Standard names that use the term "inorganic_ chlorine" are used for quantities that contain all inorganic chlorine species including HCl and ClONO2. 2019-03-04
CF12N132 atmosphere moles of dichlorine peroxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for dichlorine peroxide is Cl2O2. 2009-07-06
CF12N133 atmosphere moles of dimethyl sulfide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for dimethyl sulfide is (CH3)2S. Dimethyl sulfide is sometimes referred to as DMS. 2009-07-06
CF12N134 atmosphere moles of dinitrogen pentoxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for dinitrogen pentoxide is N2O5. 2009-07-06
CF12N135 atmosphere moles of ethane The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N136 atmosphere moles of ethanol The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ethanol is C2H5OH. 2009-07-06
CF12N137 atmosphere moles of ethene The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
CF12N138 atmosphere moles of ethyne The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. 2009-07-06
CF12N139 atmosphere moles of formaldehyde The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. 2009-07-06
CF12N140 atmosphere moles of formic acid The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for formic acid is HCOOH. The IUPAC name for formic acid is methanoic acid. 2009-07-06
CF12N141 atmosphere moles of gaseous divalent mercury The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Divalent mercury" means all compounds in which the mercury has two binding sites to other ion(s) in a salt or to other atom(s) in a molecule. 2009-07-06
CF12N142 atmosphere moles of gaseous elemental mercury The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical symbol for mercury is Hg. 2009-07-06
CF12S10 atmosphere moles of halon1202 The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for Halon1202 is CBr2F2. The IUPAC name for Halon1202 is dibromo(difluoro)methane. 2019-05-14
CF12S11 atmosphere moles of halon1211 The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for Halon1211 is CBrClF2. The IUPAC name for Halon1211 is bromo-chloro-difluoromethane. 2019-05-14
CF12S12 atmosphere moles of halon1301 The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for Halon1301 is CBrF3. The IUPAC name for Halon1301 is bromo(trifluoro)methane. 2019-05-14
CF12S13 atmosphere moles of halon2402 The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for Halon2402 is C2Br2F4. The IUPAC name for Halon2402 is 1,2-dibromo-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12S14 atmosphere moles of hcc140a The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for HCC140a, also called methyl chloroform, is CH3CCl3. The IUPAC name for HCC140a is 1,1,1-trichloroethane. 2019-05-14
CF12N143 atmosphere moles of hcfc141b The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for HCFC141b is CH3CCl2F. The IUPAC name for HCFC141b is 1,1-dichloro-1-fluoroethane. 2009-07-06
CF12N144 atmosphere moles of hcfc142b The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for HCFC142b is CH3CClF2. The IUPAC name for HCFC142b is 1-chloro-1,1-difluoroethane. 2009-07-06
CF12S15 atmosphere moles of hcfc22 The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for HCFC22 is CHClF2. The IUPAC name for HCFC22 is chloro(difluoro)methane. 2019-05-14
CF12N145 atmosphere moles of hexachlorobiphenyl The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hexachlorobiphenyl is C12H4Cl6. This structure of this species consists of two linked benzene rings, each of which is additionally bonded to three chlorine atoms. 2009-07-06
CF12N146 atmosphere moles of hox expressed as hydrogen The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "HOx" means a combination of two radical species containing hydrogen and oxygen: OH and HO2. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
CF12N147 atmosphere moles of hydrogen bromide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hydrogen bromide is HBr. 2009-07-06
CF12N148 atmosphere moles of hydrogen chloride The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hydrogen chloride is HCl. 2009-07-06
CF12N149 atmosphere moles of hydrogen cyanide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hydrogen cyanide is HCN. 2009-07-06
CF12N150 atmosphere moles of hydrogen peroxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hydrogen peroxide is H2O2. 2009-07-06
CF12N151 atmosphere moles of hydroperoxyl radical The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for the hydroperoxyl radical is HO2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N152 atmosphere moles of hydroxyl radical The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for the hydroxyl radical is OH. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N153 atmosphere moles of hypobromous acid The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hypobromous acid is HOBr. 2009-07-06
CF12N154 atmosphere moles of hypochlorous acid The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hypochlorous acid is HOCl. 2009-07-06
CF12N155 atmosphere moles of inorganic bromine The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. "Inorganic bromine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "brox" are used for quantities that contain all inorganic bromine species except HBr and BrONO2. 2019-03-04
CF12N156 atmosphere moles of inorganic chlorine The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. "Inorganic chlorine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "clox" are used for quantities that contain all inorganic chlorine species except HCl and ClONO2. 2019-03-04
CF12N157 atmosphere moles of isoprene The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for isoprene is CH2=C(CH3)CH=CH2. The IUPAC name for isoprene is 2-methylbuta-1,3-diene. Isoprene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
CF12N158 atmosphere moles of limonene The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for limonene is C10H16. The IUPAC name for limonene is 1-methyl-4-prop-1-en-2-ylcyclohexene. Limonene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
CF12S16 atmosphere moles of methane The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N159 atmosphere moles of methanol The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methanol is CH3OH. 2009-07-06
CF12S17 atmosphere moles of methyl bromide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methyl bromide is CH3Br. The IUPAC name for methyl bromide is bromomethane. 2009-07-06
CF12S18 atmosphere moles of methyl chloride The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methyl chloride is CH3Cl. The IUPAC name for methyl chloride is chloromethane. 2009-07-06
CF12N160 atmosphere moles of methyl hydroperoxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methyl hydroperoxide is CH3OOH. 2009-07-06
CF12N161 atmosphere moles of methyl peroxy radical The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methyl_ peroxy_ radical is CH3O2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12S19 atmosphere moles of molecular hydrogen The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for molecular hydrogen is H2. 2009-07-06
CF12N162 atmosphere moles of nitrate radical The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N163 atmosphere moles of nitric acid The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitric acid is HNO3. 2009-07-06
CF12N164 atmosphere moles of nitric acid trihydrate ambient aerosol DEPRECATED "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
0QR2MCSC atmosphere moles of nitric acid trihydrate ambient aerosol particles The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
CF12N165 atmosphere moles of nitrogen dioxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitrogen dioxide is NO2. 2009-07-06
CF12N166 atmosphere moles of nitrogen monoxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitrogen monoxide is NO. 2009-07-06
CF12N167 atmosphere moles of nitrous acid The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitrous acid is HNO2. 2009-07-06
CF12S20 atmosphere moles of nitrous oxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitrous oxide is N2O. 2009-07-06
CF12N168 atmosphere moles of nmvoc expressed as carbon The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2015-01-07
CF12N169 atmosphere moles of nox expressed as nitrogen The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
CF12N170 atmosphere moles of noy expressed as nitrogen The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Noy" describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2) , chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)). The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
CF12N171 atmosphere moles of ozone The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ozone is O3. 2009-07-06
CF12N172 atmosphere moles of peroxyacetyl nitrate The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for peroxyacetyl nitrate, sometimes referred to as PAN, is CH3COO2NO2. The IUPAC name for peroxyacetyl_ nitrate is nitroethaneperoxoate. 2009-07-06
CF12N173 atmosphere moles of peroxynitric acid The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for peroxynitric acid, sometimes referred to as PNA, is HO2NO2. 2009-07-06
CF12N174 atmosphere moles of propane The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N175 atmosphere moles of propene The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
CF12N176 atmosphere moles of radon The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical symbol for radon is Rn. 2009-07-06
CF12N177 atmosphere moles of sulfur dioxide The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for sulfur dioxide is SO2. 2009-07-06
CF12N178 atmosphere moles of toluene The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. 2019-03-04
CF12N179 atmosphere moles of water vapor The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. 2009-07-06
CF12N180 atmosphere moles of xylene The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
CFSN0759 atmosphere momentum diffusivity 2006-09-26
CFSN0760 atmosphere net rate of absorption of longwave energy 'longwave' means longwave radiation. Net absorbed radiation is the difference between absorbed and emitted radiation. 2006-09-26
CFSN0761 atmosphere net rate of absorption of shortwave energy 'shortwave' means shortwave radiation. Net absorbed radiation is the difference between absorbed and emitted radiation. 2006-09-26
CFV13A1 atmosphere net upward convective mass flux In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The atmosphere convective mass flux is the vertical transport of mass for a field of cumulus clouds or thermals, given by the product of air density and vertical velocity. Net upward convective mass flux is the difference between the updraft mass flux and the downdraft mass flux. "Upward" indicates a vector component which is positive when directed upward (negative downward). For an area-average, cell_ methods should specify whether the average is over all the area or the area of updrafts and/or downdrafts only. 2010-03-11
CFV13N2 atmosphere net upward deep convective mass flux "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The atmosphere convective mass flux is the vertical transport of mass for a field of cumulus clouds or thermals, given by the product of air density and vertical velocity. For an area-average, cell_ methods should specify whether the average is over all the area or the area of updrafts and/or downdrafts only. Net upward convective mass flux is the difference between the updraft mass flux and the downdraft mass flux. 2010-03-11
CFV13N3 atmosphere net upward shallow convective mass flux "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The atmosphere convective mass flux is the vertical transport of mass for a field of cumulus clouds or thermals, given by the product of air density and vertical velocity. For an area-average, cell_ methods should specify whether the average is over all the area or the area of updrafts and/or downdrafts only. Net upward convective mass flux is the difference between the updraft mass flux and the downdraft mass flux. 2010-03-11
CFSN0762 atmosphere northward stress due to gravity wave drag The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Atmosphere_ Xward_ stress is a stress which tends to accelerate the atmosphere in direction X. 2006-09-26
CF12N181 atmosphere number content of aerosol particles "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. 2015-01-07
CF12N182 atmosphere number content of cloud droplets "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2009-07-06
CF12N183 atmosphere number content of ice crystals "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2009-07-06
3DN55MN7 atmosphere obukhov length The height in the atmosphere, L, that buoyant production or destruction of turbulent energy balances the shear production of turbulent kinetic energy: L = -u*3 / (kB0), where u* is the wind frictional velocity, k is the von Karman constant, and B0 is the atmospheric surface buoyancy flux. If the buoyancy flux is destabilizing, L is negative. 2024-01-18
CFSN0763 atmosphere optical thickness due to aerosol DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. 'Aerosol' means the suspended liquid or solid particles in air (except cloud droplets). 2010-03-11
CFV13A2 atmosphere optical thickness due to ambient aerosol DEPRECATED The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
BZT50PNT atmosphere optical thickness due to ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
A0VQCZ7T atmosphere optical thickness due to ammonium ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-"optical_ thickness") on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
CFV7N72 atmosphere optical thickness due to black carbon ambient aerosol The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. 2007-11-21
CF12N184 atmosphere optical thickness due to cloud The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Cloud" means the component of extinction owing to the presence of liquid or ice water particles. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-07-08
CF12N185 atmosphere optical thickness due to convective cloud The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. Convective cloud is that produced by the convection schemes in an atmosphere model. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2009-07-06
CFV7N73 atmosphere optical thickness due to dust ambient aerosol DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. 2015-01-07
8EM4NR55 atmosphere optical thickness due to dust ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
BBAH2112 atmosphere optical thickness due to dust dry aerosol DEPRECATED The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-"optical_ thickness") on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
8653W3HC atmosphere optical thickness due to dust dry aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-"optical_ thickness") on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
0HFAZTDG atmosphere optical thickness due to nitrate ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-"optical_ thickness") on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The chemical formula for the nitrate anion is NO3-. 2015-01-07
CFV7N74 atmosphere optical thickness due to particulate organic matter ambient aerosol DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. 2015-01-07
RFMOUWGK atmosphere optical thickness due to particulate organic matter ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
CFV7N68 atmosphere optical thickness due to pm10 ambient aerosol DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. "Pm10 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 10 micrometers. 2015-01-07
OJ9FZRPI atmosphere optical thickness due to pm10 ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-06-26
CFV7N69 atmosphere optical thickness due to pm1 ambient aerosol DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. "Pm1 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 1 micrometer. 2015-01-07
7FIU8PCM atmosphere optical thickness due to pm1 ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "Pm1 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 1 micrometer. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-06-26
CFV7N70 atmosphere optical thickness due to pm2p5 ambient aerosol DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. "Pm2p5 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 2.5 micrometers. 2015-01-07
O1IPIHLF atmosphere optical thickness due to pm2p5 ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-06-26
5D3PO7YU atmosphere optical thickness due to sea salt ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-06-26
CFV7N71 atmosphere optical thickness due to seasalt ambient aerosol DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. 2015-01-07
O7C6DLT1 atmosphere optical thickness due to seasalt ambient aerosol particles DEPRECATED The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-06-26
CF12N186 atmosphere optical thickness due to stratiform cloud The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2009-07-06
J6HSDN4T atmosphere optical thickness due to sulfate ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-"optical_ thickness") on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
CFV7N44 atmosphere optical thickness due to water in ambient aerosol DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "atmosphere_ optical_ thickness_ due_ to_ water_ in_ ambient_ aerosol" refers to the optical thickness due to the water that is associated with aerosol particles due to hygroscopic growth in ambient air, affecting the particle's radius and refractive index. It corresponds to the difference between the total dry aerosol optical thickness and the total ambient aerosol optical thickness. 2015-01-07
XSKHRFMM atmosphere optical thickness due to water in ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. The atmosphere optical thickness applies to radiation passing through the entire atmosphere. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "atmosphere_ optical_ thickness_ due_ to_ water_ in_ ambient_ aerosol" refers to the optical thickness due to the water that is associated with aerosol particles due to hygroscopic growth in ambient air, affecting the radius and refractive index of the particle. It corresponds to the difference between the total dry aerosol optical thickness and the total ambient aerosol optical thickness. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
CFSN0764 atmosphere potential energy content 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) 2006-09-26
CFSN0765 atmosphere relative vorticity DEPRECATED Relative vorticity is the upward component of the vorticity vector i.e. the component which arises from horizontal velocity. 2020-09-14
CFSN0766 atmosphere sigma coordinate See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
CFSN0767 atmosphere sleve coordinate See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
CFSNA002 atmosphere so4 content DEPRECATED 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2006-09-26
CFSN0768 atmosphere specific convective available potential energy DEPRECATED 'specific' means per unit mass. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) Convective(ly) available potential energy is often abbreviated as 'CAPE'. 2013-11-28
UQUQA46H atmosphere stability k index The atmosphere_ stability_ k_ index is an index that indicates the potential of severe convection and is often referred to a simply the k index. The index is derived from the difference in air temperature between 850 and 500 hPa, the dew point temperature at 850 hPa, and the difference between the air temperature and the dew point temperature at 700 hPa. 2013-11-08
J1MV00N0 atmosphere stability showalter index The atmosphere_ stability_ showalter_ index is an index used to determine convective and thunderstorm potential and is often referred to as simply the showalter index. The index is defined as the temperature difference between a parcel of air lifted from 850 to 500 hPa (wet adiabatically) and the ambient air temperature at 500 hPa. 2013-11-08
8SQ433V8 atmosphere stability total totals index The atmosphere_ stability_ total_ totals_ index indicates the likelihood of severe convection and is often referred to as simply the total totals index. The index is derived from the difference in air temperature between 850 and 500 hPa (the vertical totals) and the difference between the dew point temperature at 850 hPa and the air temperature at 500 hPa (the cross totals). The vertical totals and cross totals are summed to obtain the index. 2013-11-08
CFSN0769 atmosphere sulfate content DEPRECATED 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2011-07-21
CFSNA019 atmosphere surface drag coefficient DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 2006-09-26
CFSNA017 atmosphere surface drag coefficient of heat DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 2006-09-26
CFSNA018 atmosphere surface drag coefficient of momentum DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 2006-09-26
KKU5IUR9 atmosphere transformed eulerian mean meridional overturning mass streamfunction The "meridional mass streamfunction" is a streamfunction of the zonally averaged mass transport in the meridional plane. The "Transformed Eulerian Mean" refers to a formulation of the mean equations which incorporates some eddy terms into the definition of the mean, described in Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. 2018-05-29
CFV13N4 atmosphere updraft convective mass flux The atmosphere convective mass flux is the vertical transport of mass for a field of cumulus clouds or thermals, given by the product of air density and vertical velocity. For an area-average, cell_ methods should specify whether the average is over all the area or the area of updrafts and/or downdrafts only. "Updraft" means that the flux is positive in the updward direction (negative downward). upward. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2019-03-04
6JPVYO44 atmosphere upward absolute vorticity Atmosphere upward absolute vorticity is the sum of the atmosphere upward relative vorticity and the vertical component of vorticity due to the Earth’s rotation. In contrast, the quantity with standard name atmosphere_ upward_ relative_ vorticity excludes the Earth's rotation. Vorticity is a vector quantity. "Upward" indicates a vector component which is positive when directed upward (negative downward). A positive value of atmosphere_ upward_ absolute_ vorticity indicates anticlockwise rotation when viewed from above. 2020-09-14
5JOLMO70 atmosphere upward relative vorticity Atmosphere upward relative vorticity is the vertical component of the 3D air vorticity vector. The vertical component arises from horizontal velocity only. "Relative" in this context means the vorticity of the air relative to the rotating solid earth reference frame, i.e. excluding the Earth's own rotation. In contrast, the quantity with standard name atmosphere_ upward_ absolute_ vorticity includes the Earth's rotation. "Upward" indicates a vector component which is positive when directed upward (negative downward). A positive value of atmosphere_ upward_ relative_ vorticity indicates anticlockwise rotation when viewed from above. 2020-09-14
CFSN0770 atmosphere water content DEPRECATED 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 'Water' means water in all phases. 2011-07-21
CFSN0771 atmosphere water vapor content DEPRECATED 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as 'precipitable water', although this term does not imply the water could all be precipitated. 2011-03-23
X56SYQI2 atmosphere x relative vorticity Atmosphere x relative vorticity is the x component of the 3D air vorticity vector. "Relative" in this context means the vorticity of the air relative to the rotating solid earth reference frame, i.e. excluding the Earth's own rotation. "x" indicates a vector component along the grid x-axis, positive with increasing x. A positive value of atmosphere_ x_ relative_ vorticity indicates anticlockwise rotation when viewed by an observer looking along the axis in the direction of decreasing x, i.e. consistent with the "right hand screw" rule. 2020-10-13
S09OMDP0 atmosphere y relative vorticity Atmosphere y relative vorticity is the y component of the 3D air vorticity vector. "Relative" in this context means the vorticity of the air relative to the rotating solid earth reference frame, i.e. excluding the Earth's own rotation. "y" indicates a vector component along the grid y-axis, positive with increasing y. A positive value of atmosphere_ y_ relative_ vorticity indicates anticlockwise rotation when viewed by an observer looking along the axis in the direction of decreasing y, i.e. consistent with the "right hand screw" rule. 2020-10-13
XORQBBJU attenuated signal test quality flag A quality flag that reports the result of the Attenuated Signal test, which checks for near-flat-line conditions using a range or standard deviation. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. There are standard names for other specific quality tests which take the form of X_ quality_ flag. Quality information that does not match any of the specific quantities should be given the more general standard name of quality_ flag. 2020-03-09
ND7TN6U4 automated tropical cyclone forecasting system storm identifier The Automated Tropical Cyclone Forecasting System (ATCF) storm identifier is an 8 character string which identifies a tropical cyclone. The storm identifier has the form BBCCYYYY, where BB is the ocean basin, specifically: AL - North Atlantic basin, north of the Equator; SL - South Atlantic basin, south of the Equator; EP - North East Pacific basin, eastward of 140 degrees west longitude; CP - North Central Pacific basin, between the dateline and 140 degrees west longitude; WP - North West Pacific basin, westward of the dateline; IO - North Indian Ocean basin, north of the Equator between 40 and 100 degrees east longitude; SH - South Pacific Ocean basin and South Indian Ocean basin. CC is the cyclone number. Numbers 01 through 49 are reserved for tropical and subtropical cyclones. A cyclone number is assigned to each tropical or subtropical cyclone in each basin as it develops. Numbers are assigned in chronological order. Numbers 50 through 79 are reserved for internal use by operational forecast centers. Numbers 80 through 89 are reserved for training, exercises and testing. Numbers 90 through 99 are reserved for tropical disturbances having the potential to become tropical or subtropical cyclones. The 90's are assigned sequentially and reused throughout the calendar year. YYYY is the four-digit year. This is calendar year for the northern hemisphere. For the southern hemisphere, the year begins July 1, with calendar year plus one. Reference: Miller, R.J., Schrader, A.J., Sampson, C.R., & Tsui, T.L. (1990), The Automated Tropical Cyclone Forecasting System (ATCF), American Meteorological Society Computer Techniques, 5, 653 - 660. 2017-07-24
CF12N187 backscattering ratio DEPRECATED Scattering of radiation is its deflection from its incident path without loss of energy. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeding pi/2 radians. A scattering_ angle should not be specified with this quantity. "Backscattering ratio" is the ratio of the quantity with standard name volume_ attenuated_ backwards_ scattering_ function_ in_ air to the quantity with standard name volume_ attenuated_ backwards_ scattering_ function_ in_ air_ assuming_ no_ aerosol_ or_ cloud. 2019-05-14
QT0VTCHE backscattering ratio in air Scattering of radiation is its deflection from its incident path without loss of energy. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeding pi/2 radians. A scattering_ angle should not be specified with this quantity. "Backscattering ratio" is the ratio of the quantity with standard name volume_ attenuated_ backwards_ scattering_ function_ in_ air to the quantity with standard name volume_ attenuated_ backwards_ scattering_ function_ in_ air_ assuming_ no_ aerosol_ or_ cloud. 2019-05-14
CFSN0772 baroclinic eastward sea water velocity A velocity is a vector quantity. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). 2006-09-26
CFSN0729 baroclinic northward sea water velocity A velocity is a vector quantity. 'Northward' indicates a vector component which is positive when directed northward (negative southward). 2006-09-26
324L8WDL barometric altitude Barometric altitude is the altitude determined by a pressure measurement which is converted to altitude through interpolation of the International Standard Atmosphere (ICAO, 1976). A mean sea level pressure of 1013.25 hPa is used for the surface pressure. 2013-11-08
CFSN0730 barotropic eastward sea water velocity A velocity is a vector quantity. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). 2006-09-26
CFSN0731 barotropic northward sea water velocity A velocity is a vector quantity. 'Northward' indicates a vector component which is positive when directed northward (negative southward). 2006-09-26
CF12N188 barotropic sea water x velocity A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. 2013-01-11
CF12N189 barotropic sea water y velocity A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. 2013-01-11
7XZLO2SJ basal downward heat flux in sea ice "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0773 baseflow amount Baseflow is subsurface runoff which takes place below the level of the water table. Runoff is the liquid water which drains from land. "Amount" means mass per unit area. 2007-02-20
RIMODKVA beam consistency indicator from multibeam acoustic doppler velocity profiler in sea water The "beam_ consistency_ indicator" is the degree to which the received acoustic pulse is correlated with the transmitted pulse. It is used as a data quality assessment parameter in ADCP (acoustic doppler current profiler) instruments and is frequently referred to as "correlation magnitude". Convention is that the larger the value, the higher the signal to noise ratio and therefore the better the quality of the current vector measurements; the maximum value of the indicator is 128. 2021-09-20
CFV7N45 beaufort wind force "Beaufort wind force" is an index assigned on the Beaufort wind force scale and relates a qualitative description of the degree of disturbance or destruction caused by wind to the speed of the wind. The Beaufort wind scale varies between 0 (qualitatively described as calm, smoke rises vertically, sea appears glassy) (wind speeds in the range 0 - 0.2 m s-1) and 12 (hurricane, wave heights in excess of 14 m) (wind speeds in excess of 32.7 m s-1). 2007-11-21
CFSN0732 bedrock altitude Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 'Bedrock' is the solid Earth surface beneath land ice, ocean water or soil. 2020-06-22
CFSN0733 bedrock altitude change due to isostatic adjustment The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 'Bedrock' is the solid Earth surface beneath land ice, ocean water or soil. The zero of bedrock altitude change is arbitrary. Isostatic adjustment is the vertical movement of the lithosphere due to changing surface ice and water loads. 2020-06-22
YU6AEXR7 biological taxon identifier DEPRECATED "Biological taxon" is a name or other label identifying an organism or a group of organisms as belonging to a unit of classification in a hierarchical taxonomy. The quantity with standard name biological_ taxon_ identifier is the machine-readable identifier for the taxon registration in either WoRMS (the AphiaID) or ITIS (the taxonomic serial number or TSN), including namespace. The namespace strings are 'aphia:' or 'tsn:'. For example, Calanus finmarchicus is encoded as either 'aphia:104464' or 'tsn:85272'. For the marine domain WoRMS has more complete coverage and so aphia Ids are preferred. See Section 6.1.2 of the CF convention (version 1.8 or later) for information about biological taxon auxiliary coordinate variables. 2021-09-20
K78S23CW biological taxon lsid "Biological taxon" is a name or other label identifying an organism or a group of organisms as belonging to a unit of classification in a hierarchical taxonomy. The quantity with standard name biological_ taxon_ lsid is the machine-readable identifier based on a taxon registration system using the syntax convention specified for the Life Science Identifier (LSID) - urn:lsid:<Authority>:<Namespace>:<ObjectID>[:<Version>]. This includes the reference classification in the element and these are restricted by the LSID governance. It is strongly recommended in CF that the authority chosen is World Register of Marine Species (WoRMS) for oceanographic data and Integrated Taxonomic Information System (ITIS) for freshwater and terrestrial data. See Section 6.1.2 of the CF convention (version 1.8 or later) for information about biological taxon auxiliary coordinate variables. This identifier is a narrower equivalent to the scientificNameID field in the Darwin Core Standard. 2021-09-20
CVYXQSG3 biological taxon name "Biological taxon" is a name or other label identifying an organism or a group of organisms as belonging to a unit of classification in a hierarchical taxonomy. The quantity with standard name biological_ taxon_ name is the human-readable label for the taxon such as Calanus finmarchicus. The label should be registered in either WoRMS (http://www.marinespecies.org) or ITIS (https://www.itis.gov/) and spelled exactly as registered. See Section 6.1.2 of the CF convention (version 1.8 or later) for information about biological taxon auxiliary coordinate variables. 2020-02-03
CFSN0734 bioluminescent photon rate in sea water 2006-09-26
CFSN0735 biomass burning carbon flux 'Biomass burning carbon' refers to the rate at which biomass is burned by forest fires etc., expressed as the mass of carbon which it contains. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFV8N4 bolus eastward sea water velocity DEPRECATED Bolus velocity in an ocean model means the velocity due to a scheme representing eddy-induced effects which are not resolved on the grid scale of the model. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). 2017-11-28
CFV8N5 bolus northward sea water velocity DEPRECATED Bolus velocity in an ocean model means the velocity due to a scheme representing eddy-induced effects which are not resolved on the grid scale of the model. "Northward" indicates a vector component which is positive when directed northward (negative southward). 2017-11-28
CFV10N7 bolus sea water x velocity DEPRECATED A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. Bolus velocity in an ocean model means the velocity due to a scheme representing eddy-induced effects which are not resolved on the grid scale of the model. bolus_ sea_ water_ x_ velocity is used in some parameterisations of lateral diffusion in the ocean. 2017-11-28
CFV10N8 bolus sea water y velocity DEPRECATED A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. Bolus velocity in an ocean model means the velocity due to a scheme representing eddy-induced effects which are not resolved on the grid scale of the model. bolus_ sea_ water_ y_ velocity is used in some parameterisations of lateral diffusion in the ocean. 2017-11-28
CFV8N6 bolus upward sea water velocity DEPRECATED Bolus velocity in an ocean model means the velocity due to a scheme representing eddy-induced effects which are not resolved on the grid scale of the model. "Upward" indicates a vector component which is positive when directed upward (negative downward). 2017-11-28
CFSN0736 brightness temperature The brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area. 2006-09-26
DFHDBFFB brightness temperature anomaly The brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area. "anomaly" means difference from climatology. 2012-04-27
R2CZ15F6 brightness temperature at cloud top cloud_ top refers to the top of the highest cloud. brightness_ temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area. A coordinate variable of radiation_ wavelength, sensor_ band_ central_ radiation_ wavelength, or radiation_ frequency may be specified to indicate that the brightness temperature applies at specific wavelengths or frequencies. 2015-07-08
CFSN0737 brunt vaisala frequency in air Frequency is the number of oscillations of a wave per unit time. Brunt-Vaisala frequency is also sometimes called "buoyancy frequency" and is a measure of the vertical stratification of the medium. 2017-05-22
CEDABECC burned area "X_ area" means the horizontal area occupied by X within the grid cell. The extent of an individual grid cell is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of "region". "Burned area" means the area of burned vegetation. 2017-02-21
GACJJFFJ burned area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Burned area" means the area of burned vegetation. 2019-05-14
ECFAHXEC canadian fire weather index The Canadian Fire Weather Index (CFWI) is a numerical rating of potential frontal fire intensity from the Canadian Forest Fire Index System. It indicates fire intensity by combining the rate of spread with the amount of fuel being consumed and is also used for general public information about fire danger conditions. It is a function of wind speed, temperature, relative humidity, and precipitation. The calculation accounts for multiple layers of flammable material on the ground as well as fine fuels above the surface, combined with the expected rate of spread of fire. The index is open ended. 2023-04-24
Z3R8636B canopy albedo Albedo is the ratio of outgoing to incoming shortwave irradiance, where 'shortwave irradiance' means that both the incoming and outgoing radiation are integrated across the solar spectrum. "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. The surface_ albedo restricted to the area type "vegetation" is related to canopy_ albedo, but the former also includes the effect of radiation being reflected from the ground underneath the canopy. 2018-07-03
CFSN0738 canopy and surface water amount The surface called "surface" means the lower boundary of the atmosphere. "Amount" means mass per unit area. "Water" means water in all phases, including frozen i.e. ice and snow. "Canopy and surface water" means the sum of water on the ground and on the canopy. "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. 2018-07-10
CFSN0739 canopy height Height is the vertical distance above the surface. "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. 2018-07-10
DBFXYYII canopy resistance to ozone dry deposition "Canopy" means the plant or vegetation canopy. The "canopy_ resistance" is the resistance of a compound to uptake by the vegetation canopy. It varies both with the surface and the chemical species or physical state (gas or particle). Canopy resistance is a function of the canopy stomatal resistance (Rstom), the canopy cuticle resistance (Rcuticle), and the soil resistance (Rsoil). In the case of ozone the uptake by the cuticle is small compared to the uptake through the stomata. Reference: Kerstiens and Lendzian, 1989. This means that the cuticle transfer pathway can be neglected in model parameterizations. Reference: Ganzeveld and Jos Lelieveld , 1995, doi/10.1029/95JD02266/pdf. "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. The chemical formula for ozone is O3. The IUPAC name for ozone is trioxygen. 2018-07-10
7FTOMMAT canopy snow amount "Amount" means mass per unit area. The phrase "canopy_ snow" means snow lying on the canopy. "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. 2018-07-03
CFSN0786 canopy temperature "Canopy temperature" is the bulk temperature of the canopy, not the surface (skin) temperature. "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. 2018-07-10
CFV8N7 canopy throughfall flux "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. "Throughfall" is the part of the precipitation flux that reaches the ground directly through the vegetative canopy, through spaces in the canopy, and as drip from the leaves, twigs, and stems (but not including snowmelt). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2019-02-04
CFSN0740 canopy water amount "Amount" means mass per unit area. "Water" means water in all phases, including frozen i.e. ice and snow. The canopy water is the water on the canopy. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. 2018-07-10
EVKFM0BL carbon content of forestry and agricultural products DEPRECATED "Content" indicates a quantity per unit area. Examples of "forestry and agricultural products" are paper, cardboard, furniture, timber for construction, biofuels and food for both humans and livestock. Models that simulate land use changes have one or more pools of carbon that represent these products in order to conserve carbon and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. 2018-04-16
CFV16A4 carbon content of products of anthropogenic land use change DEPRECATED "Content" indicates a quantity per unit area. "products_ of_ anthropogenic_ land_ use_ change" means the different end-products of wood which has been removed from the environment by deforestation. Examples are paper, cardboard, furniture and timber for construction. Models that simulate land use changes have one or more pools of carbon that represent these products in order to conserve carbon and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. "Anthropogenic" means influenced, caused, or created by human activity. 2016-12-13
8PSGY4EL carbon mass content of forestry and agricultural products "Content" indicates a quantity per unit area. Examples of "forestry and agricultural products" are paper, cardboard, furniture, timber for construction, biofuels and food for both humans and livestock. Models that simulate land use changes have one or more pools of carbon that represent these products in order to conserve carbon and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. 2018-04-16
U24SZCOC carbon mass flux into forestry and agricultural products due to anthropogenic land use or land cover change In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Anthropogenic" means influenced, caused, or created by human activity. Examples of "forestry and agricultural products" are paper, cardboard, furniture, timber for construction, biofuels and food for both humans and livestock. Models that simulate land use changes have one or more pools of carbon that represent these products in order to conserve carbon and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change and the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. 2016-12-13
SZPJGD34 carbon mass flux into litter and soil due to anthropogenic land use or land cover change In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Litter" is dead plant material in or above the soil. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Anthropogenic" means influenced, caused, or created by human activity. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change and the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. 2019-05-14
8YZ1OII6 carbon mass flux into soil and litter due to anthropogenic land use or land cover change DEPRECATED In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Litter" is dead plant material in or above the soil. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Anthropogenic" means influenced, caused, or created by human activity. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change and the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. 2019-05-14
CFV16A5 carbon mass flux into soil from litter In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Litter" is dead plant material in or above the soil. 2010-10-11
CFV16A6 carbon mass flux into soil from vegetation excluding litter "Vegetation" means any plants e.g. trees, shrubs, grass. "Litter" is dead plant material in or above the soil. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2010-10-11
ZCTV5X1C carbon mass transport in river channel The amount of total carbon mass transported in the river channels from land into the ocean. This quantity can be provided at a certain location within the river network and floodplain (over land) or at the river mouth (over ocean) where the river enters the ocean. "River" refers to water in the fluvial system (stream and floodplain). 2024-01-18
CFV10N9 cell area "Cell_ area" is the horizontal area of a gridcell. 2008-10-21
CF12N190 cell thickness "Thickness" means the vertical extent of a layer. "Cell" refers to a model grid-cell. 2009-07-06
CFSN0741 change in atmosphere energy content due to change in sigma coordinate wrt surface pressure The surface called "surface" means the lower boundary of the atmosphere. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "wrt" means with respect to. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Atmosphere energy content" has not yet been precisely defined! Please express your views on this quantity on the CF email list. See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
CFSN0742 change in energy content of atmosphere layer due to change in sigma coordinate wrt surface pressure "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The abbreviation "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
P7GASAET change in land ice amount "Amount" means mass per unit area. Zero change in land ice amount is an arbitrary level. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. 2016-03-08
2LNHOBDS change in land ice mass Zero change in land ice mass is an arbitrary level. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. The horizontal domain over which the quantity is calculated is described by the associated coordinate variables and coordinate bounds or by a coordinate variable or scalar coordinate variable with the standard name of "region" supplied according to section 6.1.1 of the CF conventions. 2021-09-20
G23OLCY7 change over time in amount of ice and snow on land The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. "Amount" means mass per unit area. The phrase "ice_ and_ snow_ on_ land" means ice in glaciers, ice caps, ice sheets and shelves, river and lake ice, any other ice on a land surface, such as frozen flood water, and snow lying on such ice or on the land surface. 2018-08-06
BBAH2152 change over time in atmosphere mass content of water due to advection "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Water" means water in all phases. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2011-07-21
CFV13A3 change over time in atmosphere water content due to advection DEPRECATED "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Water" means water in all phases. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2011-07-21
CFSN0743 change over time in atmospheric water content due to advection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'change_ over_ time_ in_ X' means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. 'Content' indicates a quantity per unit area. 'Water' means water in all phases. 2010-03-11
5W1IRDGM change over time in canopy water amount The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. Canopy water is the water on the canopy. "Water" means water in all phases, including frozen, i.e. ice and snow. "Amount" means mass per unit area. "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. 2018-07-10
T9FRTWQY change over time in groundwater amount The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. "Water" means water in all phases. Groundwater is subsurface water below the depth of the water table. "Amount" means mass per unit area. 2018-07-03
43LND9HY change over time in land surface liquid water amount The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. The surface called "surface" means the lower boundary of the atmosphere. "Amount" means mass per unit area. "Land surface liquid water amount" includes water in rivers, wetlands, lakes, reservoirs and liquid precipitation intercepted by the vegetation canopy. 2018-07-10
N7ZVTMWG change over time in land water amount The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. "Amount" means mass per unit area. "Water" means water in all phases. The phrase "land_ water_ amount", often known as "Terrestrial Water Storage", includes: surface liquid water (water in rivers, wetlands, lakes, reservoirs, rainfall intercepted by the canopy); surface ice and snow (glaciers, ice caps, grounded ice sheets not displacing sea water, river and lake ice, other surface ice such as frozen flood water, snow lying on the surface and intercepted by the canopy); subsurface water (liquid and frozen soil water, groundwater). 2018-07-10
LQG3P3P4 change over time in mass content of water in soil The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. "Content" indicates a quantity per unit area. The mass content of water in soil refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. "Water" means water in all phases. 2018-05-29
ZAO9FNHS change over time in river water amount The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. "Water" means water in all phases. "River" refers to the water in the fluvial system (stream and floodplain). "Amount" means mass per unit area. 2018-07-03
EAEEJEIH change over time in sea water absolute salinity "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. Absolute Salinity, S_ A, is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the Intergovernmental Oceanographic Commission (IOC). It is the mass fraction of dissolved material in sea water. Absolute Salinity incorporates the spatial variations in the composition of sea water. This type of Absolute Salinity is also called "Density Salinity". TEOS-10 estimates Absolute Salinity as the salinity variable that, when used with the TEOS-10 expression for density, yields the correct density of a sea water sample even when the sample is not of Reference Composition. In practice, Absolute Salinity is often calculated from Practical Salinity using a spatial lookup table of pre-defined values of the Absolute Salinity Anomaly. It is recommended that the version of (TEOS-10) software and the associated Absolute Salinity Anomaly climatology be specified within metadata by attaching a comment attribute to the data variable. Reference: www.teos-10.org; Millero et al., 2008 doi: 10.1016/j.dsr.2007.10.001. There are also standard names for the precisely defined salinity quantities sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 onwards), sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. 2012-04-27
EIHFBIDA change over time in sea water conservative temperature "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. 2013-11-08
BBAH2107 change over time in sea water density Sea water density is the in-situ density (not the potential density). If 1000 kg m-3 is subtracted, the standard name "sea_ water_ sigma_ t" should be chosen instead. "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. 2011-07-21
BBAH2104 change over time in sea water neutral density "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. "Neutral density" is a variable designed so that a surface of constant neutral density everywhere has a local slope that is close to the local slope of the neutral tangent plane. At the sea surface in the equatorial Pacific neutral density is very close to the potential density anomaly. At other locations, this is not the case. For example, along a neutral density surface there is a difference of up to 0.14 kg/m^3 in the potential density anomaly at the outcrops in the Southern and Northern hemispheres. Refer to Jackett &amp; McDougall (1997; Journal of Physical Oceanography, Vol 27, doi: 10.1175/1520-0485(1997)027&lt;0237:ANDVFT&gt;2.0.CO;2) for more information. 2011-07-21
BBAH2106 change over time in sea water potential density The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time interval, which should be defined by the bounds of the time coordinate. Sea water potential density is the density a parcel of sea water would have if moved adiabatically to a reference pressure, by default assumed to be sea level pressure. To specify the reference pressure to which the quantity applies, provide a scalar coordinate variable with standard name reference_ pressure. The density of a substance is its mass per unit volume. For sea water potential density, if 1000 kg m-3 is subtracted, the standard name "sea_ water_ sigma_ theta" should be chosen instead. 2020-02-03
BBAH2109 change over time in sea water potential temperature Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. 2011-07-21
EGJCGAEC change over time in sea water practical salinity The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time interval, which should be defined by the bounds of the time coordinate. Practical Salinity, S_ P, is a determination of the salinity of sea water, based on its electrical conductance. The measured conductance, corrected for temperature and pressure, is compared to the conductance of a standard potassium chloride solution, producing a value on the Practical Salinity Scale of 1978 (PSS-78). This name should not be used to describe salinity observations made before 1978, or ones not based on conductance measurements. Conversion of Practical Salinity to other precisely defined salinity measures should use the appropriate formulas specified by TEOS-10. Other standard names for precisely defined salinity quantities are sea_ water_ absolute_ salinity (S_ A); sea_ water_ preformed_ salinity (S_ *), sea_ water_ reference_ salinity (S_ R); sea_ water_ cox_ salinity (S_ C), used for salinity observations between 1967 and 1977; and sea_ water_ knudsen_ salinity (S_ K), used for salinity observations between 1901 and 1966. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. Reference: www.teos-10.org; Lewis, 1980 doi:10.1109/JOE.1980.1145448. 2019-03-04
EGEBDDGI change over time in sea water preformed salinity "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. Preformed Salinity, S*, is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the Intergovernmental Oceanographic Commission (IOC). Preformed Salinity is a salinity variable that is designed to be as conservative as possible, by removing the estimated biogeochemical influences on the sea water composition. Preformed Salinity is Absolute Salinity, S_ A (which has the standard name sea_ water_ absolute_ salinity), minus all contributions to sea water composition from biogeochemical processes. Preformed Salinity is the mass fraction of dissolved material in sea water. Reference: www.teos-10.org; Pawlowicz et al., 2011 doi: 10.5194/os-7-363-2011; Wright et al., 2011 doi: 10.5194/os-7-1-2011. There are also standard names for the precisely defined salinity quantities sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 onwards), and sea_ water_ reference_ salinity. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. 2012-04-27
BBAH2111 change over time in sea water salinity "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term &amp;apos;salinity&amp;apos; is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2012-04-27
CCICCCEB change over time in sea water specific potential enthalpy "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. The potential enthalpy of a sea water parcel is the specific enthalpy after an adiabatic and isohaline change in pressure from its in situ pressure to the sea pressure p = 0 dbar. "specific" means per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033&lt;0945:PEACOV&gt;2.0.CO;2. 2012-04-27
BBAH2110 change over time in sea water temperature "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate.Sea water temperature is the in situ temperature of the sea water. To specify the depth at which the temperature applies use a vertical coordinate variable or scalar coordinate variable. There are standard names for sea_ surface_ temperature, sea_ surface_ skin_ temperature, sea_ surface_ subskin_ temperature and sea_ surface_ foundation_ temperature which can be used to describe data located at the specified surfaces. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2012-04-27
CFSN0744 change over time in surface snow amount The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. "Amount" means mass per unit area. Surface snow amount refers to the amount on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
KWC6XKDV change over time in thermal energy content of ice and snow on land The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. Thermal energy is the total vibrational energy, kinetic and potential, of all the molecules and atoms in a substance. The phrase "ice_ and_ snow_ on_ land" means ice in glaciers, ice caps, ice sheets and shelves, river and lake ice, any other ice on a land surface, such as frozen flood water, and snow lying on such ice or on the land surface. 2018-08-06
E36YCN7I change over time in thermal energy content of vegetation and litter and soil The phrase "change_ over_ time_ in_ X" means change in a quantity X over a time-interval, which should be defined by the bounds of the time coordinate. "Content" indicates a quantity per unit area. Thermal energy is the total vibrational energy, kinetic and potential, of all the molecules and atoms in a substance. "Vegetation" means any living plants e.g. trees, shrubs, grass. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. 2018-05-29
OSR9FYTK charnock coefficient for surface roughness length for momentum in air Coefficient value, based on the Charnock (1955) empirical expression for deriving the quantity with standard name surface_ roughness_ length_ for_ momentum_ in_ air over the ocean. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Charnock%27s_ relation. The surface called "surface" means the lower boundary of the atmosphere. 2018-10-15
CFSNA003 chlorophyll concentration in sea water DEPRECATED 2006-09-26
OBDP98IE clear sky area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The clear_ sky area fraction is for the whole atmosphere column, as seen from the surface or the top of the atmosphere. "Clear sky" means in the absence of clouds. 2019-05-14
U8OR7J3E climatology test quality flag A quality flag that reports the result of the Climatology test, which checks that values are within reasonable range bounds for a given time and location. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. There are standard names for other specific quality tests which take the form of X_ quality_ flag. Quality information that does not match any of the specific quantities should be given the more general standard name of quality_ flag. 2020-03-09
CF12N191 cloud albedo The albedo of cloud. Albedo is the ratio of outgoing to incoming shortwave irradiance, where 'shortwave irradiance' means that both the incoming and outgoing radiation are integrated across the solar spectrum. 2018-07-03
CFSN0745 cloud area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The cloud area fraction is for the whole atmosphere column, as seen from the surface or the top of the atmosphere. For the cloud area fraction between specified levels in the atmosphere, standard names including "cloud_ area_ fraction_ in_ atmosphere_ layer" are used. Standard names also exist for high, medium and low cloud types. Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
CFSN0746 cloud area fraction in atmosphere layer "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Standard names referring only to "cloud_ area_ fraction" should be used for quantities for the whole atmosphere column. Standard names also exist for high, medium and low cloud types. Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
CFSN0747 cloud base altitude cloud_ base refers to the base of the lowest cloud. Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 2006-09-26
J2ZAL3RP cloud binary mask X_ binary_ mask has 1 where condition X is met, 0 elsewhere. 1 = cloud present, 0 = cloud absent (clear). If no threshold is supplied, the binary mask is 1 if there is any non-zero amount of cloud. if a threshold is supplied, it should be specified by associating a coordinate variable or scalar coordinate variable with the data variable and giving the coordinate variable a standard name of cloud_ area_ fraction. The values of the coordinate variable are the threshold values for the corresponding subarrays of the data variable. 2015-07-08
CFSN0701 cloud condensed water content of atmosphere layer DEPRECATED 'condensed_ water' means liquid and ice. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
CFSN0702 cloud ice content of atmosphere layer DEPRECATED 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
CFV11N1 cloud ice mixing ratio Cloud ice mixing ratio of a parcel of air is the ratio of the mass of ice to the mass of dry air. 2008-11-11
CFSN0703 cloud liquid water content of atmosphere layer DEPRECATED 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
CFV11N2 cloud liquid water mixing ratio Cloud liquid water mixing ratio of a parcel of air is the ratio of the mass of liquid water to the mass of dry air. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CF12N192 cloud longwave emissivity Emissivity is the ratio of the power emitted by an object to the power that would be emitted by a perfect black body having the same temperature as the object. The emissivity is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength or radiation_ frequency is included to specify either the wavelength or frequency. "longwave" means longwave radiation. 2009-07-06
CFSN0704 cloud top altitude cloud_ top refers to the top of the highest cloud. Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 2006-09-26
GWEZRUTL cloud type A variable with the standard_ name of cloud_ type contains either strings which indicate the cloud type, or flags which can be translated to strings using flag_ values and flag_ meanings attributes. 2023-04-24
T3IPUH1I colony forming unit number concentration of biological taxon in sea water "Colony forming unit" means an estimate of the viable bacterial or fungal numbers determined by counting colonies grown from a sample. "Number concentration" means the number of particles or other specified objects per unit volume. "Biological taxon" is a name or other label identifying an organism or a group of organisms as belonging to a unit of classification in a hierarchical taxonomy. There must be an auxiliary coordinate variable with standard name biological_ taxon_ name to identify the taxon in human readable format and optionally an auxiliary coordinate variable with standard name biological_ taxon_ lsid to provide a machine-readable identifier. See Section 6.1.2 of the CF convention (version 1.8 or later) for information about biological taxon auxiliary coordinate variables. 2021-09-20
CFV16A7 compressive strength of sea ice "Compressive strength" is a measure of the capacity of a material to withstand compressive forces. If compressive forces are exerted on a material in excess of its compressive strength, fracturing will occur. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
OOAZZFEW compressive strength of unconfined frozen soil The maximum force applied as axial strain to an unconfined frozen soil sample before failure. 2023-04-24
5DLI2III compressive strength of unconfined soil The maximum force applied as axial strain to an unconfined soil sample before failure. 2023-04-24
CFSN0705 concentration of chlorophyll in sea water DEPRECATED 2009-07-06
6OP5LKSX concentration of colored dissolved organic matter in sea water expressed as equivalent mass fraction of quinine sulfate dihydrate The quantity with standard name concentration_ of_ colored_ dissolved_ organic_ matter_ in_ sea_ water_ expressed_ as_ equivalent_ mass_ fraction_ of_ quinine_ sulfate_ dihydrate is also commonly known as Chromophoric Dissolved Organic Matter (CDOM). CDOM plays an important role in the carbon cycling and biogeochemistry of coastal waters. It occurs naturally in aquatic environments primarily as a result of tannins released from decaying plant and animal matter, which can enter coastal areas in river run-off containing organic materials leached from soils. When present in high concentrations, it imparts a brown or yellowish color to water. Its presence can negatively impact fish populations by reducing dissolved oxygen concentrations to harmful levels and by releasing nutrients and metals that contaminate the water. Increased understanding of the role of CDOM will further our ability to manage and protect coastal ecosystems. Sensors are commonly calibrated against a 100 parts per billion (ppb) quinine sulfate dihydrate solution, a fluorescent reference standard commonly used with CDOM sensors. CDOM sensors therefore report in "QSDE" (quinine sulfate dihydrate equivalents). It is important to note, however, that CDOM concentrations in QSDE are not necessarily equivalent to the in situ CDOM concentrations in ppb. 2016-05-17
CFSN0706 concentration of suspended matter in sea water DEPRECATED 2009-07-06
CFV16A8 convection time fraction "Time fraction" means a fraction of a time interval. The interval in question must be specified by the values or bounds of the time coordinate variable associated with the data. "X_ time_ fraction" means the fraction of the time interval during which X occurs. 2010-10-11
CFSN0707 convective cloud area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The cloud area fraction is for the whole atmosphere column, as seen from the surface or the top of the atmosphere. For the cloud area fraction between specified levels in the atmosphere, standard names including "cloud_ area_ fraction_ in_ atmosphere_ layer" are used. Standard names also exist for high, medium and low cloud types. Convective cloud is that produced by the convection schemes in an atmosphere model. Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
CFSN0708 convective cloud area fraction in atmosphere layer "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Standard names referring only to "cloud_ area_ fraction" should be used for quantities for the whole atmosphere column. Standard names also exist for high, medium and low cloud types. Convective cloud is that produced by the convection schemes in an atmosphere model. Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
CFSN0709 convective cloud base altitude cloud_ base refers to the base of the lowest cloud. Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. Convective cloud is that produced by the convection schemes in an atmosphere model. 2006-09-26
CFSN0710 convective cloud base height cloud_ base refers to the base of the lowest cloud. Height is the vertical distance above the surface. Convective cloud is that produced by the convection schemes in an atmosphere model. 2006-09-26
CF12N193 convective cloud longwave emissivity Emissivity is the ratio of the power emitted by an object to the power that would be emitted by a perfect black body having the same temperature as the object. The emissivity is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength or radiation_ frequency is included to specify either the wavelength or frequency. Convective cloud is that produced by the convection schemes in an atmosphere model. "longwave" means longwave radiation. 2009-07-06
CFSN0711 convective cloud top altitude cloud_ top refers to the top of the highest cloud. Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. Convective cloud is that produced by the convection schemes in an atmosphere model. 2006-09-26
CFSN0712 convective cloud top height cloud_ top refers to the top of the highest cloud. Height is the vertical distance above the surface. Convective cloud is that produced by the convection schemes in an atmosphere model. 2006-09-26
CFSN0713 convective precipitation amount "Amount" means mass per unit area. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. Convective precipitation is that produced by the convection schemes in an atmosphere model. 2018-08-06
CFSN0714 convective precipitation flux Convective precipitation is that produced by the convection schemes in an atmosphere model. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-08-06
CFV11N3 convective precipitation rate "Precipitation rate" means the depth or thickness of the layer formed by precipitation per unit time. Convective precipitation is that produced by the convection schemes in an atmosphere model. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. 2018-08-06
CFSN0715 convective rainfall amount 'Amount' means mass per unit area. 2006-09-26
CFSN0716 convective rainfall flux In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0717 convective rainfall rate 2006-09-26
CFSN0718 convective snowfall amount 'Amount' means mass per unit area. 2006-09-26
CFSN0719 convective snowfall flux In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0720 coriolis parameter The Coriolis parameter is twice the component of the earth's angular velocity about the local vertical i.e. 2 W sin L, where L is latitude and W the angular speed of the earth. 2006-09-26
CFSN0774 correction for model negative specific humidity A numerical correction which is added to modelled negative specific humidities in order to obtain a value of zero. 2007-02-20
DOBXIY2Y covariance over longitude of northward wind and air temperature Covariance refers to the sample covariance rather than the population covariance. The quantity with standard name covariance_ over_ longitude_ of_ northward_ wind_ and_ air_ temperature is the covariance of the deviations of meridional air velocity and air temperature about their respective zonal mean values. The data variable must be accompanied by a vertical coordinate variable or scalar coordinate variable and is calculated on an isosurface of that vertical coordinate. "Northward" indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2019-10-14
Z6JKE6RA density ratio of dry soil to water The phrase "ratio_ of_ X_ to_ Y" means X/Y. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Also known as specific gravity, where soil represents a dry soil sample. The density of a substance is its mass per unit volume. 2023-04-24
9JRK7MPS deployment latitude The latitude of deployment of a station or instrument. The term can be used whenever the deployment position of a station or instrument needs to be supplied along with other types of positions. If a data variable has only one latitude coordinate variable, the standard name of latitude should generally be preferred to deployment_ latitude, because latitude is recognised by generic software. If the deployment latitude is also the nominal latitude for a discrete geometry (as in Section 9.5 of the CF convention), the deployment latitude should also, or instead, be recorded in a coordinate variable with the standard name of latitude and axis="Y". Latitude is positive northward; its units of "degree_ north" (or equivalent) indicate this explicitly. 2023-07-05
69B2DPBP deployment longitude The longitude of deployment of a station or instrument. The term can be used whenever the deployment position of a station or instrument needs to be supplied along with other types of positions. If a data variable has only one longitude coordinate variable, the standard name of longitude should generally be preferred to deployment_ longitude, because longitude is recognised by generic software. If the deployment longitude is also the nominal longitude for a discrete geometry (as in Section 9.5 of the CF convention), the deployment longitude should also, or instead, be recorded in a coordinate variable with the standard name of longitude and axis="X". Longitude is positive eastward; its units of "degree_ east" (or equivalent) indicate this explicitly. 2023-07-05
CFSN0721 depth Depth is the vertical distance below the surface. 2006-09-26
TG5KHI3E depth at base of unfrozen ground The phrase depth_ at_ base_ of_ unfrozen_ ground is the instantaneous depth of the downward penetration of thaw from the ground surface at a given time. Permafrost is soil or rock that has remained at a temperature at or below zero degrees Celsius throughout the seasonal cycle for two or more consecutive years. The maximum measurable depth_ at_ base_ of_ unfrozen_ ground value as recorded at the end of a thawing season corresponds to the permafrost_ active_ layer_ thickness. 2021-09-20
CFV10N10 depth at maximum upward derivative of sea water potential temperature This quantity, often used to indicate the "thermocline depth", is the depth of the maximum vertical gradient of sea water potential temperature. Depth is the vertical distance below the surface. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. 2008-10-21
AQVGVYSK depth at shallowest isotherm defined by soil temperature Depth is the vertical distance below the surface. A soil temperature profile may go through one or more local minima or maxima. The "depth at shallowest isotherm" is the depth of the occurrence closest to the soil surface of an isotherm of the temperature specified by a coordinate variable or scalar coordinate variable with standard name soil_ temperature. 2018-07-10
CF14N1 depth at shallowest local minimum in vertical profile of mole concentration of dissolved molecular oxygen in sea water Depth is the vertical distance below the surface. 'Mole concentration' means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The concentration of any chemical species, whether particulate or dissolved, may vary with depth in the ocean. A depth profile may go through one or more local minima in concentration. The depth_ at_ shallowest_ local_ minimum_ in_ vertical_ profile_ of_ mole_ concentration_ of_ dissolved_ molecular_ oxygen_ in_ sea_ water is the depth of the local minimum in the oxygen concentration that occurs closest to the sea surface. 2010-05-12
BBAH2118 depth below geoid The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean). In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. To specify which geoid or geopotential datum is being used as a reference level, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. "Depth_ below_ X" means the vertical distance below the named surface X. 2017-07-24
AJFZGIRG depth below sea floor "Depth_ below_ X" means the vertical distance below the named surface X. 2016-05-17
CFV10N11 depth of isosurface of sea water potential temperature This quantity, sometimes called the "isotherm depth", is the depth (if it exists) at which the sea water potential temperature equals some specified value. This value should be specified in a scalar coordinate variable. Depth is the vertical distance below the surface. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. 2008-10-21
CFSN0722 dew point depression Dew point depression is also called dew point deficit. It is the amount by which the air temperature exceeds its dew point temperature. Dew point temperature is the temperature at which a parcel of air reaches saturation upon being cooled at constant pressure and specific humidity. 2006-09-26
CFSN0723 dew point temperature Dew point temperature is the temperature at which a parcel of air reaches saturation upon being cooled at constant pressure and specific humidity. 2006-09-26
SC42QN4N diameter of ambient aerosol particles "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2019-05-14
AG0KNZ1W difference between sea surface skin temperature and sea surface subskin temperature This variable quantifies the temperature difference between the skin temperature (sea_ surface_ skin_ temperature) and the subskin temperature (sea_ surface_ subskin_ temperature) due to the turbulent and radiative heat fluxes at the air-sea interface. This difference is commonly referred to as the "cool skin effect" as the solar radiation absorbed within the very thin thermal subskin layer is typically negligible compared to ocean surface heat loss from the combined sensible, latent, and net longwave radiation heat fluxes. 2024-01-18
S3BUHXH9 difference between sea surface subskin temperature and sea surface foundation temperature This variable quantifies the temperature difference between the top (sea_ surface_ subskin_ temperature) and bottom (sea_ surface_ foundation_ temperature) of the diurnal warm layer. This diurnal warm layer, caused by absorption of solar radiation in the absence of strong mixing, together with a cool skin effect, account for the total temperature difference between the sea_ surface_ skin_ temperature and the sea_ surface_ foundation_ temperature. The cool skin effect is associated with the turbulent and infrared radiative heat loss at the air-sea interface. Freshwater fluxes may also affect this variable (sea_ surface_ subskin_ temperature_ minus_ sea_ surface_ foundation_ temperature). 2024-01-18
GNY52N40 difference between sea surface subskin temperature and sea surface temperature This variable quantifies the temperature difference between the top of the diurnal warm layer (sea_ surface_ subskin_ temperature) and the in-situ measured sea surface temperature at depth (sea_ surface_ temperature). A diurnal warm layer can develop in the top few meters of the ocean through the absorption of solar radiation, if surface mixing is sufficiently weak. 2024-01-18
TKE9ARMV difference between sea surface temperature and air temperature Sea surface temperature is usually abbreviated as "SST". It is the temperature of sea water near the surface (including the part under sea-ice, if any), not the skin or interface temperature, whose standard names are sea_ surface_ skin_ temperature and surface_ temperature, respectively. For the temperature of sea water at a particular depth or layer, a data variable of "sea_ water_ temperature" with a vertical coordinate axis should be used. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2021-09-20
CFSN0724 difference of air pressure from model reference In some atmosphere models, the difference of air pressure from model reference is a prognostic variable, instead of the air pressure itself. The model reference air pressure is a model-dependent constant. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFV16A9 diffuse downwelling shortwave flux in air "Diffuse" radiation is radiation that has been scattered by gas molecules in the atmosphere and by particles such as cloud droplets and aerosols. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFV16A10 diffuse downwelling shortwave flux in air assuming clear sky "Diffuse" radiation is radiation that has been scattered by gas molecules in the atmosphere and by particles such as cloud droplets and aerosols. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
CFSN0725 dimensionless exner function The term "Exner function" is applied to various quantities in the literature. "Dimensionless Exner function" is the standard name of (p/p0)^(R/Cp), where p is pressure, p0 a reference pressure, R the gas constant and Cp the specific heat at constant pressure. This quantity is also the ratio of in-situ to potential temperature. Standard names for other variants can be defined on request. To specify the reference pressure to which the quantity applies, provide a scalar coordinate variable with standard name reference_ pressure. 2020-02-03
ZAEV0U4N direct downwelling shortwave flux in air "Direct" (also known as "beam") radiation is radiation that has followed a direct path from the sun and is alternatively known as "direct insolation". Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFV13N5 direction of radial vector away from instrument The phrase "direction_ of_ X" means direction of a vector, a bearing. The direction is measured positive clockwise from due north. The direction_ of_ radial_ vector_ away_ from_ instrument is the direction in which the instrument itself is pointing. The "instrument" (examples are radar and lidar) is the device used to make an observation. The standard name direction_ of_ radial_ vector_ toward_ instrument should be used for a data variable having the opposite sign convention. 2019-06-17
G0EL55ZQ direction of radial vector toward instrument The phrase "direction_ of_ X" means direction of a vector, a bearing. The direction is measured positive clockwise from due north. The direction_ of_ radial_ vector_ toward_ instrument is the direction opposite to that in which the instrument itself is pointing. The "instrument" (examples are radar and lidar) is the device used to make an observation. The standard name direction_ of_ radial_ vector_ away_ from_ instrument should be used for a data variable having the opposite sign convention. 2019-06-17
CFV13N6 direction of sea ice displacement The phrase "direction_ of_ X" means direction of a vector, a bearing. "Displacement" means the change in geospatial position of an object that has moved over time. If possible, the time interval over which the motion took place should be specified using a bounds variable for the time coordinate variable. A displacement can be represented as a vector. Such a vector should however not be interpreted as describing a rectilinear, constant speed motion but merely as an indication that the start point of the vector is found at the tip of the vector after the time interval associated with the displacement variable. A displacement does not prescribe a trajectory. Sea ice displacement can be defined as a two-dimensional vector, with no vertical component. In that case, "displacement" is also the distance across the earth's surface calculated from the change in a moving object's geospatial position between the start and end of the time interval associated with the displacement variable. The "direction of displacement" is the angle between due north and the displacement vector. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0726 direction of sea ice velocity The phrase "direction_ of_ X" means direction of a vector, a bearing. A velocity is a vector quantity. Sea ice velocity is defined as a two-dimensional vector, with no vertical component. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0727 direction of sea water velocity DEPRECATED 'direction_ of_ X' means direction of a vector, a bearing. A velocity is a vector quantity. 2017-09-18
CFSNA028 direction of swell wave velocity DEPRECATED Swell waves are waves on the ocean surface. 'to_ direction' is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. 2006-09-26
CFSNA031 direction of wind wave velocity DEPRECATED Wind waves are waves on the ocean surface. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 'to_ direction' is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. 2006-09-26
CFSN0728 dissipation in atmosphere boundary layer DEPRECATED 2010-07-26
FIORN9EU distance from geocenter A measure of distance from the Earth's geocenter, commonly used in satellite tracks. 2016-04-05
3IGX51FC distance from sun The distance from the sun to the point of observation. 2015-07-08
1R1EPJXY distance from tropical cyclone center to leading edge of displaced convection The great circle distance measured from the tropical cyclone center to the leading edge of displaced convection, which is defined as the closest point that exceeds a threshold brightness temperature at top of atmosphere limit. The threshold applied should be recorded in a coordinate variable having the standard name of toa_ brightness_ temperature. A coordinate variable with standard name of radiation_ wavelength, sensor_ band_ central_ radiation_ wavelength, or radiation_ frequency may be specified to indicate that the brightness temperature applies at specific wavelengths or frequencies. 2015-07-08
CFSN0700 divergence of sea ice velocity The phrase "[horizontal_ ]divergence_ of_ X" means [horizontal] divergence of a vector X; if X does not have a vertical component then "horizontal" should be omitted. A velocity is a vector quantity. Sea ice velocity is defined as a two-dimensional vector, with no vertical component. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0684 divergence of wind '[horizontal_ ]divergence_ of_ X' means [horizontal] divergence of a vector X; if X does not have a vertical component then 'horizontal' should be omitted. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
W4XPBKK3 downward air velocity A velocity is a vector quantity."Downward" indicates a vector component which is positive when directed downward (negative upward). Downward air velocity is the vertical component of the 3D air velocity vector. The standard name upward_ air_ velocity may be used for a vector component with the opposite sign convention. 2017-07-24
CFSN0685 downward dry static energy flux due to diffusion The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0686 downward eastward momentum flux in air 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). 'Downward' indicates a vector component which is positive when directed downward (negative upward). 'Downward eastward' indicates the ZX component of a tensor. Momentum flux is dimensionally equivalent to stress and pressure. It is a tensor quantity. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CF14N2 downward eastward momentum flux in air due to diffusion "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Downward" indicates a vector component which is positive when directed downward (negative upward). "Downward eastward" indicates the ZX component of a tensor. Momentum flux is dimensionally equivalent to stress and pressure. It is a tensor quantity. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2019-02-04
CFSN0687 downward eastward stress at sea ice base "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Downward" indicates a vector component which is positive when directed downward (negative upward). "Downward eastward" indicates the ZX component of a tensor. A downward eastward stress is a downward flux of eastward momentum, which accelerates the lower medium eastward and the upper medium westward. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0688 downward heat flux at ground level in snow ground_ level means the land surface (beneath the snow and surface water, if any). 'Downward' indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0689 downward heat flux at ground level in soil ground_ level means the land surface (beneath the snow and surface water, if any). 'Downward' indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0690 downward heat flux in air 'Downward' indicates a vector component which is positive when directed downward (negative upward). The vertical heat flux in air is the sum of all heat fluxes i.e. radiative, latent and sensible. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFV11N4 downward heat flux in floating ice "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Floating ice" means any ice that is floating on water, e.g. on a sea or lake surface. 2008-11-11
CFSN0691 downward heat flux in sea ice "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0692 downward heat flux in soil 'Downward' indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
33NXPTKS downward liquid water mass flux into groundwater In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Groundwater is subsurface water below the depth of the water table. The quantity with standard name liquid_ water_ mass_ flux_ from_ soil_ to_ groundwater is the downward flux of liquid water within soil at the depth of the water table, or downward flux from the base of the soil model if the water table depth is greater. 2018-07-03
CFSN0693 downward northward momentum flux in air 'Northward' indicates a vector component which is positive when directed northward (negative southward). 'Downward' indicates a vector component which is positive when directed downward (negative upward). 'Downward northward' indicates the ZY component of a tensor. Momentum flux is dimensionally equivalent to stress and pressure. It is a tensor quantity. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CF14N3 downward northward momentum flux in air due to diffusion "Northward" indicates a vector component which is positive when directed northward (negative southward). "Downward" indicates a vector component which is positive when directed downward (negative upward). "Downward northward" indicates the ZY component of a tensor. Momentum flux is dimensionally equivalent to stress and pressure. It is a tensor quantity. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2010-05-12
CFSN0694 downward northward stress at sea ice base "Northward" indicates a vector component which is positive when directed northward (negative southward). "Downward" indicates a vector component which is positive when directed downward (negative upward). "Downward northward" indicates the ZY component of a tensor. A downward northward stress is a downward flux of northward momentum, which accelerates the lower medium northward and the upper medium southward. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0695 downward sea ice basal salt flux "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0696 downward water vapor flux in air due to diffusion The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'Downward' indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0697 downward x stress at sea ice base "x" indicates a vector component along the grid x-axis, positive with increasing x. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
3VNEUGC6 downward x stress at sea water surface "Downward" indicates a vector component which is positive when directed downward (negative upward). "x" indicates a vector component along the grid x-axis, positive with increasing x. A downward x stress is a downward flux of momentum towards the positive direction of the model's x-axis. The phrase "sea water surface" means the upper boundary of the liquid portion of an ocean or sea, including the boundary to floating ice if present. 2019-06-17
TYSUMMEN downward x stress correction at sea water surface "Downward" indicates a vector component which is positive when directed downward (negative upward). "x" indicates a vector component along the grid x-axis, positive with increasing x. A downward x stress is a downward flux of momentum towards the positive direction of the model's x-axis. A positive correction is downward i.e. added to the ocean. The phrase "sea water surface" means the upper boundary of the liquid portion of an ocean or sea, including the boundary to floating ice if present. 2019-06-17
CFSN0698 downward y stress at sea ice base "y" indicates a vector component along the grid y-axis, positive with increasing y. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
JRDOLBFY downward y stress at sea water surface "Downward" indicates a vector component which is positive when directed downward (negative upward). "y" indicates a vector component along the grid y-axis, positive with increasing y. A downward y stress is a downward flux of momentum towards the positive direction of the model's y-axis. The phrase "sea water surface" means the upper boundary of the liquid portion of an ocean or sea, including the boundary to floating ice if present. 2019-06-17
LQT2PMG1 downward y stress correction at sea water surface "Downward" indicates a vector component which is positive when directed downward (negative upward). "y" indicates a vector component along the grid y-axis, positive with increasing y. A downward y stress is a downward flux of momentum towards the positive direction of the model's y-axis. A positive correction is downward i.e. added to the ocean. The phrase "sea water surface" means the upper boundary of the liquid portion of an ocean or sea, including the boundary to floating ice if present. 2019-06-17
CFSN0699 downwelling longwave flux in air Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "longwave" means longwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFV13N7 downwelling longwave flux in air assuming clear sky Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "longwave" means longwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
CFSN0672 downwelling longwave radiance in air Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "longwave" means longwave radiation. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
CFSN0673 downwelling photon flux in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. A photon flux is specified in terms of numbers of photons expressed in moles. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
E51WRQIW downwelling photon flux per unit wavelength in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. A photon flux is specified in terms of numbers of photons expressed in moles. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
CFSN0674 downwelling photon radiance in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Photon radiance is the photon flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A photon flux is specified in terms of numbers of photons expressed in moles. 2018-07-03
Z2CRG5G5 downwelling photon radiance per unit wavelength in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Photon radiance is the photon flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A photon flux is specified in terms of numbers of photons expressed in moles. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
CFSN0675 downwelling photon spherical irradiance in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Photon spherical irradiance is the photon flux incident on unit area of a hemispherical (or "2-pi") collector. Radiation incident on a 4-pi collector has a standard name referring to "omnidirectional spherical irradiance". A photon flux is specified in terms of numbers of photons expressed in moles. 2018-07-03
879S7613 downwelling photon spherical irradiance per unit wavelength in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. Photon spherical irradiance is the photon flux incident on unit area of a hemispherical (or "2-pi") collector. The direction ("up/downwelling") is specified. Radiation incident on a 4-pi collector has a standard name referring to "omnidirectional spherical irradiance". A photon flux is specified in terms of numbers of photons expressed in moles. 2018-07-03
CFSN0676 downwelling photosynthetic photon flux in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. A photon flux is specified in terms of numbers of photons expressed in moles. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFSN0677 downwelling photosynthetic photon radiance in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Photon radiance is the photon flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. A photon flux is specified in terms of numbers of photons expressed in moles. 2018-07-03
CFSN0678 downwelling photosynthetic photon spherical irradiance in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. Photon spherical irradiance is the photon flux incident on unit area of a hemispherical (or "2-pi") collector. The direction ("up/downwelling") is specified. Radiation incident on a 4-pi collector has a standard name referring to "omnidirectional spherical irradiance". A photon flux is specified in terms of numbers of photons expressed in moles. 2018-07-03
CFSN0679 downwelling photosynthetic radiance in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. 2018-07-03
CFSN0680 downwelling photosynthetic radiative flux in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFSN0681 downwelling photosynthetic spherical irradiance in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. Spherical irradiance is the radiation incident on unit area of a hemispherical (or "2-pi") collector. It is sometimes called "scalar irradiance". The direction (up/downwelling) is specified. Radiation incident on a 4-pi collector has standard names of "omnidirectional spherical irradiance". 2018-07-03
CFSN0682 downwelling radiance in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
HLKZ2VSL downwelling radiance per unit wavelength in air Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
6151973H downwelling radiance per unit wavelength in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
CFSN0683 downwelling radiative flux in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiative flux is the sum of shortwave and longwave radiative fluxes. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
YI375G77 downwelling radiative flux per unit wavelength in air Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
NAIK3LNA downwelling radiative flux per unit wavelength in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
CFSN0660 downwelling shortwave flux in air Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
B7IXS3WH downwelling shortwave flux in air assuming clean clear sky DEPRECATED Downwelling radiation is radiation from above. It does not mean "net downward". The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clean sky" means in the absence of atmospheric aerosol. "Clear sky" means in the absence of clouds. 2018-05-30
CFV13N8 downwelling shortwave flux in air assuming clear sky Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
P2VDRPKJ downwelling shortwave flux in air assuming clear sky and no aerosol Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
CF12N194 downwelling shortwave flux in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
4ZKPS56I downwelling shortwave flux in sea water at sea ice base Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0661 downwelling shortwave radiance in air Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
CFSN0662 downwelling spectral photon flux in sea water DEPRECATED Downwelling radiation is radiation from above. It does not mean 'net downward'. A photon flux is specified in terms of numbers of photons expressed in moles. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2013-06-27
CFSN0663 downwelling spectral photon radiance in sea water DEPRECATED Downwelling radiation is radiation from above. It does not mean 'net downward'. Photon radiance is the photon flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A photon flux is specified in terms of numbers of photons expressed in moles. 2013-06-27
CFSN0664 downwelling spectral photon spherical irradiance in sea water DEPRECATED Downwelling radiation is radiation from above. It does not mean 'net downward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Photon spherical irradiance is the photon flux incident on unit area of a hemispherical (or '2-pi') collector. A photon flux is specified in terms of numbers of photons expressed in moles. 2013-06-27
CFSN0665 downwelling spectral radiance in air DEPRECATED Downwelling radiation is radiation from above. It does not mean 'net downward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2013-06-27
CFSN0666 downwelling spectral radiance in sea water DEPRECATED Downwelling radiation is radiation from above. It does not mean 'net downward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2013-06-27
CFSN0667 downwelling spectral radiative flux in air DEPRECATED Downwelling radiation is radiation from above. It does not mean 'net downward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2013-06-27
CFSN0668 downwelling spectral radiative flux in sea water DEPRECATED Downwelling radiation is radiation from above. It does not mean 'net downward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2013-06-27
CFSN0669 downwelling spectral spherical irradiance in sea water DEPRECATED Downwelling radiation is radiation from above. It does not mean 'net downward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Spherical irradiance is the radiation incident on unit area of a hemispherical (or '2-pi') collector. It is sometimes called 'scalar irradiance'. The direction (up/downwelling) is specified. Radiation incident on a 4-pi collector has standard names of 'omnidirectional spherical irradiance'. 2013-06-27
CFSN0670 downwelling spherical irradiance in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Spherical irradiance is the radiation incident on unit area of a hemispherical (or "2-pi") collector. It is sometimes called "scalar irradiance". The direction (up/downwelling) is specified. Radiation incident on a 4-pi collector has standard names of "omnidirectional spherical irradiance". 2018-07-03
17G027ST downwelling spherical irradiance per unit wavelength in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Spherical irradiance is the radiation incident on unit area of a hemispherical (or "2-pi") collector. It is sometimes called "scalar irradiance". The direction (up/downwelling) is specified. Radiation incident on a 4-pi collector has standard names of "omnidirectional spherical irradiance". A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
NAI0G6DC drainage amount through base of soil model The quantity with standard name drainage_ amount_ through_ base_ of_ soil_ model is the amount of water that drains through the bottom of a soil column extending from the surface to a specified depth. "Drainage" is the process of removal of excess water from soil by gravitational flow. "Amount" means mass per unit area. A vertical coordinate variable or scalar coordinate with standard name "depth" should be used to specify the depth to which the soil column extends. 2023-02-06
ZV42E2GH dry atmosphere mole fraction of carbon dioxide Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The construction "dry_ atmosphere_ mole_ fraction" means that the quantity refers to the whole atmospheric column and is calculated as the total number of particles of X in the column divided by the number of dry air particles in the same column, i.e. the effect of water vapor is excluded. For localized values within the atmospheric medium, standard names including "in_ air" are used. The chemical formula for carbon dioxide is CO2. 2016-03-08
4Q24B9AP dry atmosphere mole fraction of methane Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The construction "dry_ atmosphere_ mole_ fraction" means that the quantity refers to the whole atmospheric column and is calculated as the total number of particles of X in the column divided by the number of dry air particles in the same column, i.e. the effect of water vapor is excluded. For localized values within the atmospheric medium, standard names including "in_ air" are used. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The chemical formula for methane is CH4. 2016-03-08
CFSN0671 dry energy content of atmosphere layer 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Dry energy is the sum of dry static energy and kinetic energy. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
K88UQGUS dry soil density The density of the soil after oven drying until constant mass is reached. Volume is determined from the field sample volume. The density of a substance is its mass per unit volume. 2023-04-24
CFSN0642 dry static energy content of atmosphere layer 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0643 duration of sunshine The WMO definition of sunshine is that the surface incident radiative flux from the solar beam (i.e. excluding diffuse skylight) exceeds 120 W m-2. 'Duration' is the length of time for which a condition holds. 2006-09-26
8O6N4MAH dvorak tropical cyclone current intensity number "Dvorak current intensity number" indicates the ranking of tropical cyclone strength (ranging from 1.0 to 8.0, increasing with storm intensity). The current intensity (CI) number is derived using the Advanced Dvorak Technique based on satellite observations over time. The CI number maps to a maximum sustained 1-minute wind speed and is derived by applying a series of intensity constraints to previous Dvorak-calculated trends of the same storm. Reference: Olander, T. L., and Velden, C. S., The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery (2007). American Meteorological Society Weather and Forecasting, 22, 287-298. 2015-07-08
REEO20PV dvorak tropical number The Advanced Dvorak Technique (ADT) is used to derive a set of Dvorak Tropical numbers using an objective pattern recognition algorithm to determine the intensity of a tropical cyclone by matching observed brightness temperature patterns, maximum sustained winds and minimum sea level pressure to a set of pre-defined tropical cyclone structures. Dvorak Tropical numbers range from 1.0 to 8.0, increasing with storm intensity. Reference: Olander, T. L., & Velden, C. S., The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery (2007). American Meteorological Society Weather and Forecasting, 22, 287-298. 2019-02-04
CFV8N8 dynamic tropopause potential temperature The dynamical tropopause used in interpreting the dynamics of the upper troposphere and lower stratosphere. There are various definitions of dynamical tropopause in the scientific literature. 2008-04-15
TKTBY7J2 eastward air velocity relative to sea water The eastward motion of air, relative to near-surface eastward current; calculated as eastward_ wind minus eastward_ sea_ water_ velocity. A vertical coordinate variable or scalar coordinate with standard name "depth" should be used to indicate the depth of sea water velocity used in the calculation. Similarly, a vertical coordinate variable or scalar coordinate with standard name "height" should be used to indicate the height of the the wind component. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). 2021-01-18
CFSN0644 eastward atmosphere dry static energy transport across unit distance 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Transport across_ unit_ distance means expressed per unit distance normal to the direction of transport. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0645 eastward atmosphere water transport across unit distance 'Water' means water in all phases. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Transport across_ unit_ distance means expressed per unit distance normal to the direction of transport. 2006-09-26
CFSN0646 eastward atmosphere water vapor transport across unit distance 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Transport across_ unit_ distance means expressed per unit distance normal to the direction of transport. 2006-09-26
FECK5LQ3 eastward derivative of eastward wind The quantity with standard name eastward_ derivative_ of_ eastward_ wind is the derivative of the eastward component of wind with respect to distance in the eastward direction for a given atmospheric level. The phrase "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "upward", "downward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. A positive value indicates that X is increasing with distance along the positive direction of the axis. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). 2020-09-14
CFV16A11 eastward derivative of northward sea ice velocity A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Northward" indicates a vector component which is positive when directed northward (negative southward). Sea ice velocity is defined as a two-dimensional vector, with no vertical component. "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be northward, southward, eastward, westward, x or y. The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. The named quantity is a component of the strain rate tensor for sea ice. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
5K0HG9S4 eastward derivative of northward wind The quantity with standard name eastward_ derivative_ of_ northward_ wind is the derivative of the northward component of wind with respect to distance in the eastward direction for a given atmospheric level. The phrase "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "upward", "downward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. A positive value indicates that X is increasing with distance along the positive direction of the axis. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). 2020-09-14
JXXUPZU0 eastward derivative of wind from direction The quantity with standard name eastward_ derivative_ of_ wind_ from_ direction is the derivative of wind from_ direction with respect to the change in eastward lateral position for a given atmospheric level. The phrase "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "upward", "downward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. A positive value indicates that X is increasing with distance along the positive direction of the axis. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. In meteorological reports, the direction of the wind vector is usually (but not always) given as the direction from which it is blowing ("wind_ from_ direction") (westerly, northerly, etc.). In other contexts, such as atmospheric modelling, it is often natural to give the direction in the usual manner of vectors as the heading or the direction to which it is blowing ("wind_ to_ direction") (eastward, southward, etc.). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). 2020-09-14
CALTT1MR eastward flood water velocity A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Flood water is water that covers land which is normally not covered by water. 2016-05-17
L4VM90DM eastward friction velocity in air A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Friction velocity is a reference wind velocity derived from the relationship between air density and downward stress and is usually applied at a level close to the surface where stress is assumed to independent of height and approximately proportional to the square of mean velocity. 2021-09-20
KA7H1YSD eastward land ice velocity A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Land ice velocity is defined as a two-dimensional vector, with no vertical component. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. 2016-03-08
CFSN0647 eastward mass flux of air 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0648 eastward momentum flux correction 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Momentum flux is dimensionally equivalent to stress and pressure. It is a tensor quantity. Flux correction is also called 'flux adjustment'. A positive flux correction is downward i.e. added to the ocean. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFV13N9 eastward sea ice displacement "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Displacement" means the change in geospatial position of an object that has moved over time. If possible, the time interval over which the motion took place should be specified using a bounds variable for the time coordinate variable. A displacement can be represented as a vector. Such a vector should however not be interpreted as describing a rectilinear, constant speed motion but merely as an indication that the start point of the vector is found at the tip of the vector after the time interval associated with the displacement variable. A displacement does not prescribe a trajectory. Sea ice displacement can be defined as a two-dimensional vector, with no vertical component. An eastward displacement is the distance calculated from the change in a moving object's longitude between the start and end of the time interval associated with the displacement variable. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0649 eastward sea ice velocity A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Sea ice velocity is defined as a two-dimensional vector, with no vertical component. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0650 eastward sea water velocity A velocity is a vector quantity. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). 2006-09-26
CFV13N10 eastward sea water velocity assuming no tide A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 2010-03-11
TZDE16MA eastward sea water velocity at sea floor A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). The velocity at the sea floor is that adjacent to the ocean bottom, which would be the deepest grid cell in an ocean model and within the benthic boundary layer for measurements. 2019-12-09
W2YRLZ9N eastward sea water velocity due to ekman drift A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward).The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2023-10-16
1JDV3KLZ eastward sea water velocity due to parameterized mesoscale eddies "Eastward" indicates a vector component which is positive when directed eastward (negative westward). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized mesoscale eddies occur on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddies are represented in ocean models using schemes such as the Gent-McWilliams scheme. 2017-11-28
BUUOEIQ2 eastward sea water velocity due to tides A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Due to tides" means due to all astronomical gravity changes which manifest as tides. No distinction is made between different tidal components. 2019-12-09
CFV9S1 eastward transformed eulerian mean air velocity "Eastward" indicates a vector component which is positive when directed eastward (negative westward). The "Transformed Eulerian Mean" refers to a formulation of the mean equations which incorporates some eddy terms into the definition of the mean, described in Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. 2018-04-16
CFV8N9 eastward transformed eulerian mean velocity DEPRECATED Eastward indicates a vector component which is positive when directed eastward (negative westward). 2008-06-10
CFSN0651 eastward water vapor flux DEPRECATED 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2010-07-26
CFV15A2 eastward water vapor flux in air "Eastward" indicates a vector component which is positive when directed eastward (negative westward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2010-07-26
CFSN0652 eastward water vapor transport across unit distance in atmosphere layer 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Transport across_ unit_ distance means expressed per unit distance normal to the direction of transport. 2006-09-26
CFSN0653 eastward wind 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0654 eastward wind shear DEPRECATED 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) Wind shear is the derivative of wind with respect to height. 2024-01-18
72YUKQJR effective radius of cloud condensed water particles at cloud top The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals,is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. "cloud_ top" refers to the top of the highest cloud. "condensed_ water" means liquid and ice. 2013-06-27
MRXUEVAS effective radius of cloud liquid water particle DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. 2019-09-17
CFV16A12 effective radius of cloud liquid water particle at liquid water cloud top DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. cloud_ top refers to the top of the highest cloud. 2019-05-14
TK2CWWPU effective radius of cloud liquid water particles The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
X4CY5Z6H effective radius of cloud liquid water particles at liquid water cloud top The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The phrase "cloud_ top" refers to the top of the highest cloud. 2020-03-09
CF12N195 effective radius of convective cloud ice particle DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. Convective cloud is that produced by the convection schemes in an atmosphere model. 2019-05-14
NOX8IGKW effective radius of convective cloud ice particles The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. Convective cloud is that produced by the convection schemes in an atmosphere model. 2019-05-14
CF12N196 effective radius of convective cloud liquid water particle DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. Convective cloud is that produced by the convection schemes in an atmosphere model. 2019-05-14
S1CHM4XM effective radius of convective cloud liquid water particle at convective liquid water cloud top DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. The phrase "convective_ liquid_ water_ cloud_ top" refers to the top of the highest convective liquid water cloud. Convective cloud is that produced by the convection schemes in an atmosphere model. 2019-05-14
N3D94CVE effective radius of convective cloud liquid water particles The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. Convective cloud is that produced by the convection schemes in an atmosphere model. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
6YPSI8M3 effective radius of convective cloud liquid water particles at convective liquid water cloud top The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. The phrase "convective_ liquid_ water_ cloud_ top" refers to the top of the highest convective liquid water cloud. Convective cloud is that produced by the convection schemes in an atmosphere model. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CF12N197 effective radius of convective cloud rain particle DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. Convective cloud is that produced by the convection schemes in an atmosphere model. 2019-05-14
79GTEIUB effective radius of convective cloud rain particles The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. Convective cloud is that produced by the convection schemes in an atmosphere model. 2019-05-14
CF12N198 effective radius of convective cloud snow particle DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. Convective cloud is that produced by the convection schemes in an atmosphere model. 2019-05-14
9M3C9WFF effective radius of convective cloud snow particles The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. Convective cloud is that produced by the convection schemes in an atmosphere model. 2019-05-14
CF12N199 effective radius of stratiform cloud graupel particle DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-05-14
WSOOVDAH effective radius of stratiform cloud graupel particles The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-05-14
CF12N200 effective radius of stratiform cloud ice particle DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-05-14
9XXE61KE effective radius of stratiform cloud ice particles The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-05-14
CF12N201 effective radius of stratiform cloud liquid water particle DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-05-14
9SAN6SZV effective radius of stratiform cloud liquid water particle at stratiform liquid water cloud top DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. The phrase "stratiform_ liquid_ water_ cloud_ top" refers to the top of the highest stratiform liquid water cloud. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-05-14
VVZRYOE6 effective radius of stratiform cloud liquid water particles The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
D21M7174 effective radius of stratiform cloud liquid water particles at stratiform liquid water cloud top The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. The phrase "stratiform_ liquid_ water_ cloud_ top" refers to the top of the highest stratiform liquid water cloud. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CF12N202 effective radius of stratiform cloud rain particle DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-05-14
UZ0ESYPD effective radius of stratiform cloud rain particles The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-05-14
CF12N203 effective radius of stratiform cloud snow particle DEPRECATED The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-05-14
US3N6FMX effective radius of stratiform cloud snow particles The effective radius of a size distribution of particles, such as aerosols, cloud droplets or ice crystals, is the area weighted mean radius of particle size. It is calculated as the ratio of the third to the second moment of the particle size distribution. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-05-14
IJAQNXAV electrical mobility diameter of ambient aerosol particles The diameter of an aerosol particle as selected by its electrical mobility. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2019-05-14
PB1AX23L electrical mobility particle diameter DEPRECATED The diameter of an aerosol particle as selected by its electrical mobility. 2019-05-14
CFSNA023 electromagnetic wavelength DEPRECATED The radiation wavelength can refer to any electromagnetic wave, such as light, heat radiation and radio waves. 2006-09-26
Y7RLJ6Z3 enrichment of 13C in particulate carbon in sea water expressed as lowercase delta 13C relative to VPDB Isotopic enrichment of 13C, often called delta 13C, is a measure of the ratio of stable isotopes 13C:12C. It is a parameterisation of the 13C/12C isotopic ratio in the sample with respect to the isotopic ratio in a reference standard (in this case Vienna Pee Dee Belemnite). It is computed using the formula (((13C/12C)sample / (13C/12C)standard) - 1) * 1000. Particulate means suspended solids of all sizes. 2023-02-06
PVTJCRHT enrichment of 14C in carbon dioxide in air expressed as uppercase delta 14C Isotopic enrichment of 14C, often called d14C or delta14C (lower case delta), is used to calculate the fossil fuel contribution to atmospheric carbon dioxide using isotopic ratios of carbon. It is a parameterisation of the 14C/12C isotopic ratio in the sample with respect to the isotopic ratio in a reference standard. It is computed using the formula (((14C/12C)sample / (14C/12C)standard) - 1) * 1000. The quantity called D14C, or Delta14C (upper case delta) is d14C corrected for isotopic fractionation using the 13C/12C ratio as follows: D14C = d14C - 2(dC13 + 25)(1+d14C/1000). If the sample is enriched in 14C relative to the standard, then the data value is positive. Reference: Stuiver, M. and H.A. Polach, 1977, Discussion reporting of 14C data, Radiocarbon, Volume 19, No. 3, 355-363, doi: 10.1017/S0033822200003672. The reference standard used in the calculation of delta14C should be specified by attaching a long_ name attribute to the data variable. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. 2019-03-04
5UUAWMX7 enrichment of 15N in particulate nitrogen in sea water expressed as lowercase delta 15N relative to atmospheric nitrogen Isotopic enrichment of 15N, often called delta 15N, is a measure of the ratio of stable isotopes 15N:14N. It is a parameterisation of the 15N/14N isotopic ratio in the sample with respect to the isotopic ratio in a reference standard (in this case atmospheric nitrogen). It is computed using the formula (((15N/14N)sample / (15N/14N)standard) - 1) * 1000. Particulate means suspended solids of all sizes. 2023-02-06
CFSN0655 enthalpy content of atmosphere layer 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0656 equilibrium line altitude Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. The equilibrium line is the locus of points on a land ice surface at which ice accumulation balances ice ablation over the year. 2006-09-26
CFSN0657 equivalent potential temperature DEPRECATED Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. 2020-03-09
CFSN0658 equivalent pressure of atmosphere ozone content 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The equivalent pressure of a particular constituent of the atmosphere is the surface pressure exerted by the weight of that constituent alone. 2006-09-26
CF12N204 equivalent reflectivity factor "Equivalent reflectivity factor" is the radar reflectivity factor that is calculated from the measured radar return power assuming the target is composed of liquid water droplets whose diameter is less than one tenth of the radar wavelength, i.e., treating the droplets as Rayleigh scatterers. The actual radar reflectivity factor would depend on the size distribution and composition of the particles within the target volume and these are often unknown. 2010-07-26
CFSN0659 equivalent temperature DEPRECATED 2020-03-09
CFSNA004 equivalent thickness at stp of atmosphere o3 content DEPRECATED 'stp' means standard temperature (0 degC) and pressure (101325 Pa). 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The equivalent thickness at STP of a particular constituent of the atmosphere is the thickness of the layer that the gas would occupy if it was separated from the other constituents and gathered together at STP. 2006-09-26
CFSN0619 equivalent thickness at stp of atmosphere ozone content "stp" means standard temperature (0 degC) and pressure (101325 Pa). "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The equivalent thickness at STP of a particular constituent of the atmosphere is the thickness of the layer that the gas would occupy if it was separated from the other constituents and gathered together at STP. equivalent_ thickness_ at_ stp_ of_ atmosphere_ ozone_ content is usually measured in Dobson Units which are equivalent to 446.2 micromoles m-2 or an equivalent thickness at STP of 10 micrometers. N.B. Data variables containing column content of ozone can be given the standard name of either equivalent_ thickness_ at_ stp_ of_ atmosphere_ ozone_ content or atmosphere_ mole_ content_ of_ ozone. The latter name is recommended for consistency with mole content names for chemical species other than ozone. 2013-01-11
CFSN0620 ertel potential vorticity The Ertel potential vorticity is the scalar product of the atmospheric absolute vorticity vector and the gradient of potential temperature. It is a conserved quantity in the absence of friction and heat sources [AMS Glossary, http://glossary.ametsoc.org/wiki/Ertel_ potential_ vorticity]. A frequently used simplification of the general Ertel potential vorticity considers the Earth rotation vector to have only a vertical component. Then, only the vertical contribution of the scalar product is calculated. 2020-06-22
CFV16A13 fast soil pool carbon content DEPRECATED "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. "Soil carbon" is the organic matter present in soil quantified by the mass of carbon it contains. Soil carbon is returned to the atmosphere as the organic matter decays. The decay process takes varying amounts of time depending on the composition of the organic matter, the temperature and the availability of moisture. A carbon "soil pool" means the carbon contained in organic matter which has a characteristic period over which it decays and releases carbon into the atmosphere. "Fast soil pool" refers to the decay of organic matter in soil with a characteristic period of less than ten years under reference climate conditions of a temperature of 20 degrees Celsius and no water limitations. 2018-04-16
AT7HOKCE fast soil pool mass content of carbon "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. Soil carbon is returned to the atmosphere as the organic matter decays. The decay process takes varying amounts of time depending on the composition of the organic matter, the temperature and the availability of moisture. A carbon "soil pool" means the carbon contained in organic matter which has a characteristic period over which it decays and releases carbon into the atmosphere. "Fast soil pool" refers to the decay of organic matter in soil with a characteristic period of less than ten years under reference climate conditions of a temperature of 20 degrees Celsius and no water limitations. 2018-04-16
I19BNSXH final air pressure of lifted parcel Various stability and convective potential indices are calculated by "lifting" a parcel of air: moving it dry adiabatically from a starting height (often the surface) to the Lifting Condensation Level, and then wet adiabatically from there to an ending height (often the top of the data/model/atmosphere). The quantities with standard names original_ air_ pressure_ of_ lifted_ parcel and final_ air_ pressure_ of_ lifted_ parcel are the ambient air pressure at the start and end of lifting, respectively. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
OH2X3OCY fire area "X_ area" means the horizontal area occupied by X within the grid cell. The extent of an individual grid cell is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of "region". "Fire area" means the area of detected biomass fire. 2017-02-21
4ZGWF4W5 fire radiative power The product of the irradiance (the power per unit area) of a biomass fire and the corresponding fire area. A data variable containing the area affected by fire should be given the standard name fire_ area. 2015-07-08
MULBI69H fire temperature The overall temperature of a fire area due to contributions from smoldering and flaming biomass. A data variable containing the area affected by fire should be given the standard name fire_ area. 2015-07-08
IMYZ46Y5 flat line test quality flag A quality flag that reports the result of the Flat Line test, which checks for consecutively repeated values within a tolerance. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. There are standard names for other specific quality tests which take the form of X_ quality_ flag. Quality information that does not match any of the specific quantities should be given the more general standard name of quality_ flag. 2020-03-09
U2HD33ZJ floating ice sheet area fraction DEPRECATED "X_ area_ fraction" means the fraction of horizontal area occupied by X. A "floating ice sheet", sometimes called an "ice shelf", indicates where the ice sheet is flowing over sea water. 2017-02-21
9UQEWU8J floating ice shelf area "X_ area" means the horizontal area occupied by X within the grid cell. The extent of an individual grid cell is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of "region". A "floating ice shelf", sometimes called a "floating ice sheet", indicates where an ice sheet extending from a land area flows over sea water. 2017-02-21
B58LZ0OO floating ice shelf area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. A "floating ice shelf", sometimes called a "floating ice sheet", indicates where an ice sheet extending from a land area flows over sea water. 2019-05-14
CFV11N5 floating ice thickness "Floating ice" means any ice that is floating on water, e.g. on a sea or lake surface. "Thickness" means the vertical extent of the ice. 2008-11-11
INNVXAOH flood water duration above threshold The quantity with standard name flood_ water_ duration_ above_ threshold is the time elapsed between the instant when the flood depth first rises above a given threshold until the time falls below the same threshold for the last time at a given point in space. If a threshold is supplied, it should be specified by associating a coordinate variable or scalar coordinate variable with the data variable and giving the coordinate variable a standard name of flood_ water_ thickness. The values of the coordinate variable are the threshold values for the corresponding subarrays of the data variable. If no threshold is specified, its value is taken to be zero. Flood water is water that covers land which is normally not covered by water. 2016-05-17
1O5UZT5I flood water speed Speed is the magnitude of velocity. Flood water is water that covers land which is normally not covered by water. 2016-05-17
F4SYKX2M flood water thickness The flood_ water_ thickness is the vertical distance between the surface of the flood water and the surface of the solid ground, as measured at a given point in space. The standard name ground_ level_ altitude is used for a data variable giving the geometric height of the ground surface above the geoid. "Flood water" is water that covers land which is normally not covered by water. 2016-05-17
18AFGUED fog area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Fog means water droplets or minute ice crystals close to the surface which reduce visibility in air to less than 1000m. 2019-05-14
CFSN0621 forecast period Forecast period is the time interval between the forecast reference time and the validity time. A period is an interval of time, or the time-period of an oscillation. 2006-09-26
CFSN0622 forecast reference time The forecast reference time in NWP is the 'data time', the time of the analysis from which the forecast was made. It is not the time for which the forecast is valid; the standard name of time should be used for that time. 2006-09-26
5D73T768 fraction of surface downwelling photosynthetic radiative flux absorbed by vegetation Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The surface called "surface" means the lower boundary of the atmosphere. The quantity with standard name fraction_ of_ surface_ downwelling_ photosynthetic_ radiative_ flux_ absorbed_ by_ vegetation, often called Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), is the fraction of incoming solar radiation in the photosynthetically active radiation spectral region that is absorbed by a vegetation canopy. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of "radiation_ wavelength". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Vegetation" means any plants e.g. trees, shrubs, grass. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. 2018-07-03
M6FAQ4GA fraction of time with sea ice area fraction above threshold "Fraction of time" is the fraction of a time period defined by the bounds of the time coordinate variable for which a characteristic of interest exists. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. Sea ice area fraction is area of the sea surface occupied by sea ice. The area threshold value must be specified by supplying a coordinate variable or scalar coordinate variable with the standard name of sea_ ice_ area_ fraction. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2019-05-14
CFSN0623 fractional saturation of oxygen in sea water Fractional saturation is the ratio of some measure of concentration to the saturated value of the same quantity. 2006-09-26
CFSN0624 freezing level altitude Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 2006-09-26
CFSN0625 freezing temperature of sea water 2006-09-26
J95ROWAH frequency of lightning flashes per unit area A lightning flash is a compound event, usually consisting of several discharges. Frequency is the number of oscillations of a wave, or the number of occurrences of an event, per unit time. 2018-05-29
YNRILV6V frozen soil density The density of the soil in its naturally frozen condition. Also known as frozen bulk density. The density of a substance is its mass per unit volume. 2023-04-24
CFSN0626 frozen water content of soil layer 'frozen_ water' means ice. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Quantities defined for a soil layer must have a vertical coordinate variable with boundaries indicating the extent of the layer(s). 2006-09-26
S5KQHZRB fugacity of carbon dioxide in sea water The fugacity is the measured pressure (or partial pressure) of a real gas corrected for the intermolecular forces of that gas, which allows that corrected quantity to be treated like the pressure of an ideal gas in the ideal gas equation PV = nRT. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. The chemical formula for carbon dioxide is CO2. 2018-10-15
WJ0KLQVT gap test quality flag A quality flag that reports the result of the Timing/Gap test, which checks that data have been received within the expected time window and have the correct time stamp. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. There are standard names for other specific quality tests which take the form of X_ quality_ flag. Quality information that does not match any of the specific quantities should be given the more general standard name of quality_ flag. 2020-03-09
CFV10N12 geoid height above reference ellipsoid The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean). In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. A reference ellipsoid is a regular mathematical figure that approximates the irregular shape of the geoid. A number of reference ellipsoids are defined for use in the field of geodesy. To specify which reference ellipsoid is being used, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2017-07-24
CFSN0627 geopotential Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. 2006-09-26
CFSN0628 geopotential height Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. Geopotential height is the geopotential divided by the standard acceleration due to gravity. It is numerically similar to the altitude (or geometric height) and not to the quantity with standard name height, which is relative to the surface. 2006-09-26
CFSN0629 geopotential height anomaly 'anomaly' means difference from climatology. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. Geopotential height is the geopotential divided by the standard acceleration due to gravity. It is numerically similar to the altitude (or geometric height) and not to the quantity with standard name height, which is relative to the surface. 2006-09-26
WE71R4DL geopotential height at cloud top Cloud_ top refers to the top of the highest cloud. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. Geopotential height is the geopotential divided by the standard acceleration due to gravity. It is numerically similar to the altitude (or geometric height) and not to the quantity with standard name "height", which is relative to the surface. 2015-07-08
P795JUDZ geopotential height at volcanic ash cloud top Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. Geopotential height is the geopotential divided by the standard acceleration due to gravity. It is numerically similar to the altitude (or geometric height) and not to the quantity with standard name "height", which is relative to the surface. "Volcanic_ ash" means the fine-grained products of explosive volcanic eruptions, such as minerals or crystals, older fragmented rock (e.g. andesite), and glass. Particles within a volcanic ash cloud have diameters less than 2 mm. "Volcanic_ ash" does not include non-volcanic dust. 2013-11-08
PL2XA37D geostrophic eastward sea water velocity A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. 2017-02-21
CFSN0630 geostrophic eastward wind "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. 2017-02-21
LIVD1POJ geostrophic northward sea water velocity A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. 2017-02-21
CFSN0631 geostrophic northward wind "Northward" indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. 2017-02-21
CFSN0632 global average sea level change Global average sea level change is due to change in volume of the water in the ocean, caused by mass and/or density change, or to change in the volume of the ocean basins, caused by tectonics etc. It is sometimes called "eustatic", which is a term that also has other definitions. It differs from the change in the global average sea surface height relative to the centre of the Earth by the global average vertical movement of the ocean floor. Zero sea level change is an arbitrary level. Because global average sea level change quantifies the change in volume of the world ocean, it is not calculated necessarily by considering local changes in mean sea level. 2017-07-24
CF12N205 global average steric sea level change Global average steric sea level change is caused by changes in sea water density due to changes in temperature (thermosteric) and salinity (halosteric). This in turn results in a change in volume of the world ocean. Zero sea level change is an arbitrary level. Because global average sea level change quantifies the change in volume of the world ocean, it is not calculated necessarily by considering local changes in mean sea level. 2017-07-24
CFSN0633 global average thermosteric sea level change Global average thermosteric sea level change is the part caused by change in density due to change in temperature i.e. thermal expansion. This in turn results in a change in volume of the world ocean. Zero sea level change is an arbitrary level. Because global average sea level change quantifies the change in volume of the world ocean, it is not calculated necessarily by considering local changes in mean sea level. 2017-07-24
CVJJ589D graupel and hail fall amount "Amount" means mass per unit area. Graupel consists of heavily rimed snow particles, often called snow pellets; often indistinguishable from very small soft hail except when the size convention that hail must have a diameter greater than 5 mm is adopted. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Graupel. Hail is precipitation in the form of balls or irregular lumps of ice, often restricted by a size convention to diameters of 5 mm or more. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Hail. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. For models that do distinguish between them, separate standard names for hail and graupel are available. 2018-05-15
IQ1CJ6MN graupel and hail fall flux In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Graupel consists of heavily rimed snow particles, often called snow pellets; often indistinguishable from very small soft hail except when the size convention that hail must have a diameter greater than 5 mm is adopted. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Graupel. Hail is precipitation in the form of balls or irregular lumps of ice, often restricted by a size convention to diameters of 5 mm or more. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Hail. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. For models that do distinguish between them, separate standard names for hail and graupel are available. 2018-05-15
362WBEIL graupel fall amount "Amount" means mass per unit area. Graupel consists of heavily rimed snow particles, often called snow pellets; often indistinguishable from very small soft hail except for the size convention that hail must have a diameter greater than 5 mm. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Graupel. 2017-11-28
URHRK9PJ graupel fall flux In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Graupel consists of heavily rimed snow particles, often called snow pellets; often indistinguishable from very small soft hail except when the size convention that hail must have a diameter greater than 5 mm is adopted. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Graupel. There are also separate standard names for hail. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. 2018-05-15
CFSNA021 grid eastward wind DEPRECATED 'x' indicates a vector component along the grid x-axis, when this is not true longitude, positive with increasing x. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0634 grid latitude Latitude is positive northward; its units of degree_ north (or equivalent) indicate this explicitly. In a latitude-longitude system defined with respect to a rotated North Pole, the standard name of grid_ latitude should be used instead of latitude. Grid latitude is positive in the grid-northward direction, but its units should be plain degree. 2006-09-26
CFSN0635 grid longitude Longitude is positive eastward; its units of degree_ east (or equivalent) indicate this explicitly. In a latitude-longitude system defined with respect to a rotated North Pole, the standard name of grid_ longitude should be used instead of longitude. Grid longitude is positive in the grid-eastward direction, but its units should be plain degree. 2006-09-26
CFSNA040 grid northward wind DEPRECATED 'y' indicates a vector component along the grid y-axis, when this is not true latitude, positive with increasing y. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
3UF7EP0Z gross mole production of biomass expressed as carbon by prokaryotes in sea water "Gross mole production" means the rate of creation of biomass per unit volume with no correction for respiration loss in terms of quantity of matter (moles). The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Prokaryotes" means all Bacteria and Archaea excluding photosynthetic cyanobacteria such as Synechococcus and Prochlorococcus or other separately named components of the prokaryotic population. 2023-07-05
5NIDORTI gross primary productivity of biomass expressed as 13C "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Gross primary production is the rate of synthesis of biomass from inorganic precursors by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton. The producers also respire some of this biomass and the difference is "net_ primary_ production". "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "C" means the element carbon and "13C" is the stable isotope "carbon-13", having six protons and seven neutrons. 2018-05-15
8OTRUM79 gross primary productivity of biomass expressed as 14C "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Gross primary production is the rate of synthesis of biomass from inorganic precursors by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton. The producers also respire some of this biomass and the difference is "net_ primary_ production". "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. 2018-05-15
48CPRT6U gross primary productivity of biomass expressed as carbon "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Gross primary production is the rate of synthesis of biomass from inorganic precursors by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton. The producers also respire some of this biomass and the difference is "net_ primary_ production". "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2013-11-28
CFSN0636 gross primary productivity of carbon DEPRECATED Gross primary productivity is the rate of synthesis of biomass per unit area from inorganic precursors by autotrophs, especially by photosynthesising plants using sunlight for energy. The producers also respire some of this biomass and the difference is net_ primary_ productivity. "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. 2013-11-28
8ZFKVO3X gross production of biomass expressed as carbon by prokaryotes in sea water "Gross production" means the rate of creation of biomass per unit volume with no correction for respiration. The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Prokaryotes" means all Bacteria and Archaea excluding photosynthetic cyanobacteria such as Synechococcus and Prochlorococcus or other separately named components of the prokaryotic population. 2023-07-05
SEO24YNV gross range test quality flag A quality flag that reports the result of the Gross Range test, which checks that values are within reasonable range bounds. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. There are standard names for other specific quality tests which take the form of X_ quality_ flag. Quality information that does not match any of the specific quantities should be given the more general standard name of quality_ flag. 2020-03-09
1MJZJKB2 gross rate of decrease in area fraction The "gross rate of decrease in area fraction" is the fraction of a grid cell that transitions from a given area type per unit time, for example, as a result of land use changes. The quantity described by this standard name is a gross decrease because it includes only land where the use transitions away from the given area type and excludes land that transitions to that area type during the same period. The area type should be specified using a coordinate of scalar coordinate variable with standard name area_ type. There is also a standard name for gross_ rate_ of_ increase_ in_ area_ fraction. "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area 2019-05-14
Y2MJ6KOM gross rate of increase in area fraction The "rate of increase in area fraction" is the fraction of a grid cell that transitions to a given area type per unit time, for example, as a result of land use changes. The quantity described by this standard name is a gross increase because it includes only land where the use transitions to the given area type and excludes land that transitions away from that area type during the same period. The area type should be specified using a coordinate or scalar coordinate variable with standard name area_ type. There is also a standard name for gross_ rate_ of_ decrease_ in_ area_ fraction. "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. 2019-05-14
555CMGNI ground level altitude The ground_ level_ altitude is the geometric height of the upper boundary of the solid Earth above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 2016-05-17
GZCFTK5R ground slope angle The slope angle is the angle (in degrees) measured between the ground (earth) surface plane and a flat, horizontal surface. 2023-04-24
0Z6W11MB ground slope direction Commonly known as aspect, it is the azimuth (in degrees) of a terrain slope, taken as the direction with the greatest downslope change in elevation on the ground (earth) surface. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2023-04-24
EVJALI3V grounded ice sheet area "X_ area" means the horizontal area occupied by X within the grid cell. The extent of an individual grid cell is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of "region". "Grounded ice sheet" indicates where the ice sheet rests over bedrock and is thus grounded. It excludes ice-caps, glaciers and floating ice shelves. 2017-02-21
3DXQHARK grounded ice sheet area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Grounded ice sheet" indicates where the ice sheet rests over bedrock and is thus grounded. It excludes ice-caps, glaciers and floating ice shelves. 2019-05-14
IS3UMREH growth limitation of calcareous phytoplankton due to solar irradiance "Calcareous phytoplankton" are phytoplankton that produce calcite. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. Solar irradiance is essential to the photosynthesis reaction and its presence promotes the growth of phytoplankton populations. "Growth limitation due to solar irradiance" means the ratio of the growth rate of a species population in the environment (where the amount of sunlight reaching a location may be limited) to the theoretical growth rate if there were no such limit on solar irradiance. 2016-11-15
5UY43J8S growth limitation of diatoms due to solar irradiance Diatoms are phytoplankton with an external skeleton made of silica. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. Solar irradiance is essential to the photosynthesis reaction and its presence promotes the growth of phytoplankton populations. "Growth limitation due to solar irradiance" means the ratio of the growth rate of a species population in the environment (where the amount of sunlight reaching a location may be limited) to the theoretical growth rate if there were no such limit on solar irradiance. 2016-11-15
2LTDBEIM growth limitation of diazotrophic phytoplankton due to solar irradiance "Growth limitation due to solar irradiance" means the ratio of the growth rate of a biological population in the environment (where the amount of sunlight reaching a location may be limited) to the theoretical growth rate if there were no such limit on solar irradiance. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. Solar irradiance is essential to the photosynthesis reaction and its presence promotes the growth of phytoplankton populations. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Diazotrophic phytoplankton are phytoplankton (predominantly from Phylum Cyanobacteria) that are able to fix molecular nitrogen (gas or solute) in addition to nitrate and ammonium. 2020-03-09
ZVO41E4G growth limitation of diazotrophs due to solar irradiance DEPRECATED In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. Solar irradiance is essential to the photosynthesis reaction and its presence promotes the growth of phytoplankton populations. "Growth limitation due to solar irradiance" means the ratio of the growth rate of a species population in the environment (where the amount of sunlight reaching a location may be limited) to the theoretical growth rate if there were no such limit on solar irradiance. 2020-03-09
R6NXPIMO growth limitation of miscellaneous phytoplankton due to solar irradiance Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Miscellaneous phytoplankton" are all those phytoplankton that are not diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton or other separately named components of the phytoplankton population. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. Solar irradiance is essential to the photosynthesis reaction and its presence promotes the growth of phytoplankton populations. "Growth limitation due to solar irradiance" means the ratio of the growth rate of a species population in the environment (where the amount of sunlight reaching a location may be limited) to the theoretical growth rate if there were no such limit on solar irradiance. 2016-11-15
4GPLREOI growth limitation of picophytoplankton due to solar irradiance Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. Solar irradiance is essential to the photosynthesis reaction and its presence promotes the growth of phytoplankton populations. "Growth limitation due to solar irradiance" means the ratio of the growth rate of a species population in the environment (where the amount of sunlight reaching a location may be limited) to the theoretical growth rate if there were no such limit on solar irradiance. 2016-11-15
BVE62IX4 hail fall amount "Amount" means mass per unit area. Hail is precipitation in the form of balls or irregular lumps of ice, often restricted by a size convention to diameters of 5 mm or more. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Hail. For diameters of less than 5 mm standard names for "graupel" should be used. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. 2018-05-15
IAT04RTI hail fall flux In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Hail is precipitation in the form of balls or irregular lumps of ice, often restricted by a size convention to diameters of 5 mm or more. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Hail. For diameters of less than 5 mm standard names for "graupel" should be used. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. 2018-05-15
XPBSHJD9 halosteric change in mean sea level Halosteric sea level change is the part caused by change in sea water density due to change in salinity. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. Zero mean sea level change is an arbitrary level. The sum of the quantities with standard names thermosteric_ change_ in_ mean_ sea_ level and halosteric_ change_ in_ mean_ sea_ level has the standard name steric_ change_ in_ mean_ sea_ level. 2017-06-26
1KV13021 halosteric change in sea surface height "Sea surface height" is a time-varying quantity. The halosteric change in sea surface height is the change in height that a water column of standard practical salinity S=35.0 would undergo when its salinity is changed to the observed value. The sum of the quantities with standard names thermosteric_ change_ in_ sea_ surface_ height and halosteric_ change_ in_ sea_ surface_ height is the total steric change in the water column height, which has the standard name of steric_ change_ in_ sea_ surface_ height. 2017-06-26
SHGEIZRR harmonic period A period is an interval of time, or the time-period of an oscillation. 2013-11-08
CFSN0637 heat flux correction DEPRECATED Flux correction is also called 'flux adjustment'. A positive flux correction is downward i.e. added to the ocean. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2023-10-16
5K9B4N9L heat flux into sea water due to flux adjustment A positive flux adjustment is downward i.e. added to the ocean. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2023-10-16
CFV16A14 heat flux into sea water due to freezing of frazil ice In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Frazil" consists of needle like crystals of ice, typically between three and four millimeters in diameter, which form as sea water begins to freeze. Salt is expelled during the freezing process and frazil ice consists of nearly pure fresh water. 2010-10-11
CF12N206 heat flux into sea water due to iceberg thermodynamics In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. " Iceberg thermodynamics" refers to the addition or subtraction of mass due to surface and basal fluxes, i.e., due to melting, sublimation and fusion. 2009-07-06
CFV10N13 heat flux into sea water due to newtonian relaxation The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The heat_ flux_ into_ sea_ water_ due_ to_ newtonian_ relaxation is the heat flux resulting from the Newtonian relaxation of the sea surface temperature. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-10-21
CF12N207 heat flux into sea water due to sea ice thermodynamics In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice thermodynamics" refers to the addition or subtraction of mass due to surface and basal fluxes, i.e., due to melting, sublimation and fusion. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CF12N208 heat flux into sea water due to snow thermodynamics In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Snow thermodynamics" refers to the addition or subtraction of mass due to surface and basal fluxes, i.e., due to melting, sublimation and fusion. 2009-07-06
RQP10X4S heat index of air temperature Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The quantity with standard name heat_ index_ of_ air_ temperature is the perceived air temperature when relative humidity is taken into consideration (which makes it feel hotter than the actual air temperature). Heat index is only defined when the ambient air temperature is at or above 299.817 K. References: https://www.weather.gov/safety/heat-index; WMO codes registry entry http://codes.wmo.int/grib2/codeflag/4.2/_ 0-0-12. 2020-09-14
CFSN0638 height Height is the vertical distance above the surface. 2006-09-26
L3JS2L1M height above geopotential datum "Height_ above_ X" means the vertical distance above the named surface X. The "geopotential datum" is any estimated surface of constant geopotential used as a datum i.e. a reference level; for the geoid as a datum, specific standard names are available. To specify which geoid or geopotential datum is being used as a reference level, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2017-07-24
TRTUVQF8 height above geopotential datum at top of atmosphere model "Height_ above_ X" means the vertical distance above the named surface X. The "geopotential datum" is any estimated surface of constant geopotential used as a datum i.e. a reference level; for the geoid as a datum, specific standard names are available. To specify which geoid or geopotential datum is being used as a reference level, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. "Top of atmosphere model" means the upper boundary of the top layer of an atmosphere model. 2017-07-24
8BFOBHU2 height above mean sea level "Height_ above_ X" means the vertical distance above the named surface X. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. 2017-07-24
CFV10N14 height above reference ellipsoid "Height_ above_ X" means the vertical distance above the named surface X. A reference ellipsoid is a mathematical figure that approximates the geoid. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. The ellipsoid is an approximation because the geoid is an irregular shape. A number of reference ellipsoids are defined for use in the field of geodesy. To specify which reference ellipsoid is being used, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2017-07-24
CFSN0639 height above sea floor 2006-09-26
CFSN0640 height at cloud top cloud_ top refers to the top of the highest cloud. Height is the vertical distance above the surface. 2006-09-26
1FM8RTOH height at effective cloud top defined by infrared radiation The "effective cloud top defined by infrared radiation" is (approximately) the geometric height above the surface that is one optical depth at infrared wavelengths (in the region of 11 micrometers) below the cloud top that would be detected by visible and lidar techniques. Reference: Minnis, P. et al 2011 CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data x2014; Part I: Algorithms IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4374-4400. doi: http://dx.doi.org/10.1109/TGRS.2011.2144601. 2016-05-17
CFSN0641 heterotrophic respiration carbon flux DEPRECATED 'Respiration carbon' refers to the rate at which biomass is respired expressed as the mass of carbon which it contains. Heterotrophic respiration is respiration by heterotrophs ('consumers'), which are organisms (including animals and decomposers) that consume other organisms or dead organic material, rather than synthesising organic material from inorganic precursors using energy from the environment (especially sunlight) as autotrophs ('producers') do. Heterotrophic respiration goes on both above and within the soil. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2018-04-16
ADHIFDDC high type cloud area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. High type clouds are: Cirrus, Cirrostratus, Cirrocumulus. X_ type_ cloud_ area_ fraction is generally determined on the basis of cloud type, though Numerical Weather Prediction (NWP) models often calculate them based on the vertical location of the cloud. For the cloud area fraction between specified levels in the atmosphere, standard names including "cloud_ area_ fraction_ in_ atmosphere_ layer" are used. Standard names referring only to "cloud_ area_ fraction" should be used for quantities for the whole atmosphere column. Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
RSLGQH3R histogram of backscattering ratio in air over height above reference ellipsoid Scattering of radiation is its deflection from its incident path without loss of energy. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeding pi/2 radians. A scattering_ angle should not be specified with this quantity. "Backscattering ratio" is the ratio of the quantity with standard name volume_ attenuated_ backwards_ scattering_ function_ in_ air to the quantity with standard name volume_ attenuated_ backwards_ scattering_ function_ in_ air_ assuming_ no_ aerosol_ or_ cloud. "histogram_ of_ X[_ over_ Z]" means histogram (i.e. number of counts for each range of X) of variations (over Z) of X. The data variable should have an axis for X. A reference ellipsoid is a regular mathematical figure that approximates the irregular shape of the geoid. A number of reference ellipsoids are defined for use in the field of geodesy. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. To specify which reference ellipsoid is being used, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2019-05-14
CF12N209 histogram of backscattering ratio over height above reference ellipsoid DEPRECATED Scattering of radiation is its deflection from its incident path without loss of energy. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeding pi/2 radians. A scattering_ angle should not be specified with this quantity. "Backscattering ratio" is the ratio of the quantity with standard name volume_ attenuated_ backwards_ scattering_ function_ in_ air to the quantity with standard name volume_ attenuated_ backwards_ scattering_ function_ in_ air_ assuming_ no_ aerosol_ or_ cloud. "histogram_ of_ X[_ over_ Z]" means histogram (i.e. number of counts for each range of X) of variations (over Z) of X. The data variable should have an axis for X. A reference ellipsoid is a regular mathematical figure that approximates the irregular shape of the geoid. A number of reference ellipsoids are defined for use in the field of geodesy. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. To specify which reference ellipsoid is being used, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2019-05-14
CF12N210 histogram of equivalent reflectivity factor over height above reference ellipsoid "Equivalent reflectivity factor" is the radar reflectivity factor that is calculated from the measured radar return power assuming the target is composed of liquid water droplets whose diameter is less than one tenth of the radar wavelength, i.e., treating the droplets as Rayleigh scatterers. The actual radar reflectivity factor would depend on the size distribution and composition of the particles within the target volume and these are often unknown. "histogram_ of_ X[_ over_ Z]" means histogram (i.e. number of counts for each range of X) of variations (over Z) of X. The data variable should have an axis for X. A reference ellipsoid is a regular mathematical figure that approximates the irregular shape of the geoid. A number of reference ellipsoids are defined for use in the field of geodesy. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. To specify which reference ellipsoid is being used, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2017-07-24
CFSN0605 horizontal atmosphere dry energy transport Dry energy is the sum of dry static energy and kinetic energy. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0606 horizontal dry energy transport in atmosphere layer 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Dry energy is the sum of dry static energy and kinetic energy. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0607 humidity mixing ratio Humidity mixing ratio of a parcel of moist air is the ratio of the mass of water vapor to the mass of dry air. 2006-09-26
1C3HWKK2 ice cloud area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The cloud area fraction is for the whole atmosphere column, as seen from the surface or the top of the atmosphere. For the cloud area fraction between specified levels in the atmosphere, standard names including "cloud_ area_ fraction_ in_ atmosphere_ layer" are used. Standard names also exist for high, medium and low cloud types. Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
95JF7EN0 ice cloud area fraction in atmosphere layer "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be "model_ level_ number", but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Standard names also exist for high, medium and low cloud types. Standard names referring only to "cloud_ area_ fraction" should be used for quantities for the whole atmosphere column. Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
JXJNSNLH ice volume in frozen ground in excess of pore volume in unfrozen ground expressed as fraction of frozen ground volume ice_ volume_ in_ frozen_ ground_ in_ excess_ of_ pore_ volume_ in_ unfrozen_ ground_ expressed_ as_ fraction_ of_ frozen_ ground_ volume represents the fractional amount of "excess ice" in frozen ground. Excess ice is the volume of ice in the ground which exceeds the total pore volume that the ground would have under natural unfrozen conditions. Due to the presence of ground ice, the total water content of a frozen soil may exceed that corresponding to its normally consolidated state when unfrozen. As a result, upon thawing, a soil containing excess ice will settle under its own weight until it attains its consolidated state. Reference: van Everdingen, R. O. editor 1998: Multi-language glossary of permafrost and related ground ice terms. International Permafrost Association. 2021-09-20
M9GLYAEB incoming water volume transport along river channel "Water" means water in all phases. "River" refers to water in the fluvial system (stream and floodplain). 2018-07-10
I9GLGOPV indicative error from multibeam acoustic doppler velocity profiler in sea water Sea water velocity is a vector quantity that is the speed at which water travels in a specified direction. The "indicative error" is an estimate of the quality of a sea water velocity profile measured using an ADCP (acoustic doppler current profiler). It is determined by the difference between the vertical velocity calculated from two 3-beam solutions. The parameter is frequently referred to as the "error velocity". 2021-09-20
13VECVJM institution An auxiliary coordinate variable with a standard name of institution contains string values which specify where the original data, with which the coordinate variable is associated, were produced. The use of institution as the standard name for an auxiliary coordinate variable permits the aggregation of data from multiple institutions within a single data file. 2015-12-03
CFSN0608 integral of air temperature deficit wrt time DEPRECATED "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The air temperature deficit is the air temperature threshold minus the air temperature, where only positive values are included in the integral. Its integral with respect to time is often called after its units of "degree-days". The air_ temperature variable, which is the data variable of the integral should have a scalar coordinate variable or a size-one coordinate variable with the standard name of air_ temperature_ threshold, to indicate the threshold. 2017-11-28
CFSN0609 integral of air temperature excess wrt time DEPRECATED "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The air temperature excess is the air temperature minus the air temperature threshold, where only positive values are included in the integral. Its integral with respect to time is often called after its units of "degree-days". The air_ temperature variable, which is the data variable of the integral should have a scalar coordinate variable or a size-one coordinate variable with the standard name of air_ temperature_ threshold, to indicate the threshold. 2017-11-28
Y3YCVZ68 integral of product of eastward wind and specific humidity wrt height DEPRECATED The phrase "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". Height is the vertical distance above the surface. The phrase "product_ of_ X_ and_ Y" means X*Y. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity".) "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Specific humidity is the mass fraction of water vapor in (moist) air. 2017-11-28
FHL4XLAR integral of product of northward wind and specific humidity wrt height DEPRECATED The phrase "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". Height is the vertical distance above the surface. The phrase "product_ of_ X_ and_ Y" means X*Y. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity".) "Northward" indicates a vector component which is positive when directed northward (negative southward). Specific humidity is the mass fraction of water vapor in (moist) air. 2017-11-28
CFV16A15 integral of sea ice temperature wrt depth expressed as heat content DEPRECATED "Content" indicates a quantity per unit area. Depth is the vertical distance below the surface. The quantity with standard name integral_ of_ sea_ ice_ temperature_ wrt_ depth_ expressed_ as_ heat_ content is calculated relative to the heat content of ice at zero degrees Celsius, which is assumed to have a heat content of zero Joules. "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. 2017-11-28
CFV10N15 integral of sea water potential temperature wrt depth expressed as heat content DEPRECATED "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. "expressed_ as_ heat_ content" means that this quantity is calculated as the (assumed constant) specific heat capacity times density of sea water multiplied by the integral, over the specified layer of the ocean, of the sea water potential temperature wrt depth. 2017-11-28
7701XKQN integral of sea water practical salinity wrt depth DEPRECATED "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. Depth is the vertical distance below the surface. Practical Salinity, S_ P, is a determination of the salinity of sea water, based on its electrical conductance. The measured conductance, corrected for temperature and pressure, is compared to the conductance of a standard potassium chloride solution, producing a value on the Practical Salinity Scale of 1978 (PSS-78). This name should not be used to describe salinity observations made before 1978, or ones not based on conductance measurements. Conversion of Practical Salinity to other precisely defined salinity measures should use the appropriate formulas specified by TEOS-10. Other standard names for precisely defined salinity quantities are sea_ water_ absolute_ salinity (S_ A); sea_ water_ preformed_ salinity (S_ *), sea_ water_ reference_ salinity (S_ R); sea_ water_ cox_ salinity (S_ C), used for salinity observations between 1967 and 1977; and sea_ water_ knudsen_ salinity (S_ K), used for salinity observations between 1901 and 1966. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. Reference: www.teos-10.org; Lewis, 1980 doi:10.1109/JOE.1980.1145448. 2017-11-28
CFSN0610 integral of sea water temperature wrt depth in ocean layer DEPRECATED "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Depth is the vertical distance below the surface. Sea water temperature is the in situ temperature of the sea water. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2017-11-28
CFV11N6 integral of surface downward eastward stress wrt time DEPRECATED "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Downward" indicates a vector component which is positive when directed downward (negative upward). "Downward eastward" indicates the ZX component of a tensor. A downward eastward stress is a downward flux of eastward momentum, which accelerates the lower medium eastward and the upper medium westward. The surface downward stress is the windstress on the surface. 2017-11-28
CFSN0837 integral of surface downward latent heat flux wrt time DEPRECATED integral_ of_ Y_ wrt_ X means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). The surface latent heat flux is the exchange of heat between the surface and the air on account of evaporation (including sublimation). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
CFV11N7 integral of surface downward northward stress wrt time DEPRECATED "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Downward" indicates a vector component which is positive when directed downward (negative upward). "Downward northward" indicates the ZY component of a tensor. A downward northward stress is a downward flux of northward momentum, which accelerates the lower medium northward and the upper medium southward. The surface downward stress is the windstress on the surface. 2017-11-28
CFSN0831 integral of surface downward sensible heat flux wrt time DEPRECATED integral_ of_ Y_ wrt_ X means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). The surface sensible heat flux, also called "turbulent" heat flux, is the exchange of heat between the surface and the air by motion of air. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
CFV11N8 integral of surface downwelling longwave flux in air wrt time DEPRECATED "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "longwave" means longwave radiation. Downwelling radiation is radiation from above. It does not mean "net downward". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
CFV11N9 integral of surface downwelling shortwave flux in air wrt time DEPRECATED "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "shortwave" means shortwave radiation. Downwelling radiation is radiation from above. It does not mean "net downward". Surface downwelling shortwave is the sum of direct and diffuse solar radiation incident on the surface, and is sometimes called "global radiation". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
CFSN0832 integral of surface net downward longwave flux wrt time DEPRECATED integral_ of_ Y_ wrt_ X means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). "Longwave" means longwave radiation. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
CFSN0833 integral of surface net downward shortwave flux wrt time DEPRECATED integral_ of_ Y_ wrt_ X means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). "Shortwave" means shortwave radiation. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
CFSN0834 integral of toa net downward shortwave flux wrt time DEPRECATED integral_ of_ Y_ wrt_ X means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. "toa" means top of atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). "Shortwave" means shortwave radiation. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
CFSN0835 integral of toa outgoing longwave flux wrt time DEPRECATED integral_ of_ Y_ wrt_ X means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. "toa" means top of atmosphere. "Longwave" means longwave radiation. The TOA outgoing longwave flux is the upwelling thermal radiative flux, often called the "outgoing longwave radiation" or "OLR". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
CC0XMH3S integral wrt depth of product of conservative temperature and sea water density The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. The phrase "wrt" means "with respect to". Depth is the vertical distance below the surface. The phrase "product_ of_ X_ and_ Y" means X*Y. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. Sea water density is the in-situ density (not the potential density). For Boussinesq models, density is the constant Boussinesq reference density, a quantity which has the standard name reference_ sea_ water_ density_ for_ boussinesq_ approximation. 2019-10-14
ZA3PM5VL integral wrt depth of product of potential temperature and sea water density The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. The phrase "wrt" means "with respect to". The phrase "product_ of_ X_ and_ Y" means X*Y. Depth is the vertical distance below the surface. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. Sea water density is the in-situ density (not the potential density). For Boussinesq models, density is the constant Boussinesq reference density, a quantity which has the standard name reference_ sea_ water_ density_ for_ boussinesq_ approximation. 2019-10-14
186J0H6S integral wrt depth of product of salinity and sea water density The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. The phrase "wrt" means "with respect to". The phrase "product_ of_ X_ and_ Y" means X*Y. Depth is the vertical distance below the surface. Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. Practical salinity units are dimensionless. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. Sea water density is the in-situ density (not the potential density). For Boussinesq models, density is the constant Boussinesq reference density, a quantity which has the standard name reference_ sea_ water_ density_ for_ boussinesq_ approximation. 2019-10-14
R7ACY32S integral wrt depth of product of sea water density and conservative temperature DEPRECATED The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. The phrase "wrt" means "with respect to". Depth is the vertical distance below the surface. The phrase "product_ of_ X_ and_ Y" means X*Y. Sea water density is the in-situ density (not the potential density). For Boussinesq models, density is the constant Boussinesq reference density, a quantity which has the standard name reference_ sea_ water_ density_ for_ boussinesq_ approximation. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. 2019-10-14
P17PLD3O integral wrt depth of product of sea water density and potential temperature DEPRECATED The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. The phrase "wrt" means "with respect to". The phrase "product_ of_ X_ and_ Y" means X*Y. Depth is the vertical distance below the surface. Sea water density is the in-situ density (not the potential density). For Boussinesq models, density is the constant Boussinesq reference density, a quantity which has the standard name reference_ sea_ water_ density_ for_ boussinesq_ approximation. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. 2019-10-14
DVS70CTS integral wrt depth of product of sea water density and salinity DEPRECATED The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. The phrase "wrt" means "with respect to". The phrase "product_ of_ X_ and_ Y" means X*Y. Depth is the vertical distance below the surface. Sea water density is the in-situ density (not the potential density). For Boussinesq models, density is the constant Boussinesq reference density, a quantity which has the standard name reference_ sea_ water_ density_ for_ boussinesq_ approximation. Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. Practical salinity units are dimensionless. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2019-10-14
9CM634JC integral wrt depth of sea ice temperature expressed as heat content DEPRECATED The quantity with standard name integral_ wrt_ depth_ of_ sea_ ice_ temperature_ expressed_ as_ heat_ content is calculated relative to the heat content of ice at zero degrees Celsius, which is assumed to have a heat content of zero Joules. The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. "wrt" means with respect to. "Content" indicates a quantity per unit area. Depth is the vertical distance below the surface. 2018-07-03
VU17QYTV integral wrt depth of sea water potential temperature expressed as heat content DEPRECATED The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. "wrt" means with respect to. "expressed_ as_ heat_ content" means that this quantity is calculated as the (assumed constant) specific heat capacity times density of sea water multiplied by the integral, over the specified layer of the ocean, of the sea water potential temperature wrt depth. "Content" indicates a quantity per unit area. Depth is the vertical distance below the surface. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. 2018-07-03
3UYK3O8G integral wrt depth of sea water practical salinity The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. "wrt" means with respect to. Depth is the vertical distance below the surface. Practical Salinity, S_ P, is a determination of the salinity of sea water, based on its electrical conductance. The measured conductance, corrected for temperature and pressure, is compared to the conductance of a standard potassium chloride solution, producing a value on the Practical Salinity Scale of 1978 (PSS-78). This name should not be used to describe salinity observations made before 1978, or ones not based on conductance measurements. Conversion of Practical Salinity to other precisely defined salinity measures should use the appropriate formulas specified by TEOS-10. Other standard names for precisely defined salinity quantities are sea_ water_ absolute_ salinity (S_ A); sea_ water_ preformed_ salinity (S_ *), sea_ water_ reference_ salinity (S_ R); sea_ water_ cox_ salinity (S_ C), used for salinity observations between 1967 and 1977; and sea_ water_ knudsen_ salinity (S_ K), used for salinity observations between 1901 and 1966. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. Reference: www.teos-10.org; Lewis, 1980 doi:10.1109/JOE.1980.1145448. 2018-05-15
DHTXFX9K integral wrt depth of sea water temperature The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. "wrt" means with respect to. Depth is the vertical distance below the surface. Sea water temperature is the in situ temperature of the sea water. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2018-05-15
0C3XUKXM integral wrt depth of sea water temperature in ocean layer DEPRECATED The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Depth is the vertical distance below the surface. Sea water temperature is the in situ temperature of the sea water. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2018-05-15
CF14N4 integral wrt depth of tendency of sea water alkalinity expressed as mole equivalent The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. "wrt" means with respect to. Depth is the vertical distance below the surface."tendency_ of_ X" means derivative of X with respect to time. 'sea_ water_ alkalinity_ expressed_ as_ mole_ equivalent' is the total alkalinity equivalent concentration (including carbonate, nitrogen, silicate, and borate components). 2018-05-15
CF14N5 integral wrt depth of tendency of sea water alkalinity expressed as mole equivalent due to biological processes The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. "wrt" means with respect to. "tendency_ of_ X" means derivative of X with respect to time. Depth is the vertical distance below the surface. 'sea_ water_ alkalinity_ expressed_ as_ mole_ equivalent' is the total alkalinity equivalent concentration (including carbonate, nitrogen, silicate, and borate components). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-05-15
WRYHHEE2 integral wrt height of product of eastward wind and mass concentration of water vapor in air Eastward vertically-integrated moisture flux per unit length in latitude. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Height is the vertical distance above the surface. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). The phrase "product_ of_ X_ and_ Y" means X*Y. The abbreviation "wrt" means "with respect to". The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". 2024-01-18
FJH6BK34 integral wrt height of product of eastward wind and specific humidity The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. The phrase "wrt" means "with respect to". Height is the vertical distance above the surface. The phrase "product_ of_ X_ and_ Y" means X*Y. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity".) "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Specific humidity is the mass fraction of water vapor in (moist) air. 2018-05-29
6TC1SS83 integral wrt height of product of northward wind and mass concentration of water vapor in air Northward vertically-integrated moisture flux per unit length in longitude. "Northward" indicates a vector component which is positive when directed northward (negative southward). Height is the vertical distance above the surface. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). The phrase "product_ of_ X_ and_ Y" means X*Y. The abbreviation "wrt" means "with respect to". The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". 2024-01-18
NVYYJLNX integral wrt height of product of northward wind and specific humidity The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. To specify the limits of the integral the data variable should have an axis for X and associated coordinate bounds. If no axis for X is associated with the data variable, or no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is air the integral is assumed to be calculated over the full depth of the atmosphere. The phrase "wrt" means "with respect to". Height is the vertical distance above the surface. The phrase "product_ of_ X_ and_ Y" means X*Y. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity".) "Northward" indicates a vector component which is positive when directed northward (negative southward). Specific humidity is the mass fraction of water vapor in (moist) air. 2018-05-15
4GRPX3GS integral wrt time of air temperature deficit The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The air temperature deficit is the air temperature threshold minus the air temperature, where only positive values are included in the integral. Its integral with respect to time is often called after its units of "degree-days". The air_ temperature variable, which is the data variable of the integral should have a scalar coordinate variable or a size-one coordinate variable with the standard name of air_ temperature_ threshold, to indicate the threshold. 2017-11-28
D9NHJ9OK integral wrt time of air temperature excess The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The air temperature excess is the air temperature minus the air temperature threshold, where only positive values are included in the integral. Its integral with respect to time is often called after its units of "degree-days". The air_ temperature variable, which is the data variable of the integral should have a scalar coordinate variable or a size-one coordinate variable with the standard name of air_ temperature_ threshold, to indicate the threshold. 2017-11-28
6X89MC13 integral wrt time of mole stomatal uptake of ozone The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". The stomatal ozone uptake is the net amount of ozone transferred into the plant during the time period over which the integral is calculated. This parameter is often called the "phytotoxic ozone dose (POD)". The chemical formula for ozone is O3. The IUPAC name for ozone is trioxygen. 2018-05-15
YIZJ5GAI integral wrt time of radioactivity concentration in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. 2018-02-12
TFB6AVXJ integral wrt time of radioactivity concentration of 101Mo in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Mo" means the element "molybdenum" and "101Mo" is the isotope "molybdenum-101" with a half-life of 1.01e-02 days. 2018-02-12
0E1221YX integral wrt time of radioactivity concentration of 101Tc in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "101Tc" is the isotope "technetium-101" with a half-life of 9.86e-03 days. 2018-02-12
BMO7V8TT integral wrt time of radioactivity concentration of 102Mo in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Mo" means the element "molybdenum" and "102Mo" is the isotope "molybdenum-102" with a half-life of 7.71e-03 days. 2018-02-12
1ENAKTUH integral wrt time of radioactivity concentration of 102Tc in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "102Tc" is the isotope "technetium-102" with a half-life of 6.12e-05 days. 2018-02-12
51Z644TH integral wrt time of radioactivity concentration of 102mTc in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "102mTc" is the metastable state of the isotope "technetium-102" with a half-life of 2.98e-03 days. 2018-02-12
H61OIITB integral wrt time of radioactivity concentration of 103Ru in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ru" means the element "ruthenium" and "103Ru" is the isotope "ruthenium-103" with a half-life of 3.95e+01 days. 2018-02-12
R7W0A10C integral wrt time of radioactivity concentration of 103mRh in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "103mRh" is the metastable state of the isotope "rhodium-103" with a half-life of 3.89e-02 days. 2018-02-12
T7GM36YP integral wrt time of radioactivity concentration of 104Tc in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "104Tc" is the isotope "technetium-104" with a half-life of 1.25e-02 days. 2018-02-12
55RXNA7Z integral wrt time of radioactivity concentration of 105Rh in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "105Rh" is the isotope "rhodium-105" with a half-life of 1.48e+00 days. 2018-02-12
XSHIG1QQ integral wrt time of radioactivity concentration of 105Ru in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ru" means the element "ruthenium" and "105Ru" is the isotope "ruthenium-105" with a half-life of 1.85e-01 days. 2018-02-12
H5KAIUGO integral wrt time of radioactivity concentration of 105mRh in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "105mRh" is the metastable state of the isotope "rhodium-105" with a half-life of 4.41e-04 days. 2018-02-12
I6O66SF4 integral wrt time of radioactivity concentration of 106Rh in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "106Rh" is the isotope "rhodium-106" with a half-life of 3.46e-04 days. 2018-02-12
QB2VBNOJ integral wrt time of radioactivity concentration of 106Ru in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ru" means the element "ruthenium" and "106Ru" is the isotope "ruthenium-106" with a half-life of 3.66e+02 days. 2018-02-12
NIGPYD8H integral wrt time of radioactivity concentration of 106mRh in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "106mRh" is the metastable state of the isotope "rhodium-106" with a half-life of 9.09e-02 days. 2018-02-12
X5XPEZTT integral wrt time of radioactivity concentration of 107Pd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "107Pd" is the isotope "palladium-107" with a half-life of 2.37e+09 days. 2018-02-12
C78TD60O integral wrt time of radioactivity concentration of 107Rh in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "107Rh" is the isotope "rhodium-107" with a half-life of 1.51e-02 days. 2018-02-12
R8FRV98V integral wrt time of radioactivity concentration of 107mPd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "107mPd" is the metastable state of the isotope "palladium-107" with a half-life of 2.47e-04 days. 2018-02-12
5T1Z3024 integral wrt time of radioactivity concentration of 109Pd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "109Pd" is the isotope "palladium-109" with a half-life of 5.61e-01 days. 2018-02-12
T0Z8MHLZ integral wrt time of radioactivity concentration of 109mAg in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "109mAg" is the metastable state of the isotope "silver-109" with a half-life of 4.58e-04 days. 2018-02-12
WU8IXKJ1 integral wrt time of radioactivity concentration of 110mAg in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "110mAg" is the metastable state of the isotope "silver-110" with a half-life of 2.70e+02 days. 2018-02-12
O4YWRLA8 integral wrt time of radioactivity concentration of 111Ag in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "111Ag" is the isotope "silver-111" with a half-life of 7.50e+00 days. 2018-02-12
HBI07F8G integral wrt time of radioactivity concentration of 111Pd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "111Pd" is the isotope "palladium-111" with a half-life of 1.53e-02 days. 2018-02-12
H47DXYHD integral wrt time of radioactivity concentration of 111mAg in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "111mAg" is the metastable state of the isotope "silver-111" with a half-life of 8.56e-04 days. 2018-02-12
K5HW3D5O integral wrt time of radioactivity concentration of 111mCd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "111mCd" is the metastable state of the isotope "cadmium-111" with a half-life of 3.39e-02 days. 2018-02-12
47LFOCU8 integral wrt time of radioactivity concentration of 111mPd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "111mPd" is the metastable state of the isotope "palladium-111" with a half-life of 2.29e-01 days. 2018-02-12
3IQDIUED integral wrt time of radioactivity concentration of 112Ag in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "112Ag" is the isotope "silver-112" with a half-life of 1.30e-01 days. 2018-02-12
SICYJONT integral wrt time of radioactivity concentration of 112Pd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "112Pd" is the isotope "palladium-112" with a half-life of 8.37e-01 days. 2018-02-12
RIXPJTTB integral wrt time of radioactivity concentration of 113Ag in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "113Ag" is the isotope "silver-113" with a half-life of 2.21e-01 days. 2018-02-12
X0XMT58A integral wrt time of radioactivity concentration of 113Cd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "113Cd" is the isotope "cadmium-113" with a half-life of 3.29e+18 days. 2018-02-12
3CG1K40K integral wrt time of radioactivity concentration of 113mAg in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "113mAg" is the metastable state of the isotope "silver-113" with a half-life of 7.64e-04 days. 2018-02-12
PU6ZU018 integral wrt time of radioactivity concentration of 113mCd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "113mCd" is the metastable state of the isotope "cadmium-113" with a half-life of 5.31e+03 days. 2018-02-12
TBPPJDBF integral wrt time of radioactivity concentration of 113mIn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "113mIn" is the metastable state of the isotope "indium-113" with a half-life of 6.92e-02 days. 2018-02-12
EAINXD8V integral wrt time of radioactivity concentration of 115Ag in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "115Ag" is the isotope "silver-115" with a half-life of 1.46e-02 days. 2018-02-12
A1CFA6AM integral wrt time of radioactivity concentration of 115Cd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "115Cd" is the isotope "cadmium-115" with a half-life of 2.23e+00 days. 2018-02-12
LEAJSREU integral wrt time of radioactivity concentration of 115In in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "115In" is the isotope "indium-115" with a half-life of 1.86e+18 days. 2018-02-12
GXC1GXMS integral wrt time of radioactivity concentration of 115mAg in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "115mAg" is the metastable state of the isotope "silver-115" with a half-life of 1.97e-04 days. 2018-02-12
K62SYP02 integral wrt time of radioactivity concentration of 115mCd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "115mCd" is the metastable state of the isotope "cadmium-115" with a half-life of 4.46e+01 days. 2018-02-12
DJGXG6DJ integral wrt time of radioactivity concentration of 115mIn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "115mIn" is the metastable state of the isotope "indium-115" with a half-life of 1.87e-01 days. 2018-02-12
D4EEQADX integral wrt time of radioactivity concentration of 116In in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "116In" is the isotope "indium-116" with a half-life of 1.64e-04 days. 2018-02-12
36U8331M integral wrt time of radioactivity concentration of 116mIn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "116mIn" is the metastable state of the isotope "indium-116" with a half-life of 3.77e-02 days. 2018-02-12
X560041D integral wrt time of radioactivity concentration of 117Cd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "117Cd" is the isotope "cadmium-117" with a half-life of 1.08e-01 days. 2018-02-12
8VMYLXAQ integral wrt time of radioactivity concentration of 117In in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "117In" is the isotope "indium-117" with a half-life of 3.05e-02 days. 2018-02-12
K9366F8K integral wrt time of radioactivity concentration of 117mCd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "117mCd" is the metastable state of the isotope "cadmium-117" with a half-life of 1.42e-01 days. 2018-02-12
FY2GT83H integral wrt time of radioactivity concentration of 117mIn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "117mIn" is the metastable state of the isotope "indium-117" with a half-life of 8.08e-02 days. 2018-02-12
0BP70DME integral wrt time of radioactivity concentration of 117mSn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "117mSn" is the metastable state of the isotope "tin-117" with a half-life of 1.40e+01 days. 2018-02-12
LQKGA9S0 integral wrt time of radioactivity concentration of 118Cd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "118Cd" is the isotope "cadmium-118" with a half-life of 3.49e-02 days. 2018-02-12
ZWVSX469 integral wrt time of radioactivity concentration of 118In in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "118In" is the isotope "indium-118" with a half-life of 5.77e-05 days. 2018-02-12
025PDJLV integral wrt time of radioactivity concentration of 118mIn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "118mIn" is the metastable state of the isotope "indium-118" with a half-life of 3.05e-03 days. 2018-02-12
6ZNXOX7T integral wrt time of radioactivity concentration of 119In in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "119In" is the isotope "indium-119" with a half-life of 1.74e-03 days. 2018-02-12
ZKN4RHCA integral wrt time of radioactivity concentration of 119mIn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "119mIn" is the metastable state of the isotope "indium-119" with a half-life of 1.25e-02 days. 2018-02-12
DDSU17HS integral wrt time of radioactivity concentration of 119mSn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "119mSn" is the metastable state of the isotope "tin-119" with a half-life of 2.45e+02 days. 2018-02-12
PVSEF9E1 integral wrt time of radioactivity concentration of 11C in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "C" means the element "carbon" and "11C" is the isotope "carbon-11" with a half-life of 1.41e-02 days. 2018-02-12
NHT5ZZH7 integral wrt time of radioactivity concentration of 121Sn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "121Sn" is the isotope "tin-121" with a half-life of 1.12e+00 days. 2018-02-12
ED874343 integral wrt time of radioactivity concentration of 121mSn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "121mSn" is the metastable state of the isotope "tin-121" with a half-life of 1.82e+04 days. 2018-02-12
4FPTAI3D integral wrt time of radioactivity concentration of 123Sn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "123Sn" is the isotope "tin-123" with a half-life of 1.29e+02 days. 2018-02-12
26ESYQGH integral wrt time of radioactivity concentration of 123mSn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "123mSn" is the metastable state of the isotope "tin-123" with a half-life of 2.78e-02 days. 2018-02-12
P362NO69 integral wrt time of radioactivity concentration of 124Sb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "124Sb" is the isotope "antimony-124" with a half-life of 6.03e+01 days. 2018-02-12
0ORMRR14 integral wrt time of radioactivity concentration of 124mSb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "124mSb" is the metastable state of the isotope "antimony-124" with a half-life of 1.41e-02 days. 2018-02-12
DVVYBJYV integral wrt time of radioactivity concentration of 125Sb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "125Sb" is the isotope "antimony-125" with a half-life of 9.97e+02 days. 2018-02-12
C96ERRZ7 integral wrt time of radioactivity concentration of 125Sn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "125Sn" is the isotope "tin-125" with a half-life of 9.65e+00 days. 2018-02-12
CZAF2P9Q integral wrt time of radioactivity concentration of 125mTe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "125mTe" is the metastable state of the isotope "tellurium-125" with a half-life of 5.81e+01 days. 2018-02-12
PDEXJ4DS integral wrt time of radioactivity concentration of 126Sb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "126Sb" is the isotope "antimony-126" with a half-life of 1.24e+01 days. 2018-02-12
KAYPE48I integral wrt time of radioactivity concentration of 126Sn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "126Sn" is the isotope "tin-126" with a half-life of 3.65e+07 days. 2018-02-12
7ZG7BZZU integral wrt time of radioactivity concentration of 126mSb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "126mSb" is the metastable state of the isotope "antimony-126" with a half-life of 1.32e-02 days. 2018-02-12
CV4D75EH integral wrt time of radioactivity concentration of 127Sb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "127Sb" is the isotope "antimony-127" with a half-life of 3.80e+00 days. 2018-02-12
QX7NSKA4 integral wrt time of radioactivity concentration of 127Sn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "127Sn" is the isotope "tin-127" with a half-life of 8.84e-02 days. 2018-02-12
82BZYTVF integral wrt time of radioactivity concentration of 127Te in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "127Te" is the isotope "tellurium-127" with a half-life of 3.91e-01 days. 2018-02-12
LJHGFP95 integral wrt time of radioactivity concentration of 127mTe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "127mTe" is the metastable state of the isotope "tellurium-127" with a half-life of 1.09e+02 days. 2018-02-12
FCQ0LQYL integral wrt time of radioactivity concentration of 128Sb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "128Sb" is the isotope "antimony-128" with a half-life of 3.75e-01 days. 2018-02-12
JG2RKJSF integral wrt time of radioactivity concentration of 128Sn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "128Sn" is the isotope "tin-128" with a half-life of 4.09e-02 days. 2018-02-12
PVAWK2GL integral wrt time of radioactivity concentration of 128mSb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "128mSb" is the metastable state of the isotope "antimony-128" with a half-life of 7.23e-03 days. 2018-02-12
1P00IASX integral wrt time of radioactivity concentration of 129I in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "129I" is the isotope "iodine-129" with a half-life of 5.81e+09 days. 2018-02-12
GGAE37AK integral wrt time of radioactivity concentration of 129Sb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "129Sb" is the isotope "antimony-129" with a half-life of 1.81e-01 days. 2018-02-12
O2O8VP33 integral wrt time of radioactivity concentration of 129Te in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "129Te" is the isotope "tellurium-129" with a half-life of 4.86e-02 days. 2018-02-12
GK5V374A integral wrt time of radioactivity concentration of 129mTe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "129mTe" is the metastable state of the isotope "tellurium-129" with a half-life of 3.34e+01 days. 2018-02-12
P0WXJGVX integral wrt time of radioactivity concentration of 129mXe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "129mXe" is the metastable state of the isotope "xenon-129" with a half-life of 8.02e+00 days. 2018-02-12
ZFRDYEHQ integral wrt time of radioactivity concentration of 130I in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "130I" is the isotope "iodine-130" with a half-life of 5.18e-01 days. 2018-02-12
CCLBHMYW integral wrt time of radioactivity concentration of 130Sb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "130Sb" is the isotope "antimony-130" with a half-life of 2.57e-02 days. 2018-02-12
JQMDIS4L integral wrt time of radioactivity concentration of 130Sn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "130Sn" is the isotope "tin-130" with a half-life of 2.57e-03 days. 2018-02-12
Q8LDFSA6 integral wrt time of radioactivity concentration of 130mI in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "130mI" is the metastable state of the isotope "iodine-130" with a half-life of 6.17e-03 days. 2018-02-12
Y7DOPPZ1 integral wrt time of radioactivity concentration of 130mSb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "130mSb" is the metastable state of the isotope "antimony-130" with a half-life of 4.58e-03 days. 2018-02-12
P54AFUT9 integral wrt time of radioactivity concentration of 131I in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "131I" is the isotope "iodine-131" with a half-life of 8.07e+00 days. 2018-02-12
F68AND4N integral wrt time of radioactivity concentration of 131Sb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "131Sb" is the isotope "antimony-131" with a half-life of 1.60e-02 days. 2018-02-12
4TTNDXPX integral wrt time of radioactivity concentration of 131Te in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "131Te" is the isotope "tellurium-131" with a half-life of 1.74e-02 days. 2018-02-12
PL6PLX1R integral wrt time of radioactivity concentration of 131mTe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "131mTe" is the metastable state of the isotope "tellurium-131" with a half-life of 1.25e+00 days. 2018-02-12
UOPIGWI9 integral wrt time of radioactivity concentration of 131mXe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "131mXe" is the metastable state of the isotope "xenon-131" with a half-life of 1.18e+01 days. 2018-02-12
V0ZLCBTM integral wrt time of radioactivity concentration of 132I in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "132I" is the isotope "iodine-132" with a half-life of 9.60e-02 days. 2018-02-12
XVBKNRWW integral wrt time of radioactivity concentration of 132Te in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "132Te" is the isotope "tellurium-132" with a half-life of 3.25e+00 days. 2018-02-12
9AFQAHSV integral wrt time of radioactivity concentration of 133I in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "133I" is the isotope "iodine-133" with a half-life of 8.71e-01 days. 2018-02-12
8C7Q3XHM integral wrt time of radioactivity concentration of 133Te in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "133Te" is the isotope "tellurium-133" with a half-life of 8.68e-03 days. 2018-02-12
CWULQTMX integral wrt time of radioactivity concentration of 133Xe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "133Xe" is the isotope "xenon-133" with a half-life of 5.28e+00 days. 2018-02-12
TCQI81EF integral wrt time of radioactivity concentration of 133mI in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "133mI" is the metastable state of the isotope "iodine-133" with a half-life of 1.04e-04 days. 2018-02-12
4Z85F4H4 integral wrt time of radioactivity concentration of 133mTe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "133mTe" is the metastable state of the isotope "tellurium-133" with a half-life of 3.84e-02 days. 2018-02-12
PMCOWK9O integral wrt time of radioactivity concentration of 133mXe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "133mXe" is the metastable state of the isotope "xenon-133" with a half-life of 2.26e+00 days. 2018-02-12
ZFC3IB5W integral wrt time of radioactivity concentration of 134Cs in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "134Cs" is the isotope "cesium-134" with a half-life of 7.50e+02 days. 2018-02-12
Q6U0ADIH integral wrt time of radioactivity concentration of 134I in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "134I" is the isotope "iodine-134" with a half-life of 3.61e-02 days. 2018-02-12
S5CTJ86W integral wrt time of radioactivity concentration of 134Te in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "134Te" is the isotope "tellurium-134" with a half-life of 2.92e-02 days. 2018-02-12
PZ5O8HNT integral wrt time of radioactivity concentration of 134mCs in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "134mCs" is the metastable state of the isotope "cesium-134" with a half-life of 1.21e-01 days. 2018-02-12
1BN1CY2M integral wrt time of radioactivity concentration of 134mI in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "134mI" is the metastable state of the isotope "iodine-134" with a half-life of 2.50e-03 days. 2018-02-12
ZU8I1MQR integral wrt time of radioactivity concentration of 134mXe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "134mXe" is the metastable state of the isotope "xenon-134" with a half-life of 3.36e-06 days. 2018-02-12
B8VGLMWX integral wrt time of radioactivity concentration of 135Cs in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "135Cs" is the isotope "cesium-135" with a half-life of 8.39e+08 days. 2018-02-12
DLG3CCDY integral wrt time of radioactivity concentration of 135I in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "135I" is the isotope "iodine-135" with a half-life of 2.79e-01 days. 2018-02-12
EP6GHNR2 integral wrt time of radioactivity concentration of 135Xe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "135Xe" is the isotope "xenon-135" with a half-life of 3.82e-01 days. 2018-02-12
PC4XNJJX integral wrt time of radioactivity concentration of 135mBa in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ba" means the element "barium" and "135mBa" is the metastable state of the isotope "barium-135" with a half-life of 1.20e+00 days. 2018-02-12
4M2P1FWD integral wrt time of radioactivity concentration of 135mCs in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "135mCs" is the metastable state of the isotope "cesium-135" with a half-life of 3.68e-02 days. 2018-02-12
UKYYVWRH integral wrt time of radioactivity concentration of 135mXe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "135mXe" is the metastable state of the isotope "xenon-135" with a half-life of 1.08e-02 days. 2018-02-12
1ZPRR558 integral wrt time of radioactivity concentration of 136Cs in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "136Cs" is the isotope "cesium-136" with a half-life of 1.30e+01 days. 2018-02-12
QE4ZQEE7 integral wrt time of radioactivity concentration of 137Cs in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "137Cs" is the isotope "cesium-137" with a half-life of 1.10e+04 days. 2018-02-12
1M87330L integral wrt time of radioactivity concentration of 137Xe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "137Xe" is the isotope "xenon-137" with a half-life of 2.71e-03 days. 2018-02-12
SHKUEXBI integral wrt time of radioactivity concentration of 137mBa in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ba" means the element "barium" and "137mBa" is the metastable state of the isotope "barium-137" with a half-life of 1.77e-03 days. 2018-02-12
1EO9F4GY integral wrt time of radioactivity concentration of 138Cs in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "138Cs" is the isotope "cesium-138" with a half-life of 2.23e-02 days. 2018-02-12
7OMZPTN9 integral wrt time of radioactivity concentration of 138Xe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "138Xe" is the isotope "xenon-138" with a half-life of 9.84e-03 days. 2018-02-12
4FVAJL2E integral wrt time of radioactivity concentration of 139Ba in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ba" means the element "barium" and "139Ba" is the isotope "barium-139" with a half-life of 5.77e-02 days. 2018-02-12
1QGXY8WK integral wrt time of radioactivity concentration of 13N in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "N" means the element "nitrogen" and "13N" is the isotope "nitrogen-13" with a half-life of 6.92e-03 days. 2018-02-12
A8LKMXA5 integral wrt time of radioactivity concentration of 140Ba in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ba" means the element "barium" and "140Ba" is the isotope "barium-140" with a half-life of 1.28e+01 days. 2018-02-12
OMVZHBTM integral wrt time of radioactivity concentration of 140La in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "La" means the element "lanthanum" and "140La" is the isotope "lanthanum-140" with a half-life of 1.76e+00 days. 2018-02-12
O4IAO8KN integral wrt time of radioactivity concentration of 141Ce in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ce" means the element "cerium" and "141Ce" is the isotope "cerium-141" with a half-life of 3.30e+01 days. 2018-02-12
Z1933MWF integral wrt time of radioactivity concentration of 141La in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "La" means the element "lanthanum" and "141La" is the isotope "lanthanum-141" with a half-life of 1.61e-01 days. 2018-02-12
MXW76TGX integral wrt time of radioactivity concentration of 142Ce in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ce" means the element "cerium" and "142Ce" is the isotope "cerium-142" with a half-life of 1.82e+19 days. 2018-02-12
FI29TNKJ integral wrt time of radioactivity concentration of 142La in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "La" means the element "lanthanum" and "142La" is the isotope "lanthanum-142" with a half-life of 6.42e-02 days. 2018-02-12
N0FD2S9K integral wrt time of radioactivity concentration of 142Pr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "142Pr" is the isotope "praseodymium-142" with a half-life of 7.94e-01 days. 2018-02-12
AUZF4N4K integral wrt time of radioactivity concentration of 142mPr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "142mPr" is the metastable state of the isotope "praseodymium-142" with a half-life of 1.01e-02 days. 2018-02-12
ZAQMIZA3 integral wrt time of radioactivity concentration of 143Ce in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ce" means the element "cerium" and "143Ce" is the isotope "cerium-143" with a half-life of 1.37e+00 days. 2018-02-12
A79IT96X integral wrt time of radioactivity concentration of 143La in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "La" means the element "lanthanum" and "143La" is the isotope "lanthanum-143" with a half-life of 9.72e-03 days. 2018-02-12
0XLTEMYU integral wrt time of radioactivity concentration of 143Pr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "143Pr" is the isotope "praseodymium-143" with a half-life of 1.36e+01 days. 2018-02-12
0J8H8IGA integral wrt time of radioactivity concentration of 144Ce in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ce" means the element "cerium" and "144Ce" is the isotope "cerium-144" with a half-life of 2.84e+02 days. 2018-02-12
F9Q7T7J3 integral wrt time of radioactivity concentration of 144Nd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nd" means the element "neodymium" and "144Nd" is the isotope "neodymium-144" with a half-life of 7.64e+17 days. 2018-02-12
JECE7X85 integral wrt time of radioactivity concentration of 144Pr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "144Pr" is the isotope "praseodymium-144" with a half-life of 1.20e-02 days. 2018-02-12
VCC2L73C integral wrt time of radioactivity concentration of 144mPr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "144mPr" is the metastable state of the isotope "praseodymium-144" with a half-life of 4.98e-03 days. 2018-02-12
EATPEYKA integral wrt time of radioactivity concentration of 145Pr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "145Pr" is the isotope "praseodymium-145" with a half-life of 2.49e-01 days. 2018-02-12
TN13QL0G integral wrt time of radioactivity concentration of 146Ce in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ce" means the element "cerium" and "146Ce" is the isotope "cerium-146" with a half-life of 9.86e-03 days. 2018-02-12
Z04HLSGZ integral wrt time of radioactivity concentration of 146Pr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "146Pr" is the isotope "praseodymium-146" with a half-life of 1.68e-02 days. 2018-02-12
63TOGZFP integral wrt time of radioactivity concentration of 147Nd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nd" means the element "neodymium" and "147Nd" is the isotope "neodymium-147" with a half-life of 1.10e+01 days. 2018-02-12
S0TEUU6T integral wrt time of radioactivity concentration of 147Pm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "147Pm" is the isotope "promethium-147" with a half-life of 9.57e+02 days. 2018-02-12
RBA7A4I0 integral wrt time of radioactivity concentration of 147Pr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "147Pr" is the isotope "praseodymium-147" with a half-life of 8.33e-03 days. 2018-02-12
YPS6S4MI integral wrt time of radioactivity concentration of 147Sm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "147Sm" is the isotope "samarium-147" with a half-life of 3.91e+13 days. 2018-02-12
09VD5LSX integral wrt time of radioactivity concentration of 148Pm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "148Pm" is the isotope "promethium-148" with a half-life of 5.38e+00 days. 2018-02-12
FZF44HEX integral wrt time of radioactivity concentration of 148Sm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "148Sm" is the isotope "samarium-148" with a half-life of 2.92e+18 days. 2018-02-12
7GSG7WZD integral wrt time of radioactivity concentration of 148mPm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "148mPm" is the metastable state of the isotope "promethium-148" with a half-life of 4.14e+01 days. 2018-02-12
QNG8SEAX integral wrt time of radioactivity concentration of 149Nd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nd" means the element "neodymium" and "149Nd" is the isotope "neodymium-149" with a half-life of 7.23e-02 days. 2018-02-12
DSWNWQQ9 integral wrt time of radioactivity concentration of 149Pm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "149Pm" is the isotope "promethium-149" with a half-life of 2.21e+00 days. 2018-02-12
A4C0VPNY integral wrt time of radioactivity concentration of 149Sm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "149Sm" is the isotope "samarium-149" with a half-life of 3.65e+18 days. 2018-02-12
J6Y3S8KW integral wrt time of radioactivity concentration of 150Pm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "150Pm" is the isotope "promethium-150" with a half-life of 1.12e-01 days. 2018-02-12
JTRYEUMI integral wrt time of radioactivity concentration of 151Nd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nd" means the element "neodymium" and "151Nd" is the isotope "neodymium-151" with a half-life of 8.61e-03 days. 2018-02-12
OC1O0Z9C integral wrt time of radioactivity concentration of 151Pm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "151Pm" is the isotope "promethium-151" with a half-life of 1.18e+00 days. 2018-02-12
DZCNT04V integral wrt time of radioactivity concentration of 151Sm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "151Sm" is the isotope "samarium-151" with a half-life of 3.40e+04 days. 2018-02-12
1P8I1QWY integral wrt time of radioactivity concentration of 152Nd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nd" means the element "neodymium" and "152Nd" is the isotope "neodymium-152" with a half-life of 7.94e-03 days. 2018-02-12
P8NN11QH integral wrt time of radioactivity concentration of 152Pm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "152Pm" is the isotope "promethium-152" with a half-life of 2.84e-03 days. 2018-02-12
TPA9RQPX integral wrt time of radioactivity concentration of 152mPm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "152mPm" is the metastable state of the isotope "promethium-152" with a half-life of 1.25e-02 days. 2018-02-12
VX43SDBZ integral wrt time of radioactivity concentration of 153Sm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "153Sm" is the isotope "samarium-153" with a half-life of 1.94e+00 days. 2018-02-12
YHDOJDIK integral wrt time of radioactivity concentration of 154Eu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "154Eu" is the isotope "europium-154" with a half-life of 3.13e+03 days. 2018-02-12
VR3TL988 integral wrt time of radioactivity concentration of 155Eu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "155Eu" is the isotope "europium-155" with a half-life of 1.75e+03 days. 2018-02-12
DUS3PF12 integral wrt time of radioactivity concentration of 155Sm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "155Sm" is the isotope "samarium-155" with a half-life of 1.54e-02 days. 2018-02-12
MNXYHHST integral wrt time of radioactivity concentration of 156Eu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "156Eu" is the isotope "europium-156" with a half-life of 1.52e+01 days. 2018-02-12
DWO1P4PB integral wrt time of radioactivity concentration of 156Sm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "156Sm" is the isotope "samarium-156" with a half-life of 3.91e-01 days. 2018-02-12
2H9JEM9E integral wrt time of radioactivity concentration of 157Eu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "157Eu" is the isotope "europium-157" with a half-life of 6.32e-01 days. 2018-02-12
EHUX6AO1 integral wrt time of radioactivity concentration of 158Eu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "158Eu" is the isotope "europium-158" with a half-life of 3.18e-02 days. 2018-02-12
F7ULFK7I integral wrt time of radioactivity concentration of 159Eu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "159Eu" is the isotope "europium-159" with a half-life of 1.26e-02 days. 2018-02-12
DA1DP8M9 integral wrt time of radioactivity concentration of 159Gd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Gd" means the element "gadolinium" and "159Gd" is the isotope "gadolinium-159" with a half-life of 7.71e-01 days. 2018-02-12
2L1EBXZN integral wrt time of radioactivity concentration of 15O in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "O" means the element "oxygen" and "15O" is the isotope "oxygen-15" with a half-life of 1.41e-03 days. 2018-02-12
K1DI9NV2 integral wrt time of radioactivity concentration of 160Tb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tb" means the element "terbium" and "160Tb" is the isotope "terbium-160" with a half-life of 7.23e+01 days. 2018-02-12
J44IKZOI integral wrt time of radioactivity concentration of 161Tb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tb" means the element "terbium" and "161Tb" is the isotope "terbium-161" with a half-life of 6.92e+00 days. 2018-02-12
0U71GV1I integral wrt time of radioactivity concentration of 162Gd in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Gd" means the element "gadolinium" and "162Gd" is the isotope "gadolinium-162" with a half-life of 6.92e-03 days. 2018-02-12
EQS2CFVG integral wrt time of radioactivity concentration of 162Tb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tb" means the element "terbium" and "162Tb" is the isotope "terbium-162" with a half-life of 5.18e-03 days. 2018-02-12
XP5GWST9 integral wrt time of radioactivity concentration of 162mTb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tb" means the element "terbium" and "162mTb" is the metastable state of the isotope "terbium-162" with a half-life of 9.30e-02 days. 2018-02-12
L4D9E8Y7 integral wrt time of radioactivity concentration of 163Tb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tb" means the element "terbium" and "163Tb" is the isotope "terbium-163" with a half-life of 1.36e-02 days. 2018-02-12
D4JW3DUD integral wrt time of radioactivity concentration of 165Dy in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Dy" means the element "dysprosium" and "165Dy" is the isotope "dysprosium-165" with a half-life of 9.80e-02 days. 2018-02-12
3ZUC2V4H integral wrt time of radioactivity concentration of 18F in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "F" means the element "fluorine" and "18F" is the isotope "fluorine-18" with a half-life of 6.98e-02 days. 2018-02-12
VU8G3AZ5 integral wrt time of radioactivity concentration of 206Hg in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Hg" means the element "mercury" and "206Hg" is the isotope "mercury-206" with a half-life of 5.57e-03 days. 2018-02-12
8FOA3TWE integral wrt time of radioactivity concentration of 206Tl in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tl" means the element "thallium" and "206Tl" is the isotope "thallium-206" with a half-life of 2.91e-03 days. 2018-02-12
Z20A0SWY integral wrt time of radioactivity concentration of 207Tl in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tl" means the element "thallium" and "207Tl" is the isotope "thallium-207" with a half-life of 3.33e-03 days. 2018-02-12
C20KFP4X integral wrt time of radioactivity concentration of 207mPb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "207mPb" is the metastable state of the isotope "lead-207" with a half-life of 9.26e-06 days. 2018-02-12
G5WD3VPA integral wrt time of radioactivity concentration of 208Tl in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tl" means the element "thallium" and "208Tl" is the isotope "thallium-208" with a half-life of 2.15e-03 days. 2018-02-12
WKTGC2TB integral wrt time of radioactivity concentration of 209Bi in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "209Bi" is the isotope "bismuth-209" with a half-life of 7.29e+20 days. 2018-02-12
ZKPDM56P integral wrt time of radioactivity concentration of 209Pb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "209Pb" is the isotope "lead-209" with a half-life of 1.38e-01 days. 2018-02-12
QTKREDGZ integral wrt time of radioactivity concentration of 209Tl in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tl" means the element "thallium" and "209Tl" is the isotope "thallium-209" with a half-life of 1.53e-03 days. 2018-02-12
Y6UY9WZV integral wrt time of radioactivity concentration of 210Bi in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "210Bi" is the isotope "bismuth-210" with a half-life of 5.01e+00 days. 2018-02-12
JCW6XYG6 integral wrt time of radioactivity concentration of 210Pb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "210Pb" is the isotope "lead-210" with a half-life of 7.64e+03 days. 2018-02-12
N280UWLF integral wrt time of radioactivity concentration of 210Po in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "210Po" is the isotope "polonium-210" with a half-life of 1.38e+02 days. 2018-02-12
LNFORDDI integral wrt time of radioactivity concentration of 210Tl in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tl" means the element "thallium" and "210Tl" is the isotope "thallium-210" with a half-life of 9.02e-04 days. 2018-02-12
4SNPG00D integral wrt time of radioactivity concentration of 211Bi in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "211Bi" is the isotope "bismuth-211" with a half-life of 1.49e-03 days. 2018-02-12
6JUAY160 integral wrt time of radioactivity concentration of 211Pb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "211Pb" is the isotope "lead-211" with a half-life of 2.51e-02 days. 2018-02-12
6BKYBO71 integral wrt time of radioactivity concentration of 211Po in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "211Po" is the isotope "polonium-211" with a half-life of 6.03e-06 days. 2018-02-12
46FK28K9 integral wrt time of radioactivity concentration of 212Bi in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "212Bi" is the isotope "bismuth-212" with a half-life of 4.20e-02 days. 2018-02-12
X5RA4DF9 integral wrt time of radioactivity concentration of 212Pb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "212Pb" is the isotope "lead-212" with a half-life of 4.43e-01 days. 2018-02-12
QY9ZEIW4 integral wrt time of radioactivity concentration of 212Po in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "212Po" is the isotope "polonium-212" with a half-life of 3.52e-12 days. 2018-02-12
7BVOX70F integral wrt time of radioactivity concentration of 213Bi in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "213Bi" is the isotope "bismuth-213" with a half-life of 3.26e-02 days. 2018-02-12
KG7R5TBS integral wrt time of radioactivity concentration of 213Pb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "213Pb" is the isotope "lead-213" with a half-life of 6.92e-03 days. 2018-02-12
FTKDXNZ5 integral wrt time of radioactivity concentration of 213Po in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "213Po" is the isotope "polonium-213" with a half-life of 4.86e-11 days. 2018-02-12
83YYE9EG integral wrt time of radioactivity concentration of 214Bi in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "214Bi" is the isotope "bismuth-214" with a half-life of 1.37e-02 days. 2018-02-12
ZBO182MC integral wrt time of radioactivity concentration of 214Pb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "214Pb" is the isotope "lead-214" with a half-life of 1.86e-02 days. 2018-02-12
CJAQQRRB integral wrt time of radioactivity concentration of 214Po in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "214Po" is the isotope "polonium-214" with a half-life of 1.90e-09 days. 2018-02-12
U75LI0LY integral wrt time of radioactivity concentration of 215At in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "At" means the element "astatine" and "215At" is the isotope "astatine-215" with a half-life of 1.16e-09 days. 2018-02-12
EZXCIVK0 integral wrt time of radioactivity concentration of 215Bi in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "215Bi" is the isotope "bismuth-215" with a half-life of 4.86e-03 days. 2018-02-12
H6B9ORFF integral wrt time of radioactivity concentration of 215Po in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "215Po" is the isotope "polonium-215" with a half-life of 2.06e-08 days. 2018-02-12
0RBMQLPZ integral wrt time of radioactivity concentration of 216At in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "At" means the element "astatine" and "216At" is the isotope "astatine-216" with a half-life of 3.47e-09 days. 2018-02-12
JKJJNHYA integral wrt time of radioactivity concentration of 216Po in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "216Po" is the isotope "polonium-216" with a half-life of 1.74e-06 days. 2018-02-12
EZ7CFCXO integral wrt time of radioactivity concentration of 217At in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "At" means the element "astatine" and "217At" is the isotope "astatine-217" with a half-life of 3.70e-07 days. 2018-02-12
C9HSZHU1 integral wrt time of radioactivity concentration of 217Po in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "217Po" is the isotope "polonium-217" with a half-life of 1.16e-04 days. 2018-02-12
U0DW8IA6 integral wrt time of radioactivity concentration of 218At in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "At" means the element "astatine" and "218At" is the isotope "astatine-218" with a half-life of 2.31e-05 days. 2018-02-12
JI35MOPX integral wrt time of radioactivity concentration of 218Po in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "218Po" is the isotope "polonium-218" with a half-life of 2.12e-03 days. 2018-02-12
20AYKMB8 integral wrt time of radioactivity concentration of 218Rn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "218Rn" is the isotope "radon-218" with a half-life of 4.05e-07 days. 2018-02-12
M9VDD0YS integral wrt time of radioactivity concentration of 219At in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "At" means the element "astatine" and "219At" is the isotope "astatine-219" with a half-life of 6.27e-04 days. 2018-02-12
HMT1V0J0 integral wrt time of radioactivity concentration of 219Rn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "219Rn" is the isotope "radon-219" with a half-life of 4.64e-05 days. 2018-02-12
GR80MXH5 integral wrt time of radioactivity concentration of 220Rn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "220Rn" is the isotope "radon-220" with a half-life of 6.37e-04 days. 2018-02-12
J9CKX9I1 integral wrt time of radioactivity concentration of 221Fr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Fr" means the element "francium" and "221Fr" is the isotope "francium-221" with a half-life of 3.33e-03 days. 2018-02-12
UW6JAJFJ integral wrt time of radioactivity concentration of 221Rn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "221Rn" is the isotope "radon-221" with a half-life of 1.74e-02 days. 2018-02-12
HUU4N8QB integral wrt time of radioactivity concentration of 222Fr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Fr" means the element "francium" and "222Fr" is the isotope "francium-222" with a half-life of 1.03e-02 days. 2018-02-12
K84MJZZC integral wrt time of radioactivity concentration of 222Ra in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "222Ra" is the isotope "radium-222" with a half-life of 4.41e-04 days. 2018-02-12
Z5FQITOY integral wrt time of radioactivity concentration of 222Rn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "222Rn" is the isotope "radon-222" with a half-life of 3.82e+00 days. 2018-02-12
DEDVEEKA integral wrt time of radioactivity concentration of 223Fr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Fr" means the element "francium" and "223Fr" is the isotope "francium-223" with a half-life of 1.53e-02 days. 2018-02-12
ZIQZOOYM integral wrt time of radioactivity concentration of 223Ra in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "223Ra" is the isotope "radium-223" with a half-life of 1.14e+01 days. 2018-02-12
2WTY2PMW integral wrt time of radioactivity concentration of 223Rn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "223Rn" is the isotope "radon-223" with a half-life of 2.98e-02 days. 2018-02-12
NAWZYUBK integral wrt time of radioactivity concentration of 224Ra in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "224Ra" is the isotope "radium-224" with a half-life of 3.65e+00 days. 2018-02-12
RYSMRZXP integral wrt time of radioactivity concentration of 225Ac in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ac" means the element "actinium" and "225Ac" is the isotope "actinium-225" with a half-life of 1.00e+01 days. 2018-02-12
DY6M8GPW integral wrt time of radioactivity concentration of 225Ra in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "225Ra" is the isotope "radium-225" with a half-life of 1.48e+01 days. 2018-02-12
MRBJ6M3B integral wrt time of radioactivity concentration of 226Ac in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ac" means the element "actinium" and "226Ac" is the isotope "actinium-226" with a half-life of 1.21e+00 days. 2018-02-12
AFFD4YGP integral wrt time of radioactivity concentration of 226Ra in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "226Ra" is the isotope "radium-226" with a half-life of 5.86e+05 days. 2018-02-12
IGGO5AZ8 integral wrt time of radioactivity concentration of 226Th in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "226Th" is the isotope "thorium-226" with a half-life of 2.15e-02 days. 2018-02-12
O34FSUGJ integral wrt time of radioactivity concentration of 227Ac in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ac" means the element "actinium" and "227Ac" is the isotope "actinium-227" with a half-life of 7.87e+03 days. 2018-02-12
KFEU735F integral wrt time of radioactivity concentration of 227Ra in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "227Ra" is the isotope "radium-227" with a half-life of 2.87e-02 days. 2018-02-12
85VJ24XI integral wrt time of radioactivity concentration of 227Th in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "227Th" is the isotope "thorium-227" with a half-life of 1.82e+01 days. 2018-02-12
7IQEG8JD integral wrt time of radioactivity concentration of 228Ac in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ac" means the element "actinium" and "228Ac" is the isotope "actinium-228" with a half-life of 2.55e-01 days. 2018-02-12
QMMNQGMD integral wrt time of radioactivity concentration of 228Ra in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "228Ra" is the isotope "radium-228" with a half-life of 2.45e+03 days. 2018-02-12
HSAJ5271 integral wrt time of radioactivity concentration of 228Th in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "228Th" is the isotope "thorium-228" with a half-life of 6.98e+02 days. 2018-02-12
QYLSBHF4 integral wrt time of radioactivity concentration of 229Ac in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ac" means the element "actinium" and "229Ac" is the isotope "actinium-229" with a half-life of 4.58e-02 days. 2018-02-12
K85THIWW integral wrt time of radioactivity concentration of 229Ra in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "229Ra" is the isotope "radium-229" with a half-life of 1.16e-17 days. 2018-02-12
DPWURJ4K integral wrt time of radioactivity concentration of 229Th in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "229Th" is the isotope "thorium-229" with a half-life of 2.68e+06 days. 2018-02-12
ESRRFP5B integral wrt time of radioactivity concentration of 230Pa in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "230Pa" is the isotope "protactinium-230" with a half-life of 1.77e+01 days. 2018-02-12
5RA8W2UG integral wrt time of radioactivity concentration of 230Th in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "230Th" is the isotope "thorium-230" with a half-life of 2.92e+07 days. 2018-02-12
2O7R4A4T integral wrt time of radioactivity concentration of 230U in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "230U" is the isotope "uranium-230" with a half-life of 2.08e+01 days. 2018-02-12
4ISXFFOP integral wrt time of radioactivity concentration of 231Pa in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "231Pa" is the isotope "protactinium-231" with a half-life of 1.19e+07 days. 2018-02-12
Z6XWS17E integral wrt time of radioactivity concentration of 231Th in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "231Th" is the isotope "thorium-231" with a half-life of 1.06e+00 days. 2018-02-12
23QOAW8P integral wrt time of radioactivity concentration of 231U in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "231U" is the isotope "uranium-231" with a half-life of 4.29e+00 days. 2018-02-12
3EBOF2CK integral wrt time of radioactivity concentration of 232Pa in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "232Pa" is the isotope "protactinium-232" with a half-life of 1.31e+00 days. 2018-02-12
DJM9N6VA integral wrt time of radioactivity concentration of 232Th in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "232Th" is the isotope "thorium-232" with a half-life of 5.14e+12 days. 2018-02-12
EPRNJ853 integral wrt time of radioactivity concentration of 232U in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "232U" is the isotope "uranium-232" with a half-life of 2.63e+04 days. 2018-02-12
FL1I7BMK integral wrt time of radioactivity concentration of 233Pa in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "233Pa" is the isotope "protactinium-233" with a half-life of 2.70e+01 days. 2018-02-12
9AHIKJPG integral wrt time of radioactivity concentration of 233Th in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "233Th" is the isotope "thorium-233" with a half-life of 1.54e-02 days. 2018-02-12
2YVT4NOT integral wrt time of radioactivity concentration of 233U in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "233U" is the isotope "uranium-233" with a half-life of 5.90e+07 days. 2018-02-12
EILJT68W integral wrt time of radioactivity concentration of 234Pa in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "234Pa" is the isotope "protactinium-234" with a half-life of 2.81e-01 days. 2018-02-12
X4SQM789 integral wrt time of radioactivity concentration of 234Th in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "234Th" is the isotope "thorium-234" with a half-life of 2.41e+01 days. 2018-02-12
30PI4JYA integral wrt time of radioactivity concentration of 234U in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "234U" is the isotope "uranium-234" with a half-life of 9.02e+07 days. 2018-02-12
H165X1BD integral wrt time of radioactivity concentration of 234mPa in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "234mPa" is the metastable state of the isotope "protactinium-234" with a half-life of 8.13e-04 days. 2018-02-12
CE4VYJBP integral wrt time of radioactivity concentration of 235Np in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "235Np" is the isotope "neptunium-235" with a half-life of 4.09e+02 days. 2018-02-12
GUXA6KSC integral wrt time of radioactivity concentration of 235Pu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "235Pu" is the isotope "plutonium-235" with a half-life of 1.81e-02 days. 2018-02-12
NDOQ4XLC integral wrt time of radioactivity concentration of 235U in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "235U" is the isotope "uranium-235" with a half-life of 2.60e+11 days. 2018-02-12
89F3RRUS integral wrt time of radioactivity concentration of 236Np in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "236Np" is the isotope "neptunium-236" with a half-life of 9.17e-01 days. 2018-02-12
5W7LXI4S integral wrt time of radioactivity concentration of 236Pu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "236Pu" is the isotope "plutonium-236" with a half-life of 1.04e+03 days. 2018-02-12
6JVAREVC integral wrt time of radioactivity concentration of 236U in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "236U" is the isotope "uranium-236" with a half-life of 8.73e+09 days. 2018-02-12
R9R0MLOC integral wrt time of radioactivity concentration of 236mNp in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "236mNp" is the metastable state of the isotope "neptunium-236" with a half-life of 4.72e+10 days. 2018-02-12
41BV7AG5 integral wrt time of radioactivity concentration of 237Np in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "237Np" is the isotope "neptunium-237" with a half-life of 7.79e+08 days. 2018-02-12
0V05BMWR integral wrt time of radioactivity concentration of 237Pu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "237Pu" is the isotope "plutonium-237" with a half-life of 4.56e+01 days. 2018-02-12
EKC0JWBD integral wrt time of radioactivity concentration of 237U in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "237U" is the isotope "uranium-237" with a half-life of 6.74e+00 days. 2018-02-12
LQV4QJ2L integral wrt time of radioactivity concentration of 238Np in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "238Np" is the isotope "neptunium-238" with a half-life of 2.10e+00 days. 2018-02-12
WFUQMU6R integral wrt time of radioactivity concentration of 238Pu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "238Pu" is the isotope "plutonium-238" with a half-life of 3.15e+04 days. 2018-02-12
ETC11C2P integral wrt time of radioactivity concentration of 238U in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "238U" is the isotope "uranium-238" with a half-life of 1.65e+12 days. 2018-02-12
7ZU6EO7W integral wrt time of radioactivity concentration of 239Np in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "239Np" is the isotope "neptunium-239" with a half-life of 2.35e+00 days. 2018-02-12
TAWDRSLW integral wrt time of radioactivity concentration of 239Pu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "239Pu" is the isotope "plutonium-239" with a half-life of 8.91e+06 days. 2018-02-12
69ZBE698 integral wrt time of radioactivity concentration of 239U in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "239U" is the isotope "uranium-239" with a half-life of 1.63e-02 days. 2018-02-12
RUUHA3JU integral wrt time of radioactivity concentration of 240Am in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "240Am" is the isotope "americium-240" with a half-life of 2.12e+00 days. 2018-02-12
5XB97YPV integral wrt time of radioactivity concentration of 240Np in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "240Np" is the isotope "neptunium-240" with a half-life of 4.38e-02 days. 2018-02-12
ZKR2YKIY integral wrt time of radioactivity concentration of 240Pu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "240Pu" is the isotope "plutonium-240" with a half-life of 2.40e+06 days. 2018-02-12
MUK2MSEC integral wrt time of radioactivity concentration of 240U in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "240U" is the isotope "uranium-240" with a half-life of 5.99e-01 days. 2018-02-12
LDENYNQI integral wrt time of radioactivity concentration of 240mNp in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "240mNp" is the metastable state of the isotope "neptunium-240" with a half-life of 5.08e-03 days. 2018-02-12
LV1IVFE6 integral wrt time of radioactivity concentration of 241Am in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "241Am" is the isotope "americium-241" with a half-life of 1.67e+05 days. 2018-02-12
2UBHI9AT integral wrt time of radioactivity concentration of 241Cm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "241Cm" is the isotope "curium-241" with a half-life of 3.50e+01 days. 2018-02-12
ZVKLBV8Y integral wrt time of radioactivity concentration of 241Pu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "241Pu" is the isotope "plutonium-241" with a half-life of 4.83e+03 days. 2018-02-12
LQ6X8LD0 integral wrt time of radioactivity concentration of 242Am in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "242Am" is the isotope "americium-242" with a half-life of 6.69e-01 days. 2018-02-12
9U8NAAB9 integral wrt time of radioactivity concentration of 242Cm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "242Cm" is the isotope "curium-242" with a half-life of 1.63e+02 days. 2018-02-12
B66T8FXA integral wrt time of radioactivity concentration of 242Pu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "242Pu" is the isotope "plutonium-242" with a half-life of 1.38e+08 days. 2018-02-12
AJSOO1ST integral wrt time of radioactivity concentration of 242m1Am in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "242m1Am" is the metastable state of the isotope "americium-242" with a half-life of 5.53e+04 days. 2018-02-12
K2SLPD6S integral wrt time of radioactivity concentration of 242m2Am in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "242m2Am" is the metastable state of the isotope "americium-242" with a half-life of 1.62e-07 days. 2018-02-12
RQFW8V8Q integral wrt time of radioactivity concentration of 243Am in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "243Am" is the isotope "americium-243" with a half-life of 2.91e+06 days. 2018-02-12
X6XT8Q2S integral wrt time of radioactivity concentration of 243Cm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "243Cm" is the isotope "curium-243" with a half-life of 1.17e+04 days. 2018-02-12
AH055W3R integral wrt time of radioactivity concentration of 243Pu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "243Pu" is the isotope "plutonium-243" with a half-life of 2.07e-01 days. 2018-02-12
9331XFKT integral wrt time of radioactivity concentration of 244Am in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "244Am" is the isotope "americium-244" with a half-life of 4.20e-01 days. 2018-02-12
ZKAYEY1Y integral wrt time of radioactivity concentration of 244Cm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "244Cm" is the isotope "curium-244" with a half-life of 6.42e+03 days. 2018-02-12
1126VIXB integral wrt time of radioactivity concentration of 244Pu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "244Pu" is the isotope "plutonium-244" with a half-life of 2.92e+10 days. 2018-02-12
IPC18FPU integral wrt time of radioactivity concentration of 244mAm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "244mAm" is the metastable state of the isotope "americium-244" with a half-life of 1.81e-02 days. 2018-02-12
K9RN9FFG integral wrt time of radioactivity concentration of 245Am in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "245Am" is the isotope "americium-245" with a half-life of 8.75e-02 days. 2018-02-12
SU2619C1 integral wrt time of radioactivity concentration of 245Cm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "245Cm" is the isotope "curium-245" with a half-life of 3.40e+06 days. 2018-02-12
ZF7S312L integral wrt time of radioactivity concentration of 245Pu in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "245Pu" is the isotope "plutonium-245" with a half-life of 4.16e-01 days. 2018-02-12
LD8O2LHR integral wrt time of radioactivity concentration of 246Cm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "246Cm" is the isotope "curium-246" with a half-life of 2.01e+06 days. 2018-02-12
04U31NUO integral wrt time of radioactivity concentration of 247Cm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "247Cm" is the isotope "curium-247" with a half-life of 5.86e+09 days. 2018-02-12
NF56TZGW integral wrt time of radioactivity concentration of 248Cm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "248Cm" is the isotope "curium-248" with a half-life of 1.72e+08 days. 2018-02-12
J4OM0C9Q integral wrt time of radioactivity concentration of 249Bk in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bk" means the element "berkelium" and "249Bk" is the isotope "berkelium-249" with a half-life of 3.15e+02 days. 2018-02-12
IRO5V7S4 integral wrt time of radioactivity concentration of 249Cf in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "249Cf" is the isotope "californium-249" with a half-life of 1.32e+05 days. 2018-02-12
3R8GFQ10 integral wrt time of radioactivity concentration of 249Cm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "249Cm" is the isotope "curium-249" with a half-life of 4.43e-02 days. 2018-02-12
B5TKYZ34 integral wrt time of radioactivity concentration of 24Na in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Na" means the element "sodium" and "24Na" is the isotope "sodium-24" with a half-life of 6.27e-01 days. 2018-02-12
FQN0WP2U integral wrt time of radioactivity concentration of 250Bk in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bk" means the element "berkelium" and "250Bk" is the isotope "berkelium-250" with a half-life of 1.34e-01 days. 2018-02-12
3MTONBF8 integral wrt time of radioactivity concentration of 250Cf in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "250Cf" is the isotope "californium-250" with a half-life of 4.75e+03 days. 2018-02-12
UBAF2XK7 integral wrt time of radioactivity concentration of 250Cm in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "250Cm" is the isotope "curium-250" with a half-life of 2.52e+06 days. 2018-02-12
FT5FU78M integral wrt time of radioactivity concentration of 251Cf in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "251Cf" is the isotope "californium-251" with a half-life of 2.92e+05 days. 2018-02-12
ATNMCAHQ integral wrt time of radioactivity concentration of 252Cf in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "252Cf" is the isotope "californium-252" with a half-life of 9.68e+02 days. 2018-02-12
1TR26LC4 integral wrt time of radioactivity concentration of 253Cf in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "253Cf" is the isotope "californium-253" with a half-life of 1.76e+01 days. 2018-02-12
FCGAN5M4 integral wrt time of radioactivity concentration of 253Es in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Es" means the element "einsteinium" and "253Es" is the isotope "einsteinium-253" with a half-life of 2.05e+01 days. 2018-02-12
18KH6X2H integral wrt time of radioactivity concentration of 254Cf in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "254Cf" is the isotope "californium-254" with a half-life of 6.03e+01 days. 2018-02-12
XV4IBY34 integral wrt time of radioactivity concentration of 254Es in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Es" means the element "einsteinium" and "254Es" is the isotope "einsteinium-254" with a half-life of 2.76e+02 days. 2018-02-12
8K77SAOV integral wrt time of radioactivity concentration of 254mEs in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Es" means the element "einsteinium" and "254mEs" is the metastable state of the isotope "einsteinium-254" with a half-life of 1.63e+00 days. 2018-02-12
TYF2FYAL integral wrt time of radioactivity concentration of 255Es in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Es" means the element "einsteinium" and "255Es" is the isotope "einsteinium-255" with a half-life of 3.84e+01 days. 2018-02-12
5VEJW3EK integral wrt time of radioactivity concentration of 3H in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "H" means the element "hydrogen" and "3H" is the isotope "hydrogen-3" with a half-life of 4.51e+03 days. 2018-02-12
88BN0L72 integral wrt time of radioactivity concentration of 41Ar in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ar" means the element "argon" and "41Ar" is the isotope "argon-41" with a half-life of 7.64e-02 days. 2018-02-12
DZI6A0GM integral wrt time of radioactivity concentration of 54Mn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Mn" means the element "manganese" and "54Mn" is the isotope "manganese-54" with a half-life of 3.12e+02 days. 2018-02-12
H9OCYCXK integral wrt time of radioactivity concentration of 58Co in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Co" means the element "cobalt" and "58Co" is the isotope "cobalt-58" with a half-life of 7.10e+01 days. 2018-02-12
R0DL8DZL integral wrt time of radioactivity concentration of 60Co in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Co" means the element "cobalt" and "60Co" is the isotope "cobalt-60" with a half-life of 1.93e+03 days. 2018-02-12
3RQEC6R7 integral wrt time of radioactivity concentration of 72Ga in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ga" means the element "gallium" and "72Ga" is the isotope "gallium-72" with a half-life of 5.86e-01 days. 2018-02-12
3W4DB2YS integral wrt time of radioactivity concentration of 72Zn in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Zn" means the element "zinc" and "72Zn" is the isotope "zinc-72" with a half-life of 1.94e+00 days. 2018-02-12
DY2Q49OO integral wrt time of radioactivity concentration of 73Ga in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ga" means the element "gallium" and "73Ga" is the isotope "gallium-73" with a half-life of 2.03e-01 days. 2018-02-12
QFH8H7WY integral wrt time of radioactivity concentration of 75Ge in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ge" means the element "germanium" and "75Ge" is the isotope "germanium-75" with a half-life of 5.73e-02 days. 2018-02-12
3VTJ620B integral wrt time of radioactivity concentration of 77As in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "As" means the element "arsenic" and "77As" is the isotope "arsenic-77" with a half-life of 1.62e+00 days. 2018-02-12
4B8E7WCW integral wrt time of radioactivity concentration of 77Ge in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ge" means the element "germanium" and "77Ge" is the isotope "germanium-77" with a half-life of 4.72e-01 days. 2018-02-12
97LNFXQ2 integral wrt time of radioactivity concentration of 77mGe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ge" means the element "germanium" and "77mGe" is the metastable state of the isotope "germanium-77" with a half-life of 6.27e-04 days. 2018-02-12
AAM0FKLD integral wrt time of radioactivity concentration of 78As in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "As" means the element "arsenic" and "78As" is the isotope "arsenic-78" with a half-life of 6.32e-02 days. 2018-02-12
PSBSB2BQ integral wrt time of radioactivity concentration of 78Ge in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ge" means the element "germanium" and "78Ge" is the isotope "germanium-78" with a half-life of 6.03e-02 days. 2018-02-12
9DILI1YA integral wrt time of radioactivity concentration of 79Se in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Se" means the element "selenium" and "79Se" is the isotope "selenium-79" with a half-life of 2.37e+07 days. 2018-02-12
5I240EDF integral wrt time of radioactivity concentration of 81Se in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Se" means the element "selenium" and "81Se" is the isotope "selenium-81" with a half-life of 1.28e-02 days. 2018-02-12
TIE2E9JD integral wrt time of radioactivity concentration of 81mSe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Se" means the element "selenium" and "81mSe" is the metastable state of the isotope "selenium-81" with a half-life of 3.97e-02 days. 2018-02-12
CMLTN5AK integral wrt time of radioactivity concentration of 82Br in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Br" means the element "bromine" and "82Br" is the isotope "bromine-82" with a half-life of 1.47e+00 days. 2018-02-12
2YVZ44LX integral wrt time of radioactivity concentration of 82mBr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Br" means the element "bromine" and "82mBr" is the metastable state of the isotope "bromine-82" with a half-life of 4.24e-03 days. 2018-02-12
132N3P0V integral wrt time of radioactivity concentration of 83Br in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Br" means the element "bromine" and "83Br" is the isotope "bromine-83" with a half-life of 1.00e-01 days. 2018-02-12
9XBLWWWN integral wrt time of radioactivity concentration of 83Se in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Se" means the element "selenium" and "83Se" is the isotope "selenium-83" with a half-life of 1.56e-02 days. 2018-02-12
9OPOF8HP integral wrt time of radioactivity concentration of 83mKr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "83mKr" is the metastable state of the isotope "krypton-83" with a half-life of 7.71e-02 days. 2018-02-12
9G9U1DG4 integral wrt time of radioactivity concentration of 83mSe in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Se" means the element "selenium" and "83mSe" is the metastable state of the isotope "selenium-83" with a half-life of 8.10e-04 days. 2018-02-12
MSGLVHVF integral wrt time of radioactivity concentration of 84Br in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Br" means the element "bromine" and "84Br" is the isotope "bromine-84" with a half-life of 2.21e-02 days. 2018-02-12
OLU01TOK integral wrt time of radioactivity concentration of 84mBr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Br" means the element "bromine" and "84mBr" is the metastable state of the isotope "bromine-84" with a half-life of 4.16e-03 days. 2018-02-12
79QICV84 integral wrt time of radioactivity concentration of 85Kr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "85Kr" is the isotope "krypton-85" with a half-life of 3.95e+03 days. 2018-02-12
2BJAV4MA integral wrt time of radioactivity concentration of 85mKr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "85mKr" is the metastable state of the isotope "krypton-85" with a half-life of 1.83e-01 days. 2018-02-12
3JAXBMQV integral wrt time of radioactivity concentration of 86Rb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rb" means the element "rubidium" and "86Rb" is the isotope "rubidium-86" with a half-life of 1.87e+01 days. 2018-02-12
GIH5WRUW integral wrt time of radioactivity concentration of 86mRb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rb" means the element "rubidium" and "86mRb" is the metastable state of the isotope "rubidium-86" with a half-life of 7.04e-04 days. 2018-02-12
DOBETSX5 integral wrt time of radioactivity concentration of 87Kr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "87Kr" is the isotope "krypton-87" with a half-life of 5.28e-02 days. 2018-02-12
YXE1NWAO integral wrt time of radioactivity concentration of 87Rb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rb" means the element "rubidium" and "87Rb" is the isotope "rubidium-87" with a half-life of 1.71e+13 days. 2018-02-12
UV9KVM0M integral wrt time of radioactivity concentration of 88Kr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "88Kr" is the isotope "krypton-88" with a half-life of 1.17e-01 days. 2018-02-12
CZXBPTQ9 integral wrt time of radioactivity concentration of 88Rb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rb" means the element "rubidium" and "88Rb" is the isotope "rubidium-88" with a half-life of 1.25e-02 days. 2018-02-12
3R9IESDL integral wrt time of radioactivity concentration of 89Kr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "89Kr" is the isotope "krypton-89" with a half-life of 2.20e-03 days. 2018-02-12
8WEA95UK integral wrt time of radioactivity concentration of 89Rb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rb" means the element "rubidium" and "89Rb" is the isotope "rubidium-89" with a half-life of 1.06e-02 days. 2018-02-12
AGSVMH2D integral wrt time of radioactivity concentration of 89Sr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sr" means the element "strontium" and "89Sr" is the isotope "strontium-89" with a half-life of 5.21e+01 days. 2018-02-12
SG824NGN integral wrt time of radioactivity concentration of 90Sr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sr" means the element "strontium" and "90Sr" is the isotope "strontium-90" with a half-life of 1.02e+04 days. 2018-02-12
6EL3L3YK integral wrt time of radioactivity concentration of 90Y in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "90Y" is the isotope "yttrium-90" with a half-life of 2.67e+00 days. 2018-02-12
UGFBIHTV integral wrt time of radioactivity concentration of 90mY in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "90mY" is the metastable state of the isotope "yttrium-90" with a half-life of 1.33e-01 days. 2018-02-12
O6T3KQX5 integral wrt time of radioactivity concentration of 91Sr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sr" means the element "strontium" and "91Sr" is the isotope "strontium-91" with a half-life of 3.95e-01 days. 2018-02-12
O268X73I integral wrt time of radioactivity concentration of 91Y in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "91Y" is the isotope "yttrium-91" with a half-life of 5.86e+01 days. 2018-02-12
Q1065QBP integral wrt time of radioactivity concentration of 91mY in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "91mY" is the metastable state of the isotope "yttrium-91" with a half-life of 3.46e-02 days. 2018-02-12
BM7GI470 integral wrt time of radioactivity concentration of 92Sr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sr" means the element "strontium" and "92Sr" is the isotope "strontium-92" with a half-life of 1.13e-01 days. 2018-02-12
5VUIB5DS integral wrt time of radioactivity concentration of 92Y in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "92Y" is the isotope "yttrium-92" with a half-life of 1.47e-01 days. 2018-02-12
BCRHIIRS integral wrt time of radioactivity concentration of 93Y in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "93Y" is the isotope "yttrium-93" with a half-life of 4.24e-01 days. 2018-02-12
0RPKJ8PC integral wrt time of radioactivity concentration of 93Zr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Zr" means the element "zirconium" and "93Zr" is the isotope "zirconium-93" with a half-life of 3.47e+08 days. 2018-02-12
R2TIS5RZ integral wrt time of radioactivity concentration of 94Nb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "94Nb" is the isotope "niobium-94" with a half-life of 7.29e+06 days. 2018-02-12
ODIJ3NV6 integral wrt time of radioactivity concentration of 94Y in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "94Y" is the isotope "yttrium-94" with a half-life of 1.32e-02 days. 2018-02-12
THQVE0YL integral wrt time of radioactivity concentration of 94mNb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "94mNb" is the metastable state of the isotope "niobium-94" with a half-life of 4.34e-03 days. 2018-02-12
2FYTCRKU integral wrt time of radioactivity concentration of 95Nb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "95Nb" is the isotope "niobium-95" with a half-life of 3.52e+01 days. 2018-02-12
IOIYI945 integral wrt time of radioactivity concentration of 95Y in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "95Y" is the isotope "yttrium-95" with a half-life of 7.29e-03 days. 2018-02-12
K94BRW7Y integral wrt time of radioactivity concentration of 95Zr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Zr" means the element "zirconium" and "95Zr" is the isotope "zirconium-95" with a half-life of 6.52e+01 days. 2018-02-12
HIMTAJ4I integral wrt time of radioactivity concentration of 95mNb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "95mNb" is the metastable state of the isotope "niobium-95" with a half-life of 3.61e+00 days. 2018-02-12
SBA4FC3Y integral wrt time of radioactivity concentration of 96Nb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "96Nb" is the isotope "niobium-96" with a half-life of 9.75e-01 days. 2018-02-12
FGYJM40L integral wrt time of radioactivity concentration of 97Nb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "97Nb" is the isotope "niobium-97" with a half-life of 5.11e-02 days. 2018-02-12
O0C6XCOG integral wrt time of radioactivity concentration of 97Zr in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Zr" means the element "zirconium" and "97Zr" is the isotope "zirconium-97" with a half-life of 6.98e-01 days. 2018-02-12
KPKG01HC integral wrt time of radioactivity concentration of 97mNb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "97mNb" is the metastable state of the isotope "niobium-97" with a half-life of 6.27e-04 days. 2018-02-12
NKEV4IA0 integral wrt time of radioactivity concentration of 98Nb in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "98Nb" is the isotope "niobium-98" with a half-life of 3.53e-02 days. 2018-02-12
7TD0A3HJ integral wrt time of radioactivity concentration of 99Mo in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Mo" means the element "molybdenum" and "99Mo" is the isotope "molybdenum-99" with a half-life of 2.78e+00 days. 2018-02-12
NN4UQK03 integral wrt time of radioactivity concentration of 99Tc in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "99Tc" is the isotope "technetium-99" with a half-life of 7.79e+07 days. 2018-02-12
OT5ZE6W6 integral wrt time of radioactivity concentration of 99mTc in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means "with respect to". "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "99mTc" is the metastable state of the isotope "technetium-99" with a half-life of 2.51e-01 days. 2018-02-12
ZLU79UXI integral wrt time of surface downward eastward stress The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The abbreviation "wrt" means "with respect to". The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Downward eastward" indicates the ZX component of a tensor. A downward eastward stress is a downward flux of eastward momentum, which accelerates the lower medium eastward and the upper medium westward. 2021-01-18
KSKBQFN2 integral wrt time of surface downward latent heat flux The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). The surface latent heat flux is the exchange of heat between the surface and the air on account of evaporation (including sublimation). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
XBYNXLH6 integral wrt time of surface downward northward stress The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The abbreviation "wrt" means "with respect to". The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Northward" indicates a vector component which is positive when directed northward (negative southward). "Downward northward" indicates the ZY component of a tensor. A downward northward stress is a downward flux of northward momentum, which accelerates the lower medium northward and the upper medium southward. 2021-01-18
WKV82GB7 integral wrt time of surface downward sensible heat flux The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). The surface sensible heat flux, also called "turbulent" heat flux, is the exchange of heat between the surface and the air by motion of air. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
VL5QBNPI integral wrt time of surface downwelling longwave flux in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "longwave" means longwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
S8XHMYE1 integral wrt time of surface downwelling shortwave flux in air The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. The phrase "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. Surface downwelling shortwave is the sum of direct and diffuse solar radiation incident on the surface, and is sometimes called "global radiation". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
YLNOX07E integral wrt time of surface net downward longwave flux The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). "longwave" means longwave radiation. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
U7Q3ZEKD integral wrt time of surface net downward shortwave flux The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). "Shortwave" means shortwave radiation. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
M8XGB09H integral wrt time of toa net downward shortwave flux The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. "toa" means top of atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). "Shortwave" means shortwave radiation. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
8LI08BVT integral wrt time of toa outgoing longwave flux The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. "toa" means top of atmosphere. "Longwave" means longwave radiation. The TOA outgoing longwave flux is the upwelling thermal radiative flux, often called the "outgoing longwave radiation" or "OLR". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-11-28
AU3S0E39 iron growth limitation of calcareous phytoplankton "Calcareous phytoplankton" are phytoplankton that produce calcite. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Iron growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of iron) to the theoretical growth rate if there were no such limit on iron availability. 2016-11-15
Z65YIO2Q iron growth limitation of diatoms Diatoms are phytoplankton with an external skeleton made of silica. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Iron growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of iron) to the theoretical growth rate if there were no such limit on iron availability. 2016-11-15
J88U9LS0 iron growth limitation of diazotrophic phytoplankton "Iron growth limitation" means the ratio of the growth rate of a biological population in the environment (where there is a finite availability of iron) to the theoretical growth rate if there were no such limit on iron availability. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Diazotrophic phytoplankton are phytoplankton (predominantly from Phylum Cyanobacteria) that are able to fix molecular nitrogen (gas or solute) in addition to nitrate and ammonium. 2020-03-09
WOFTU731 iron growth limitation of diazotrophs DEPRECATED In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Iron growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of iron) to the theoretical growth rate if there were no such limit on iron availability. 2020-03-09
R0MDYZHM iron growth limitation of miscellaneous phytoplankton Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Miscellaneous phytoplankton" are all those phytoplankton that are not diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton or other separately named components of the phytoplankton population. "Iron growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of iron) to the theoretical growth rate if there were no such limit on iron availability. 2016-11-15
CTF4RH8X iron growth limitation of picophytoplankton Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Iron growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of iron) to the theoretical growth rate if there were no such limit on iron availability. 2016-11-15
CFSN0611 isccp cloud area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The cloud area fraction is for the whole atmosphere column, as seen from the surface or the top of the atmosphere. For the cloud area fraction between specified levels in the atmosphere, standard names including "cloud_ area_ fraction_ in_ atmosphere_ layer" are used. Standard names also exist for high, medium and low cloud types. The ISCCP cloud area fraction is diagnosed from atmosphere model output by the ISCCP simulator software in such a way as to be comparable with the observational diagnostics of ISCCP (the International Satellite Cloud Climatology Project). Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
E413P1AY isotope ratio of 17O to 16O in sea water excluding solutes and solids The phrase "ratio_ of_ X_ to_ Y" means X/Y. The phrase "isotope_ ratio" is used in the construction isotope_ ratio_ of_ A_ to_ B where A and B are both named isotopes. It means the ratio of the number of atoms of A to the number of atoms of B present within a medium. "O" means the element "oxygen" and "17O" is the stable isotope "oxygen-17". "16O" is the stable isotope "oxygen-16". The phrase "in_ sea_ water_ excluding_ solutes_ and_ solids" means that the standard name refers only to the chemical compound water and does not include material that may be dissolved or suspended in the aqueous medium. 2018-05-29
EQUNJT0R isotope ratio of 18O to 16O in sea water excluding solutes and solids The phrase "ratio_ of_ X_ to_ Y" means X/Y. The phrase "isotope_ ratio" is used in the construction isotope_ ratio_ of_ A_ to_ B where A and B are both named isotopes. It means the ratio of the number of atoms of A to the number of atoms of B present within a medium. "O" means the element "oxygen" and "18O" is the stable isotope "oxygen-18". "16O" is the stable isotope "oxygen-16". The phrase "in_ sea_ water_ excluding_ solutes_ and_ solids" means that the standard name refers only to the chemical compound water and does not include material that may be dissolved or suspended in the aqueous medium. 2018-05-29
CFSN0612 isotropic longwave radiance in air 'longwave' means longwave radiation. Radiance is the radiative flux in a particular direction, per unit of solid angle. If radiation is isotropic, the radiance is independent of direction, so the direction should not be specified. If the radiation is directionally dependent, a standard name of upwelling or downwelling radiance should be chosen instead. 2006-09-26
WPA7Z3EX isotropic radiance per unit wavelength in air Radiance is the radiative flux in a particular direction, per unit of solid angle. If radiation is isotropic, the radiance is independent of direction, so the direction should not be specified. If the radiation is directionally dependent, a standard name of upwelling or downwelling radiance should be chosen instead. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2013-06-27
CFSN0613 isotropic shortwave radiance in air 'shortwave' means shortwave radiation. Radiance is the radiative flux in a particular direction, per unit of solid angle. If radiation is isotropic, the radiance is independent of direction, so the direction should not be specified. If the radiation is directionally dependent, a standard name of upwelling or downwelling radiance should be chosen instead. 2006-09-26
CFSN0614 isotropic spectral radiance in air DEPRECATED 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. If radiation is isotropic, the radiance is independent of direction, so the direction should not be specified. If the radiation is directionally dependent, a standard name of upwelling or downwelling radiance should be chosen instead. 2013-06-27
BJ3ONH9W keetch byram drought index The Keetch Byram Drought Index (KBDI) is a numerical drought index ranging from 0 to 800 that estimates the cumulative moisture deficiency in soil. It is a cumulative index. It is a function of maximum temperature and precipitation over the previous 24 hours. 2023-04-24
CFSN0615 kinetic energy content of atmosphere layer 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2006-09-26
CFV15A3 kinetic energy dissipation in atmosphere boundary layer 2010-07-26
CFSN0616 lagrangian tendency of air pressure "tendency_ of_ X" means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the "material derivative" or "convective derivative". The Lagrangian tendency of air pressure, often called "omega", plays the role of the upward component of air velocity when air pressure is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of air pressure; downwards is positive. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFSN0617 lagrangian tendency of atmosphere sigma coordinate The phrase "tendency_ of_ X" means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the "material derivative" or "convective derivative". The Lagrangian tendency of sigma plays the role of the upward component of air velocity when the atmosphere sigma coordinate (a dimensionless atmosphere vertical coordinate) is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of sigma; downwards is positive. See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
CFSN0618 land area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. 2019-05-14
CFSN0574 land binary mask X_ binary_ mask has 1 where condition X is met, 0 elsewhere. 1 = land, 0 = sea. 2006-09-26
CFSN0575 land cover DEPRECATED A variable with the standard name of land_ cover contains strings which indicate the nature of the anthropogenic land use or vegetation e.g. urban, grass, needleleaf trees, ice. These strings have not yet been standardised. The alternative standard name of surface_ cover is a generalisation of land_ cover. Alternatively, the data variable may contain integers which can be translated to strings using flag_ values and flag_ meanings attributes. 2008-11-11
BBAJABJF land cover lccs A variable with the standard name of land_ cover_ lccs contains strings which indicate the nature of the surface, e.g. cropland_ ..., tree_ ... . Each string should represent a land cover class constructed using the Land Cover Classification System (LCCS; Di Gregorio A., 2005, UN Land Cover Classification System (LCCS) - Classification concepts and user manual for Software version 2; available at www.fao.org/DOCREP/003/X0596E/X0596e00.htm). String values should represent the classifiers used to define each class. 2020-06-22
CFSN0576 land ice area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. 2019-05-14
9Z75YM9M land ice basal drag "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. Basal drag is a resistive stress opposing ice flow at the ice bedrock boundary. 2018-04-16
CFSN0577 land ice basal melt rate "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. The land ice basal melt rate is the rate at which ice is lost per unit area at the base of the ice. 2010-03-11
VGGKKZOX land ice basal specific mass balance flux "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Specific mass balance" means the net rate at which ice is added per unit area. A negative value means loss of ice. For an area-average, the cell_ methods attribute should be used to specify whether the average is over the area of the whole grid cell or the area of land ice only. "Basal specific mass balance" means the net rate at which ice is added per unit area at the land ice base. 2017-07-24
H0ENNJ9V land ice basal temperature "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. The standard name land_ ice_ basal_ temperature means the temperature of the land ice at its lower boundary. 2018-05-15
MMYZ457D land ice basal upward velocity "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. A velocity is a vector quantity. "Upward" indicates a vector component which is positive when directed upward (negative downward). 2017-01-24
CFSN0578 land ice basal x velocity A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. 2013-01-11
CFSN0579 land ice basal y velocity A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. 2013-01-11
CFSN0580 land ice calving rate "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. The land ice calving rate is the rate at which ice is lost per unit area through calving into the ocean. 2010-03-11
CFSN0581 land ice lwe basal melt rate "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. The land ice basal melt rate is the rate at which ice is lost per unit area at the base of the ice. "lwe" means liquid water equivalent. 2010-03-11
CFSN0582 land ice lwe calving rate "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. The land ice calving rate is the rate at which ice is lost per unit area through calving into the ocean. "lwe" means liquid water equivalent. 2010-03-11
CFSN0583 land ice lwe surface specific mass balance DEPRECATED "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. Specific mass balance means the net rate at which ice is added per unit area at the land ice surface. "lwe" means liquid water equivalent. 2013-06-27
AKC3KM28 land ice lwe surface specific mass balance rate "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. "lwe" means liquid water equivalent. Specific mass balance means the net rate at which ice is added per unit area at the land ice surface due to all processes of surface accumulation and ablation. A negative value means loss of ice. 2013-06-27
VZQCHS2G land ice mass "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. The horizontal domain over which the quantity is calculated is described by the associated coordinate variables and coordinate bounds or by a coordinate variable or scalar coordinate variable with the standard name of "region" supplied according to section 6.1.1 of the CF conventions. 2018-04-16
1TOUSBQ7 land ice mass not displacing sea water "Land ice not displacing sea water" means land ice that would alter sea level if the ice were converted to water and added to the ocean. It excludes ice shelves (and any other sort of floating ice) and it excludes a fraction of grounded ice-sheet mass equivalent to the mass of any sea water it displaces. It includes glaciers and a portion of grounded ice-sheet mass exceeding the mass of any sea water displaced. The quantity with standard name land_ ice_ mass_ not_ displacing_ sea_ water is the total mass integrated over an area of land ice. The geographical extent of the ice over which the mass was calculated should be described by providing bounds on the horizontal coordinate variable or scalar with the standard name of "region" supplied according to section 6.1.1 of the CF convention. "Land ice not displacing sea water" is sometimes referred to as "ice above flotation" or "ice above floatation". 2024-01-18
JS2GJNO4 land ice runoff flux "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. Runoff is the liquid water which drains from land. If not specified, "runoff" refers to the sum of surface runoff and subsurface drainage. Runoff flux over land ice is the difference between any available liquid water in the snowpack due to rainfall and melting minus any refreezing and liquid water retained in the snowpack. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2017-01-24
CFSN0584 land ice sigma coordinate "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. 2010-03-11
6P97S53N land ice specific mass flux due to calving "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. "Specific mass flux due to calving" means the change in land ice mass per unit area resulting from iceberg calving. A negative value means loss of ice. For an area-average, the cell_ methods attribute should be used to specify whether the average is over the area of the whole grid cell or the area of land ice only. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-01-24
XYRB8PPK land ice specific mass flux due to calving and ice front melting "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Specific mass flux due to calving and ice front melting" means the change in land ice mass per unit area resulting from iceberg calving and melting on the vertical ice front. A negative value means loss of ice. For an area-average, the cell_ methods attribute should be used to specify whether the average is over the area of the whole grid cell or the area of land ice only. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-01-24
T1BYATS8 land ice surface melt flux "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. The land_ ice_ surface_ melt_ flux is the loss of ice mass resulting from surface melting. For an area-average, the cell_ methods attribute should be used to specify whether the average is over the area of the whole grid cell or the area of land ice only. There is also a standard name for the quantity surface_ snow_ and_ ice_ melt_ flux. 2017-01-24
CFSN0585 land ice surface specific mass balance DEPRECATED "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. Specific mass balance means the net rate at which ice is added per unit area at the land ice surface. 2013-06-27
E1OEHVNH land ice surface specific mass balance flux "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Specific mass balance" means the net rate at which ice is added per unit area. A negative value means loss of ice. For an area-average, the cell_ methods attribute should be used to specify whether the average is over the area of the whole grid cell or the area of land ice only. "Surface specific mass balance" means the net rate at which ice is added per unit area at the land ice surface due to all processes of surface accumulation and ablation. 2017-01-24
R1WKHJ96 land ice surface specific mass balance rate "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. Specific mass balance means the net rate at which ice is added at the land ice surface due to all processes of surface accumulation and ablation. A negative value means loss of ice. 2013-06-27
XZ7V7UUA land ice surface upward velocity "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. A velocity is a vector quantity. "Upward" indicates a vector component which is positive when directed upward (negative downward). The surface called "surface" means the lower boundary of the atmosphere. 2017-01-24
RXRK9H3R land ice surface x velocity "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. The surface called "surface" means the lower boundary of the atmosphere. 2017-01-24
W1A22MZN land ice surface y velocity "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. The surface called "surface" means the lower boundary of the atmosphere. 2017-01-24
CFSN0586 land ice temperature "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. 2010-03-11
CFSN0587 land ice thickness "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. "Thickness" means the vertical extent of a layer. 2010-03-11
CFSN0588 land ice vertical mean x velocity A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. The vertical mean land ice velocity is the average from the bedrock to the surface of the ice. 2013-01-11
CFSN0589 land ice vertical mean y velocity A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. The vertical mean land ice velocity is the average from the bedrock to the surface of the ice. 2013-01-11
CFSN0590 land ice x velocity A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. 2013-01-11
CFSN0591 land ice y velocity A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. 2013-01-11
MQZRZKG0 land surface liquid water amount The surface called "surface" means the lower boundary of the atmosphere. "Amount" means mass per unit area. The quantity with standard name land_ surface_ liquid_ water_ amount includes water in rivers, wetlands, lakes, reservoirs and liquid precipitation intercepted by the vegetation canopy. 2018-07-03
6LBV5YV6 land water amount "Amount" means mass per unit area. "Water" means water in all phases. The phrase "land_ water_ amount", often known as "Terrestrial Water Storage", includes: surface liquid water (water in rivers, wetlands, lakes, reservoirs, rainfall intercepted by the canopy); surface ice and snow (glaciers, ice caps, grounded ice sheets not displacing sea water, river and lake ice, other surface ice such as frozen flood water, snow lying on the surface and intercepted by the canopy); subsurface water (liquid and frozen soil water, groundwater). 2018-07-10
CFSN0592 large scale cloud area fraction DEPRECATED 'X_ area_ fraction' means the fraction of horizontal area occupied by X. 'X_ area' means the horizontal area occupied by X within the grid cell. Cloud area fraction is also called 'cloud amount' and 'cloud cover'. The cloud area fraction is for the whole atmosphere column, as seen from the surface or the top of the atmosphere. The cloud area fraction in a layer of the atmosphere has the standard name cloud_ area_ fraction_ in_ atmosphere_ layer. 2010-07-26
CF12N211 large scale graupel flux DEPRECATED In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2010-07-26
CFSN0593 large scale precipitation amount DEPRECATED 'Amount' means mass per unit area. 2010-07-26
CFSN0594 large scale precipitation flux DEPRECATED In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2010-07-26
CFSN0595 large scale rainfall amount DEPRECATED 'Amount' means mass per unit area. 2010-07-26
CFSN0596 large scale rainfall flux DEPRECATED In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2010-07-26
CFSN0597 large scale rainfall rate DEPRECATED 2010-07-26
CFSN0598 large scale snowfall amount DEPRECATED 'Amount' means mass per unit area. 2010-07-26
CFSN0599 large scale snowfall flux DEPRECATED In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2010-07-26
CFSN0600 latitude Latitude is positive northward; its units of degree_ north (or equivalent) indicate this explicitly. In a latitude-longitude system defined with respect to a rotated North Pole, the standard name of grid_ latitude should be used instead of latitude. Grid latitude is positive in the grid-northward direction, but its units should be plain degree. 2006-09-26
CFSN0601 leaf area index 'X_ area' means the horizontal area occupied by X within the grid cell. 2006-09-26
CFV16A16 leaf carbon content DEPRECATED "Content" indicates a quantity per unit area. 2018-04-16
IBL3SXY3 leaf mass content of carbon "Content" indicates a quantity per unit area. 2018-04-16
VANF5FEN leaf mass content of nitrogen "Content" indicates a quantity per unit area. 2018-04-16
XETDZXUY lightning potential index The lightning_ potential_ index measures the potential for charge generation and separation that leads to lightning flashes in convective thunderstorms. It is derived from the model simulated grid-scale updraft velocity and the mass mixing-ratios of liquid water, cloud ice, snow, and graupel. 2021-09-20
O0H03K6S lightning radiant energy The standard name "lightning radiant energy" means the energy emitted as electromagnetic radiation due to lightning. A coordinate variable of radiation_ wavelength, radiation_ frequency, or sensor_ band_ central_ wavelength may be specified to indicate that the lightning_ radiant_ energy applies at specific wavelengths or frequencies. Bounds of the time and spatial coordinates may be specified to indicate the time interval and spatial extent over which the energy is emitted. 2015-07-08
91ED54E3 liquid water cloud area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The cloud area fraction is for the whole atmosphere column, as seen from the surface or the top of the atmosphere. For the cloud area fraction between specified levels in the atmosphere, standard names including "cloud_ area_ fraction_ in_ atmosphere_ layer" are used. Standard names also exist for high, medium and low cloud types. "Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
RH61M1BL liquid water cloud area fraction in atmosphere layer "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be "model_ level_ number", but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Standard names also exist for high, medium and low cloud types. Standard names referring only to "cloud_ area_ fraction" should be used for quantities for the whole atmosphere column. Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
CFV16A17 liquid water content of permafrost layer "Content" indicates a quantity per unit area. Permafrost is soil or rock that has remained at a temperature at or below zero degrees Celsius throughout the seasonal cycle for two or more years. 2010-10-11
CFSN0602 liquid water content of snow layer DEPRECATED 'Content' indicates a quantity per unit area. 2010-07-26
CFSN0603 liquid water content of soil layer 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Quantities defined for a soil layer must have a vertical coordinate variable with boundaries indicating the extent of the layer(s). 2006-09-26
CFV15A4 liquid water content of surface snow "Content" indicates a quantity per unit area. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
S036R4PA liquid water mass flux into soil due to surface snow melt In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2021-01-18
CFSN0604 litter carbon content DEPRECATED 'Content' indicates a quantity per unit area. 'Litter carbon' is dead inorganic material in or above the soil quantified as the mass of carbon which it contains. 2018-04-16
CFSN0553 litter carbon flux DEPRECATED 'Litter carbon' is dead inorganic material in or above the soil quantified as the mass of carbon which it contains. The litter carbon flux is the rate of production of litter. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2018-04-16
IQ6U4ZNC litter mass content of 13C "Content" indicates a quantity per unit area. "Litter" is dead plant material in or above the soil. "C" means the element carbon and "13C" is the stable isotope "carbon-13", having six protons and seven neutrons. 2018-03-13
N7V9GDSC litter mass content of 14C "Content" indicates a quantity per unit area. "Litter" is dead plant material in or above the soil. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. 2018-03-13
Z8MNYOFO litter mass content of carbon "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. "Content" indicates a quantity per unit area. The sum of the quantities with standard names surface_ litter_ mass_ content_ of_ carbon and subsurface_ litter_ mass_ content_ of_ carbon has the standard name litter_ mass_ content_ of_ carbon. 2018-04-16
TT8F17ZI litter mass content of nitrogen "Content" indicates a quantity per unit area. "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. The sum of the quantities with standard names surface_ litter_ mass_ content_ of_ nitrogen and subsurface_ litter_ mass_ content_ of_ nitrogen has the standard name litter_ mass_ content_ of_ nitrogen. 2018-06-11
1U1P3ED5 location test quality flag A quality flag that reports the result of the Location test, which checks that a location is within reasonable bounds. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. There are standard names for other specific quality tests which take the form of X_ quality_ flag. Quality information that does not match any of the specific quantities should be given the more general standard name of quality_ flag. 2020-03-09
DZ5R0U8Y log10 size interval based number size distribution of aerosol particles at stp in air The aerosol particle number size distribution is the number concentration of aerosol particles, normalised to the decadal logarithmic size interval the concentration applies to, as a function of particle diameter. A coordinate variable with the standard name of electrical_ mobility_ particle_ diameter, aerodynamic_ particle_ diameter, or optical_ particle_ diameter should be specified to indicate that the property applies at specific particle sizes selected by the indicated method. To specify the relative humidity at which the particle sizes were selected, provide a scalar coordinate variable with the standard name of relative_ humidity_ for_ aerosol_ particle_ size_ selection. "log10_ X" means common logarithm (i.e. base 10) of X. "stp" means standard temperature (0 degC) and pressure (101325 Pa). 2023-04-24
BP5UJG3V log10 size interval based number size distribution of aerosol particles in air The aerosol particle number size distribution is the number concentration of aerosol particles, normalised to the decadal logarithmic size interval the concentration applies to, as a function of particle diameter. A coordinate variable with the standard name of electrical_ mobility_ particle_ diameter, aerodynamic_ particle_ diameter, or optical_ particle_ diameter should be specified to indicate that the property applies at specific particle sizes selected by the indicated method. To specify the relative humidity at which the particle sizes were selected, provide a scalar coordinate variable with the standard name of relative_ humidity_ for_ aerosol_ particle_ size_ selection. "log10_ X" means common logarithm (i.e. base 10) of X. 2023-04-24
CLWRTGJY log10 size interval based number size distribution of cloud condensation nuclei at stp in air The cloud condensation nuclei number size distribution is the number concentration of aerosol particles, normalised to the decadal logarithmic size interval the concentration applies to, as a function of particle diameter, where the particle acts as condensation nucleus for liquid-phase clouds. A coordinate variable with the standard name of relative_ humidity should be specified to indicate that the property refers to a specific supersaturation with respect to liquid water. A coordinate variable with the standard name of electrical_ mobility_ particle_ diameter should be specified to indicate that the property applies at specific mobility particle sizes. To specify the relative humidity at which the particle sizes were selected, provide a scalar coordinate variable with the standard name of relative_ humidity_ for_ aerosol_ particle_ size_ selection. The ability of a particle to act as a condensation nucleus is determined by its size, chemical composition, and morphology. "log10_ X" means common logarithm (i.e. base 10) of X. "stp" means standard temperature (0 degC) and pressure (101325 Pa). 2015-01-07
NEMEHBFJ log10 size interval based number size distribution of cloud condensation nuclei in air The cloud condensation nuclei number size distribution is the number concentration of aerosol particles, normalised to the decadal logarithmic size interval the concentration applies to, as a function of particle diameter, where the particle acts as condensation nucleus for liquid-phase clouds. A coordinate variable with the standard name of relative_ humidity should be specified to indicate that the property refers to a specific supersaturation with respect to liquid water. A coordinate variable with the standard name of electrical_ mobility_ particle_ diameter should be specified to indicate that the property applies at specific mobility particle sizes. To specify the relative humidity at which the particle sizes were selected, provide a scalar coordinate variable with the standard name of relative_ humidity_ for_ aerosol_ particle_ size_ selection. The ability of a particle to act as a condensation nucleus is determined by its size, chemical composition, and morphology. "log10_ X" means common logarithm (i.e. base 10) of X. 2023-04-24
CFSN0554 longitude Longitude is positive eastward; its units of degree_ east (or equivalent) indicate this explicitly. In a latitude-longitude system defined with respect to a rotated North Pole, the standard name of grid_ longitude should be used instead of longitude. Grid longitude is positive in the grid-eastward direction, but its units should be plain degree. 2006-09-26
CFSNA005 longwave radiance DEPRECATED 'longwave' means longwave radiation. Radiance is the radiative flux in a particular direction, per unit of solid angle. If radiation is isotropic, the radiance is independent of direction, so the direction should not be specified. If the radiation is directionally dependent, a standard name of upwelling or downwelling radiance should be chosen instead. 2006-09-26
HDDAAAHH low type cloud area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Low type clouds are: Stratus, Stratocumulus, Cumulus, Cumulonimbus. X_ type_ cloud_ area_ fraction is generally determined on the basis of cloud type, though Numerical Weather Prediction (NWP) models often calculate them based on the vertical location of the cloud. For the cloud area fraction between specified levels in the atmosphere, standard names including "cloud_ area_ fraction_ in_ atmosphere_ layer" are used. Standard names referring only to "cloud_ area_ fraction" should be used for quantities for the whole atmosphere column. Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
CFSN0555 lwe convective precipitation rate Convective precipitation is that produced by the convection schemes in an atmosphere model. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The abbreviation "lwe" means liquid water equivalent. "Precipitation rate" means the depth or thickness of the layer formed by precipitation per unit time. 2018-08-06
CFSN0556 lwe convective snowfall rate 'lwe' means liquid water equivalent. 2006-09-26
CFSN0557 lwe large scale precipitation rate DEPRECATED 'lwe' means liquid water equivalent. 2010-07-26
CFSN0558 lwe large scale snowfall rate DEPRECATED 'lwe' means liquid water equivalent. 2010-07-26
CFSN0559 lwe precipitation rate "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The abbreviation "lwe" means liquid water equivalent. "Precipitation rate" means the depth or thickness of the layer formed by precipitation per unit time. 2018-08-06
CFSN0560 lwe snowfall rate 'lwe' means liquid water equivalent. 2006-09-26
CFV15A5 lwe stratiform precipitation rate Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The abbreviation "lwe" means liquid water equivalent. "Precipitation rate" means the depth or thickness of the layer formed by precipitation per unit time. 2018-08-06
CFV15A6 lwe stratiform snowfall rate Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. "lwe" means liquid water equivalent. 2010-07-26
BBAH2146 lwe thickness of atmosphere mass content of water vapor "lwe" means liquid water equivalent. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. 2011-07-21
CFSN0561 lwe thickness of atmosphere water vapor content DEPRECATED 'lwe' means liquid water equivalent. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as 'precipitable water', although this term does not imply the water could all be precipitated. 2011-07-21
CFSN0562 lwe thickness of canopy water amount The abbreviation "lwe" means liquid water equivalent. "Amount" means mass per unit area. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. "Water" means water in all phases, including frozen i.e. ice and snow. The canopy water is the water on the canopy. "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. 2018-07-10
CFSN0563 lwe thickness of convective precipitation amount The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. Convective precipitation is that produced by the convection schemes in an atmosphere model. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The abbreviation "lwe" means liquid water equivalent. 2018-08-06
CFSN0564 lwe thickness of convective snowfall amount 'lwe' means liquid water equivalent. 'Amount' means mass per unit area. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. 2006-09-26
CFSN0565 lwe thickness of frozen water content of soil layer 'frozen_ water' means ice. 'lwe' means liquid water equivalent. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Quantities defined for a soil layer must have a vertical coordinate variable with boundaries indicating the extent of the layer(s). 2006-09-26
CFSN0566 lwe thickness of large scale precipitation amount DEPRECATED 'lwe' means liquid water equivalent. 'Amount' means mass per unit area. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. 2010-07-26
CFSN0567 lwe thickness of large scale snowfall amount DEPRECATED 'lwe' means liquid water equivalent. 'Amount' means mass per unit area. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. 2010-07-26
CFSN0568 lwe thickness of moisture content of soil layer 'lwe' means liquid water equivalent. 'moisture' means water in all phases contained in soil. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Quantities defined for a soil layer must have a vertical coordinate variable with boundaries indicating the extent of the layer(s). 2006-09-26
CFSN0569 lwe thickness of precipitation amount The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The abbreviation "lwe" means liquid water equivalent. 2018-08-06
CFSN0570 lwe thickness of snowfall amount 'lwe' means liquid water equivalent. 'Amount' means mass per unit area. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. 2006-09-26
CFSN0571 lwe thickness of soil moisture content 'lwe' means liquid water equivalent. 'moisture' means water in all phases contained in soil. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. 'Content' indicates a quantity per unit area. The 'soil content' of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. 2006-09-26
CFV15A7 lwe thickness of stratiform precipitation amount The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The abbreviation "lwe" means liquid water equivalent. 2018-08-06
CFV15A8 lwe thickness of stratiform snowfall amount "Amount" means mass per unit area. "lwe" means liquid water equivalent. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. 2010-07-26
CFSN0572 lwe thickness of surface snow amount The abbreviation "lwe" means liquid water equivalent. "Amount" means mass per unit area. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. Surface snow amount refers to the amount on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
CFSN0573 lwe thickness of water evaporation amount 'lwe' means liquid water equivalent. 'Amount' means mass per unit area. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. 'Water' means water in all phases. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called 'sublimation'.) 2006-09-26
CFSN0527 lwe water evaporation rate 'lwe' means liquid water equivalent. 'Water' means water in all phases. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called 'sublimation'.) 2006-09-26
TAZEYBNU magnitude of air velocity relative to sea water The quantity with standard name magnitude_ of_ air_ velocity_ relative_ to_ sea_ water is the speed of the motion of the air relative to the near-surface current, usually derived from vectors. The components of the relative velocity vector have standard names eastward_ air_ velocity_ relative_ to_ sea_ water and northward_ air_ velocity_ relative_ to_ sea_ water. A vertical coordinate variable or scalar coordinate variable with standard name "depth" should be used to indicate the depth of sea water velocity used in the calculation. Similarly, a vertical coordinate variable or scalar coordinate with standard name "height" should be used to indicate the height of the the wind component. 2021-01-18
CFV10N16 magnitude of derivative of position wrt model level number The quantity with standard name magnitude_ of_ derivative_ of_ position_ wrt_ model_ level_ number (known in differential geometry as a "scale factor") is | (dr/dk)ij|, where r(i,j,k) is the vector 3D position of the point with coordinate indices (i,j,k). It is a measure of the gridblock spacing in the z-direction. 2008-10-21
CFV10N17 magnitude of derivative of position wrt x coordinate index The quantity with standard name magnitude_ of_ derivative_ of_ position_ wrt_ x_ coordinate_ index (known in differential geometry as a "scale factor") is | (dr/di)jk|, where r(i,j,k) is the vector 3D position of the point with coordinate indices (i,j,k). It is a measure of the gridblock spacing in the x-direction. 2008-10-21
CFV10N18 magnitude of derivative of position wrt y coordinate index The quantity with standard name magnitude_ of_ derivative_ of_ position_ wrt_ y_ coordinate_ index (known in differential geometry as a "scale factor") is | (dr/dj)ik|, where r(i,j,k) is the vector 3D position of the point with coordinate indices (i,j,k). It is a measure of the gridblock spacing in the y-direction. 2008-10-21
IBWAH76Y magnitude of heat flux in sea water due to advection "magnitude_ of_ X" means magnitude of a vector X. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2013-06-27
CFV15A9 magnitude of sea ice displacement The phrase "magnitude_ of_ X" means magnitude of a vector X. "Displacement" means the change in geospatial position of an object that has moved over time. If possible, the time interval over which the motion took place should be specified using a bounds variable for the time coordinate variable. A displacement can be represented as a vector. Such a vector should however not be interpreted as describing a rectilinear, constant speed motion but merely as an indication that the start point of the vector is found at the tip of the vector after the time interval associated with the displacement variable. A displacement does not prescribe a trajectory. Sea ice displacement can be defined as a two-dimensional vector, with no vertical component. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0528 magnitude of surface downward stress The phrase "magnitude_ of_ X" means magnitude of a vector X. The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). 2021-01-18
XDOLIOAF mass concentration of 19 butanoyloxyfucoxanthin in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of 19'-butanoyloxyfucoxanthin is C46H64O8. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/BUTAXXXX/1/. 2022-03-18
YA2HPSPL mass concentration of 19 hexanoyloxyfucoxanthin in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of 19'-hexanoyloxyfucoxanthin is C48H68O8. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/HEXAXXXX/2/. 2022-03-18
ONATPADA mass concentration of absorption equivalent black carbon of dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The absorption equivalent black carbon mass concentration is obtained by conversion from the particle light absorption coefficient with a suitable mass absorption cross-section. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
W44Q0ZJC mass concentration of absorption equivalent black carbon of pm10 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The absorption equivalent black carbon mass concentration is obtained by conversion from the particle light absorption coefficient with a suitable mass absorption cross-section. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
XFANJ2GN mass concentration of absorption equivalent black carbon of pm1 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm1 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 1 micrometer. The absorption equivalent black carbon mass concentration is obtained by conversion from the particle light absorption coefficient with a suitable mass absorption cross-section. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
43Y3TCV2 mass concentration of absorption equivalent black carbon of pm2p5 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The absorption equivalent black carbon mass concentration is obtained by conversion from the particle light absorption coefficient with a suitable mass absorption cross-section. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
CF12N212 mass concentration of acetic acid in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for acetic_ acid is CH3COOH. The IUPAC name for acetic acid is ethanoic acid. 2009-07-06
CF12N213 mass concentration of aceto nitrile in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for aceto-nitrile is CH3CN. The IUPAC name for aceto-nitrile is ethanenitrile. 2009-07-06
1QKTVLCV mass concentration of adenosine triphosphate in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/ATPXZZDZ/2/. 2022-03-18
CF12N214 mass concentration of alkanes in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Alkanes are saturated hydrocarbons, i.e. they do not contain any chemical double bonds. Alkanes contain only hydrogen and carbon combined in the general proportions C(n)H(2n+2); "alkanes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual alkane species, e.g., methane and ethane. 2009-07-06
CF12N215 mass concentration of alkenes in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Alkenes are unsaturated hydrocarbons as they contain chemical double bonds between adjacent carbon atoms. Alkenes contain only hydrogen and carbon combined in the general proportions C(n)H(2n); "alkenes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual alkene species, e.g., ethene and propene. 2009-07-06
ZYUGY6RG mass concentration of alpha carotene in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of alpha-carotene is C40H56. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/BECAXXP1/2/. 2022-03-18
CF12N216 mass concentration of alpha hexachlorocyclohexane in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for alpha_ hexachlorocyclohexane is C6H6Cl6. 2009-07-06
CF12N217 mass concentration of alpha pinene in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for alpha_ pinene is C10H16. The IUPAC name for alpha-pinene is (1S,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene. 2009-07-06
PQ7IP4LF mass concentration of aluminium in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Aluminium means aluminium in all chemical forms, commonly referred to as "total aluminium". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CF12N218 mass concentration of ammonia in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ammonia is NH3. 2009-07-06
CF12N219 mass concentration of ammonium dry aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The chemical formula for ammonium is NH4. 2015-01-07
4EWCHNYX mass concentration of ammonium dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for ammonium is NH4. 2015-01-07
CF12N220 mass concentration of anthropogenic nmvoc expressed as carbon in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Anthropogenic" means influenced, caused, or created by human activity. 2015-01-07
CF12N221 mass concentration of aromatic compounds in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Aromatic compounds in organic chemistry are compounds that contain at least one benzene ring of six carbon atoms joined by alternating single and double covalent bonds. The simplest aromatic compound is benzene itself. In standard names "aromatic_ compounds" is the term used to describe the group of aromatic chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual aromatic species, e.g. benzene and xylene. 2009-07-06
1TQQOJ4D mass concentration of arsenic in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Arsenic means arsenic in all chemical forms, commonly referred to as "total arsenic". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CF12N222 mass concentration of atomic bromine in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for atomic bromine is Br. 2009-07-06
CF12N223 mass concentration of atomic chlorine in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for atomic chlorine is Cl. 2009-07-06
CF12N224 mass concentration of atomic nitrogen in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for atomic nitrogen is N. 2009-07-06
CF12N225 mass concentration of benzene in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
E2WTTG9A mass concentration of beta carotene in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of beta-carotene is C40H56. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/BBCAXXP1/2/. 2022-03-18
CF12N226 mass concentration of beta pinene in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for beta_ pinene is C10H16. The IUPAC name for beta-pinene is (1S,5S)-6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane. 2009-07-06
CF12N227 mass concentration of biogenic nmvoc expressed as carbon in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Biogenic" means influenced, caused, or created by natural processes. 2015-01-07
NPOHAN1Y mass concentration of biological taxon expressed as carbon in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Mass concentration of biota expressed as carbon is also referred to as "carbon biomass". "Biological taxon" is a name or other label identifying an organism or a group of organisms as belonging to a unit of classification in a hierarchical taxonomy. There must be an auxiliary coordinate variable with standard name biological_ taxon_ name to identify the taxon in human readable format and optionally an auxiliary coordinate variable with standard name biological_ taxon_ lsid to provide a machine-readable identifier. See Section 6.1.2 of the CF convention (version 1.8 or later) for information about biological taxon auxiliary coordinate variables. 2021-09-20
UMJTVO1O mass concentration of biological taxon expressed as chlorophyll in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Biological taxon" is a name or other label identifying an organism or a group of organisms as belonging to a unit of classification in a hierarchical taxonomy. There must be an auxiliary coordinate variable with standard name biological_ taxon_ name to identify the taxon in human readable format and optionally an auxiliary coordinate variable with standard name biological_ taxon_ lsid to provide a machine-readable identifier. See Section 6.1.2 of the CF convention (version 1.8 or later) for information about biological taxon auxiliary coordinate variables. Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. 2021-09-20
8FB20X47 mass concentration of biological taxon expressed as nitrogen in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Mass concentration of biota expressed as nitrogen is also referred to as "nitrogen biomass". "Biological taxon" is a name or other label identifying an organism or a group of organisms as belonging to a unit of classification in a hierarchical taxonomy. There must be an auxiliary coordinate variable with standard name biological_ taxon_ name to identify the taxon in human readable format and optionally an auxiliary coordinate variable with standard name biological_ taxon_ lsid to provide a machine-readable identifier. See Section 6.1.2 of the CF convention (version 1.8 or later) for information about biological taxon auxiliary coordinate variables. 2021-09-20
CFV16A18 mass concentration of biomass burning dry aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2019-05-14
RVY4U6VV mass concentration of biomass burning dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2019-05-14
CF12N228 mass concentration of black carbon dry aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
CF12N229 mass concentration of bromine chloride in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for bromine chloride is BrCl. 2009-07-06
CF12N230 mass concentration of bromine monoxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for bromine monoxide is BrO. 2009-07-06
CF12N231 mass concentration of bromine nitrate in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for bromine nitrate is BrONO2. 2009-07-06
CF12N232 mass concentration of brox expressed as bromine in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Brox" describes a family of chemical species consisting of inorganic bromine compounds with the exception of hydrogen bromide (HBr) and bromine nitrate (BrONO2). The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Brox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. Standard names that use the term "inorganic_ bromine" are used for quantities that contain all inorganic bromine species including HCl and ClONO2. 2019-03-04
CF12N233 mass concentration of butane in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
K62APYGN mass concentration of cadmium in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Cadmium means cadmium in all chemical forms, commonly referred to as "total cadmium". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CF14N6 mass concentration of calcareous phytoplankton expressed as chlorophyll in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. "Calcareous phytoplankton" are phytoplankton that produce calcite. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
CF12N234 mass concentration of carbon dioxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for carbon dioxide is CO2. 2009-07-06
H9I7YER6 mass concentration of carbon in dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. Chemically, "carbon" is the total sum of elemental, organic, and inorganic carbon. In measurements of carbonaceous aerosols, inorganic carbon is neglected and its mass is assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
U7NO90LV mass concentration of carbon in pm10 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. Chemically, "carbon" is the total sum of elemental, organic, and inorganic carbon. In measurements of carbonaceous aerosols, inorganic carbon is neglected and its mass is assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
WMXFNS12 mass concentration of carbon in pm1 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm1 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 1 micrometer. Chemically, "carbon" is the total sum of elemental, organic, and inorganic carbon. In measurements of carbonaceous aerosols, inorganic carbon is neglected and its mass is assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
LF3VE3LQ mass concentration of carbon in pm2p5 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. Chemically, "carbon" is the total sum of elemental, organic, and inorganic carbon. In measurements of carbonaceous aerosols, inorganic carbon is neglected and its mass is assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
CF12N235 mass concentration of carbon monoxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula of carbon monoxide is CO. 2009-07-06
CF12N236 mass concentration of carbon tetrachloride in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula of carbon tetrachloride is CCl4. The IUPAC name for carbon tetrachloride is tetrachloromethane. 2019-04-08
DSBJHJW0 mass concentration of carotene in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Carotene" refers to the sum of all forms of the carotenoid pigment carotene. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/CAROXXXX/1/. 2022-03-18
CF12N238 mass concentration of cfc113 in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC113 is CCl2FCClF2. The IUPAC name for CFC113 is 1,1,2-trichloro-1,2,2-trifluoroethane. 2019-05-14
CF12N239 mass concentration of cfc113a in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC113a is CCl3CF3. The IUPAC name for CFC113a is 1,1,1-trichloro-2,2,2-trifluoroethane. 2019-05-14
CF12N240 mass concentration of cfc114 in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC114 is CClF2CClF2. The IUPAC name for CFC114 is 1,2-dichloro-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12N241 mass concentration of cfc115 in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC115 is CClF2CF3. The IUPAC name for CFC115 is 1-chloro-1,1,2,2,2-pentafluoroethane. 2019-05-14
CF12N237 mass concentration of cfc11 in air Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro(fluoro)methane. 2019-05-14
CF12N242 mass concentration of cfc12 in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro(difluoro)methane. 2019-05-14
CF12N243 mass concentration of chlorine dioxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for chlorine dioxide is OClO. 2009-07-06
CF12N244 mass concentration of chlorine monoxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for chlorine monoxide is ClO. 2009-07-06
CF12N245 mass concentration of chlorine nitrate in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for chlorine nitrate is ClONO2. 2009-07-06
85WOXN4A mass concentration of chlorophyll a in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. Chlorophyll-a is the most commonly occurring form of natural chlorophyll. The chemical formula of chlorophyll-a is C55H72O5N4Mg. "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
PEBB78VW mass concentration of chlorophyll a in sea ice "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. Chlorophyll-a is the most commonly occurring form of natural chlorophyll. The chemical formula of chlorophyll-a is C55H72O5N4Mg. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2023-07-05
CF14N7 mass concentration of chlorophyll a in sea water "Mass concentration" means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. Chlorophyll-a is the most commonly occurring form of natural chlorophyll. The chemical formula of chlorophyll-a is C55H72O5N4Mg. 2013-11-08
G7GLPPOQ mass concentration of chlorophyll b in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/CHLBXXPX/2/. 2022-03-18
84MBKC8T mass concentration of chlorophyll c1 and chlorophyll c2 in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. Chlorophyll c1c2 (sometimes written c1-c2 or c1+c2) means the sum of chlorophyll c1 and chlorophyll c2. The chemical formula of chlorophyll c1 is C35H30MgN4O5, and chlorophyll c2 is C35H28MgN4O5. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/CHLC12PX/3/. 2022-03-18
EFCTNKNQ mass concentration of chlorophyll c3 in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. The chemical formula of chlorophyll c3 is C36H44MgN4O7. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/CHLC03PX/2/. 2022-03-18
A11Z9FG9 mass concentration of chlorophyll c4 in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. 2023-02-06
RR98FNC2 mass concentration of chlorophyll c in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. Chlorophyll-c means chlorophyll c1+c2+c3. The chemical formula of chlorophyll c1 is C35H30MgN4O5, and chlorophyll c2 is C35H28MgN4O5. The chemical formula of chlorophyll c3 is C36H44MgN4O7. 2022-03-18
CF12S21 mass concentration of chlorophyll in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. 2013-11-08
614TA08O mass concentration of chlorophyllide a in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of chlorophyllide-a is C35H34MgN4O5. 2022-03-18
67A4BLK6 mass concentration of chromium in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Chromium means chromium in all chemical forms, commonly referred to as "total chromium". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
BBAD2112 mass concentration of cloud liquid water in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CF12N246 mass concentration of clox expressed as chlorine in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Clox" describes a family of chemical species consisting of inorganic chlorine compounds with the exception of hydrogen chloride (HCl) and chlorine nitrate (ClONO2). The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Clox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. Standard names that use the term "inorganic_ chlorine" are used for quantities that contain all inorganic chlorine species including HCl and ClONO2. 2019-03-04
IEIAABIH mass concentration of coarse mode ambient aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. Coarse mode aerosol is aerosol having a diameter of more than 1 micrometer. 2015-01-07
3CJPRLTE mass concentration of coarse mode ambient aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. Coarse mode aerosol particles have a diameter of more than 1 micrometer. 2015-01-07
LLRGBHEB mass concentration of cobalt in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as "nox_ expressed_ as_ nitrogen". Cobalt means cobalt in all chemical forms, commonly referred to as "total cobalt". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CFSN0787 mass concentration of condensed water in soil Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. Condensed water means liquid and ice. 2007-05-15
FPJS5KF0 mass concentration of copper in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Copper means copper in all chemical forms, commonly referred to as "total copper". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
MXW6H59S mass concentration of diadinoxanthin in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of diadinoxanthin is C40H54O3. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/DIADXXXX/2/. 2022-03-18
CF12N247 mass concentration of diatoms expressed as carbon in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Diatoms are single-celled phytoplankton with an external skeleton made of silica. Phytoplankton are a algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
CF14N8 mass concentration of diatoms expressed as chlorophyll in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. Diatoms are single-celled phytoplankton with an external skeleton made of silica. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
CF12N248 mass concentration of diatoms expressed as nitrogen in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Diatoms are single-celled phytoplankton with an external skeleton made of silica. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
DGRSTNBE mass concentration of diazotrophic phytoplankton expressed as carbon in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Diazotrophic phytoplankton are phytoplankton (predominantly from Phylum Cyanobacteria) that are able to fix molecular nitrogen (gas or solute) in addition to nitrate and ammonium. 2020-03-09
FLVW03HN mass concentration of diazotrophic phytoplankton expressed as chlorophyll in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Diazotrophic phytoplankton are phytoplankton (predominantly from Phylum Cyanobacteria) that are able to fix molecular nitrogen (gas or solute) in addition to nitrate and ammonium. 2020-03-09
CF14N9 mass concentration of diazotrophs expressed as chlorophyll in sea water DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2020-03-09
CF12N249 mass concentration of dichlorine peroxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for dichlorine peroxide is Cl2O2. 2009-07-06
CF12N250 mass concentration of dimethyl sulfide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for dimethyl sulfide is (CH3)2S. Dimethyl sulfide is sometimes referred to as DMS. 2009-07-06
CF12N251 mass concentration of dinitrogen pentoxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for dinitrogen pentoxide is N2O5. 2009-07-06
XQIT6TRZ mass concentration of divinyl chlorophyll a in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". 2022-03-18
BBAD2117 mass concentration of drizzle in air Mass concentration means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Drizzle" means drops of water falling through the atmosphere that have a diameter typically in the range 0.2-0.5 mm. 2011-07-21
CF12N252 mass concentration of dust dry aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
YKFYOO3T mass concentration of dust dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2015-01-07
CDDBJ4AL mass concentration of elemental carbon dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
E1FDB8H6 mass concentration of elemental carbon in dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). In measurements of carbonaceous aerosols, elemental carbon samples may also include some inorganic carbon compounds, whose mass is neglected and assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
N3MV667S mass concentration of elemental carbon in pm10 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). In measurements of carbonaceous aerosols, elemental carbon samples may also include some inorganic carbon compounds, whose mass is neglected and assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
2CRNGV5T mass concentration of elemental carbon in pm1 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm1 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 1 micrometer. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). In measurements of carbonaceous aerosols, elemental carbon samples may also include some inorganic carbon compounds, whose mass is neglected and assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
MHPR3DJ1 mass concentration of elemental carbon in pm2p5 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). In measurements of carbonaceous aerosols, elemental carbon samples may also include some inorganic carbon compounds, whose mass is neglected and assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
CF12N253 mass concentration of ethane in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N254 mass concentration of ethanol in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ethanol is C2H5OH. 2009-07-06
CF12N255 mass concentration of ethene in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
CF12N256 mass concentration of ethyne in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. 2009-07-06
CF14N10 mass concentration of flagellates expressed as carbon in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Flagellates" are a class of single celled organisms that use a flagellum (whip-like structure) for feeding and locomotion. Some flagellates can photosynthesize and others feed on bacteria, with a few flagellates capable of both. 2019-02-04
CF14N11 mass concentration of flagellates expressed as nitrogen in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Flagellates" are a class of single celled organisms that use a flagellum (whip-like structure) for feeding and locomotion. Some flagellates can photosynthesize and others feed on bacteria, with a few flagellates capable of both. 2019-02-04
CF12N257 mass concentration of formaldehyde in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. 2009-07-06
CF12N258 mass concentration of formic acid in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for formic acid is HCOOH. The IUPAC name for formic acid is methanoic acid. 2009-07-06
TDLW6BM7 mass concentration of fucoxanthin in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of fucoxanthin is C42H58O6. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/FUCXZZZZ/2/. 2022-03-18
CF12N259 mass concentration of gaseous divalent mercury in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Divalent mercury" means all compounds in which the mercury has two binding sites to other ion(s) in a salt or to other atom(s) in a molecule. 2009-07-06
CF12N260 mass concentration of gaseous elemental mercury in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for mercury is Hg. 2009-07-06
CF12N261 mass concentration of halon1202 in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1202 is CBr2F2. The IUPAC name for Halon1202 is dibromo(difluoro)methane. 2019-05-14
CF12N262 mass concentration of halon1211 in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1211 is CBrClF2. The IUPAC name for Halon1211 is bromo-chloro-difluoromethane. 2019-05-14
CF12N263 mass concentration of halon1301 in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1301 is CBrF3. The IUPAC name for Halon1301 is bromo(trifluoro)methane. 2019-05-14
CF12N264 mass concentration of halon2402 in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon2402 is C2Br2F4. The IUPAC name for Halon2402 is 1,2-dibromo-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12N265 mass concentration of hcc140a in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCC140a, also called methyl chloroform, is CH3CCl3. The IUPAC name for HCC140a is 1,1,1-trichloroethane. 2019-05-14
CF12N266 mass concentration of hcfc141b in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for HCFC141b is CH3CCl2F. The IUPAC name for HCFC141b is 1,1-dichloro-1-fluoroethane. 2009-07-06
CF12N267 mass concentration of hcfc142b in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for HCFC142b is CH3CClF2. The IUPAC name for HCFC142b is 1-chloro-1,1-difluoroethane. 2009-07-06
CF12N268 mass concentration of hcfc22 in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCFC22 is CHClF2. The IUPAC name for HCFC22 is chloro(difluoro)methane. 2019-05-14
CF12N269 mass concentration of hexachlorobiphenyl in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hexachlorobiphenyl is C12H4Cl6. This structure of this species consists of two linked benzene rings, each of which is additionally bonded to three chlorine atoms. 2009-07-06
CF12N270 mass concentration of hox expressed as hydrogen in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "HOx" means a combination of two radical species containing hydrogen and oxygen: OH and HO2. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
CF12N271 mass concentration of hydrogen bromide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hydrogen bromide is HBr. 2009-07-06
CF12N272 mass concentration of hydrogen chloride in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hydrogen chloride is HCl. 2009-07-06
CF12N273 mass concentration of hydrogen cyanide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hydrogen cyanide is HCN. 2009-07-06
CF12N274 mass concentration of hydrogen peroxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hydrogen peroxide is H2O2. 2009-07-06
CF12N275 mass concentration of hydroperoxyl radical in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for the hydroperoxyl radical is HO2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N276 mass concentration of hydroxyl radical in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for the hydroxyl radical is OH. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N277 mass concentration of hypobromous acid in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hypobromous acid is HOBr. 2009-07-06
CF12N278 mass concentration of hypochlorous acid in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hypochlorous acid is HOCl. 2009-07-06
CF12N279 mass concentration of inorganic bromine in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. "Inorganic bromine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "brox" are used for quantities that contain all inorganic bromine species except HBr and BrONO2. 2019-03-04
CF12N280 mass concentration of inorganic chlorine in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. "Inorganic chlorine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "clox" are used for quantities that contain all inorganic chlorine species except HCl and ClONO2. 2019-03-04
CF14N12 mass concentration of inorganic nitrogen in sea water 'Mass concentration' means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. 'Inorganic nitrogen' describes a family of chemical species which, in an ocean model, usually includes nitrite, nitrate and ammonium which act as nitrogen nutrients. 'Inorganic nitrogen' is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2010-05-12
NHTYBBOP mass concentration of iron in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Iron means iron in all chemical forms, commonly referred to as "total iron". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CF12N281 mass concentration of isoprene in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for isoprene is CH2=C(CH3)CH=CH2. The IUPAC name for isoprene is 2-methylbuta-1,3-diene. Isoprene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
KJWKRKJK mass concentration of lead in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Lead means lead in all chemical forms, commonly referred to as "total lead". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CF12N282 mass concentration of limonene in air "Mass concentration" means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for limonene is C10H16. The IUPAC name for limonene is 1-methyl-4-prop-1-en-2-ylcyclohexene. Limonene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
BBAD2114 mass concentration of liquid water in air Mass concentration means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The mass concentration of liquid water takes into account all c loud droplets and liquid precipitation regardless of drop size or fall speed. 2011-03-23
BLUVVTHX mass concentration of lithium in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Lithium means lithium in all chemical forms, commonly referred to as "total lithium". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
WXYTUBAM mass concentration of lutein in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of lutein is C40H56O2. 2022-03-18
L76Y29FR mass concentration of manganese in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Manganese means manganese in all chemical forms, commonly referred to as "total manganese". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CF12N283 mass concentration of mercury dry aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
PCDEL2PW mass concentration of mercury dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2015-01-07
S0T41QA6 mass concentration of mercury in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Mercury means mercury in all chemical forms, commonly referred to as "total mercury". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CF12N284 mass concentration of methane in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N285 mass concentration of methanol in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for methanol is CH3OH. 2009-07-06
CF12N286 mass concentration of methyl bromide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for methyl bromide is CH3Br. The IUPAC name for methyl bromide is bromomethane. 2009-07-06
CF12N287 mass concentration of methyl chloride in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for methyl chloride is CH3Cl. The IUPAC name for methyl chloride is chloromethane. 2009-07-06
CF12N288 mass concentration of methyl hydroperoxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for methyl hydroperoxide is CH3OOH. 2009-07-06
CF12N289 mass concentration of methyl peroxy radical in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for methyl_ peroxy_ radical is CH3O2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
EX07U1MU mass concentration of microphytoplankton expressed as chlorophyll in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. Microphytoplankton are phytoplankton between 20 and 200 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2021-01-18
CF14N13 mass concentration of miscellaneous phytoplankton expressed as chlorophyll in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. "Miscellaneous phytoplankton" are all those phytoplankton that are not diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton or other separately named components of the phytoplankton population. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
CF12N290 mass concentration of molecular hydrogen in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for molecular hydrogen is H2. 2009-07-06
CJBMI76L mass concentration of monovinyl chlorophyll a in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". 2022-03-18
H12YUA8Y mass concentration of nanophytoplankton expressed as chlorophyll in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. Nanophytoplankton are phytoplankton between 2 and 20 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2021-01-18
5W9WBWD8 mass concentration of nickel in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Nickel means nickel in all chemical forms, commonly referred to as "total nickel". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CF12N291 mass concentration of nitrate dry aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The chemical formula for the nitrate anion is NO3-. 2015-01-07
80SFD1ZQ mass concentration of nitrate dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for the nitrate anion is NO3-. 2015-01-07
CF12N292 mass concentration of nitrate radical in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N293 mass concentration of nitric acid in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for nitric acid is HNO3. 2009-07-06
CF12N294 mass concentration of nitric acid trihydrate ambient aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
52SO2NQQ mass concentration of nitric acid trihydrate ambient aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
CF12N295 mass concentration of nitrogen dioxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for nitrogen dioxide is NO2. 2009-07-06
ZRB7ABOM mass concentration of nitrogen in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Total nitrogen means nitrogen in all chemical forms. "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CF12N296 mass concentration of nitrogen monoxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for nitrogen monoxide is NO. 2009-07-06
CF12N297 mass concentration of nitrous acid in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for nitrous acid is HNO2. 2009-07-06
CF12N298 mass concentration of nitrous oxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for nitrous oxide is N2O. 2009-07-06
CF12N299 mass concentration of nmvoc expressed as carbon in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
CF12N300 mass concentration of nox expressed as nitrogen in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
CF12N301 mass concentration of noy expressed as nitrogen in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Noy" describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2) , chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)). The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
6XFKWZYA mass concentration of organic carbon in dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. Chemically, "organic carbon aerosol" refers to the carbonaceous fraction of particulate matter contained in any of the vast number of compounds where carbon is chemically combined with hydrogen and other elements like O, S, N, P, Cl, etc. In measurements of carbonaceous aerosols, organic carbon samples may also include some inorganic carbon compounds, whose mass is neglected and assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
WUZ4LQRA mass concentration of organic carbon in pm10 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. Chemically, "organic carbon aerosol" refers to the carbonaceous fraction of particulate matter contained in any of the vast number of compounds where carbon is chemically combined with hydrogen and other elements like O, S, N, P, Cl, etc. In measurements of carbonaceous aerosols, organic carbon samples may also include some inorganic carbon compounds, whose mass is neglected and assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
OZFG3W2A mass concentration of organic carbon in pm1 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm1 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 1 micrometer. Chemically, "organic carbon aerosol" refers to the carbonaceous fraction of particulate matter contained in any of the vast number of compounds where carbon is chemically combined with hydrogen and other elements like O, S, N, P, Cl, etc. In measurements of carbonaceous aerosols, organic carbon samples may also include some inorganic carbon compounds, whose mass is neglected and assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
KQ6S1BDW mass concentration of organic carbon in pm2p5 dry aerosol particles in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. Chemically, "organic carbon aerosol" refers to the carbonaceous fraction of particulate matter contained in any of the vast number of compounds where carbon is chemically combined with hydrogen and other elements like O, S, N, P, Cl, etc. In measurements of carbonaceous aerosols, organic carbon samples may also include some inorganic carbon compounds, whose mass is neglected and assumed to be distributed between the elemental and organic carbon components of the aerosol particles. Reference: Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365-8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 2023-02-06
ZC2WYLVH mass concentration of organic carbon in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Organic carbon describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CF12N302 mass concentration of organic detritus expressed as carbon in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Organic detritus are particles of debris from decaying plants and animals. 2009-07-06
CF12N303 mass concentration of organic detritus expressed as nitrogen in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Organic detritus are particles of debris from decaying plants and animals. 2009-07-06
CFSN0529 mass concentration of oxygen in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. 2006-09-26
CF12N304 mass concentration of oxygenated hydrocarbons in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Oxygenated" means containing oxygen. "Hydrocarbon" means a compound containing hydrogen and carbon. 2009-07-06
CF12N305 mass concentration of ozone in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ozone is O3. 2009-07-06
CF12N306 mass concentration of particulate organic matter dry aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
6KDFFL7S mass concentration of particulate organic matter dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
2EXCNZRD mass concentration of peridinin in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/PERDXXXX/2/. 2022-03-18
CF12N307 mass concentration of peroxy radicals in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The term "peroxy_ radicals" means all organic and inorganic peroxy radicals. This includes HO2 and all organic peroxy radicals, sometimes referred to as RO2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N308 mass concentration of peroxyacetyl nitrate in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for peroxyacetyl nitrate, sometimes referred to as PAN, is CH3COO2NO2. The IUPAC name for peroxyacetyl_ nitrate is nitroethaneperoxoate. 2009-07-06
CF12N309 mass concentration of peroxynitric acid in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for peroxynitric acid, sometimes referred to as PNA, is HO2NO2. 2009-07-06
6JIASUY6 mass concentration of petroleum hydrocarbons in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Petroleum hydrocarbons are compounds containing just carbon and hydrogen originating from the fossil fuel crude oil. 2017-01-24
MJNS8Q36 mass concentration of phaeopigments in sea floor sediment Concentration of phaeopigment per unit volume of the water body, where the filtration size or collection method is unspecified (equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/. "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Phaeopigments are a group of non-photosynthetic pigments that are the degradation product of algal chlorophyll pigments. Phaeopigments contain phaeophytin, which fluoresces in response to excitation light, and phaeophorbide, which is colorless and does not fluoresce (source: https://academic.oup.com/plankt/article/24/11/1221/1505482). Phaeopigment concentration commonly increases during the development phase of marine phytoplankton blooms, and declines in the post bloom stage (source: https://www.sciencedirect.com/science/article/pii/0967063793901018). "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
MOM01WTJ mass concentration of phaeopigments in sea ice "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Phaeopigments are non-photosynthetic pigments that are the degradation product of algal chlorophyll pigments. It is commonly formed during and after marine phytoplankton blooms. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2023-07-05
9M7GYUHQ mass concentration of phaeopigments in sea water Concentration of phaeopigment per unit volume of the water body, where the filtration size or collection method is unspecified (equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/. "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Phaeopigments are a group of non-photosynthetic pigments that are the degradation product of algal chlorophyll pigments. Phaeopigments contain phaeophytin, which fluoresces in response to excitation light, and phaeophorbide, which is colorless and does not fluoresce (source: https://academic.oup.com/plankt/article/24/11/1221/1505482). Phaeopigment concentration commonly increases during the development phase of marine phytoplankton blooms, and declines in the post bloom stage (source: https://www.sciencedirect.com/science/article/pii/0967063793901018). 2022-03-18
CF12N310 mass concentration of phosphate in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. 2009-07-06
7B360EMO mass concentration of phosphorus in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Phosphorus means phosphorus in all chemical forms, commonly referred to as "total phosphorus". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CF12N311 mass concentration of phytoplankton expressed as chlorophyll in sea water Mass concentration means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Standard names also exist for the mass concentration of a number of components that make up the total phytoplankton population, such as diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton and miscellaneous phytoplankton. Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. 2018-12-17
CF14N14 mass concentration of picophytoplankton expressed as chlorophyll in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally. All contain a chlorin ring (chemical formula C20H16N4) which gives the green pigment and a side chain whose structure varies. The naturally occurring forms of chlorophyll contain between 35 and 55 carbon atoms. Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
DIEJIDDA mass concentration of pm10 ambient aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. "Pm10 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 10 micrometers. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature." 2015-01-07
6O34XRFW mass concentration of pm10 ambient aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature." 2017-06-26
3E7JLSP8 mass concentration of pm10 sea salt dry aerosol particles expressed as cations in air Mass concentration means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The phrase "sea_ salt_ cation" is the term used in standard names to describe collectively the group of cationic species that occur in sea salt. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Sea salt cations are mainly sodium (Na+), but also include potassium (K+), magnesium (Mg2+), calcium (Ca2+) and rarer cations. Where possible, the data variable should be accompanied by a complete description of the ions represented, for example, by using a comment attribute. 2017-06-26
48RSQHHN mass concentration of pm10 sea salt dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. 2017-06-26
DIAIAHGI mass concentration of pm1 ambient aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. "Pm1 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 1 micrometer. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature". 2015-01-07
T33M2FO7 mass concentration of pm1 ambient aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "Pm1 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 1 micrometer. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of "relative_ humidity" and "air_ temperature". 2017-06-26
IGGCJECC mass concentration of pm2p5 ambient aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. "Pm2p5 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 2.5 micrometers. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature." 2015-01-07
YUDG9DXK mass concentration of pm2p5 ambient aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of "relative_ humidity" and "air_ temperature." 2017-06-26
CB5OVLSN mass concentration of pm2p5 sea salt dry aerosol particles expressed as cations in air Mass concentration means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The phrase "sea_ salt_ cation" is the term used in standard names to describe collectively the group of cationic species that occur in sea salt. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Sea salt cations are mainly sodium (Na+), but also include potassium (K+), magnesium (Mg2+), calcium (Ca2+) and rarer cations. Where possible, the data variable should be accompanied by a complete description of the ions represented, for example, by using a comment attribute. 2017-06-26
BO2NT0X6 mass concentration of pm2p5 sea salt dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. 2017-06-26
PQU4JFOU mass concentration of prasinoxanthin in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of prasinoxanthin is C40H56O4. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/PXAPXXXX/2/. 2022-03-18
CF12N312 mass concentration of primary particulate organic matter dry aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except black carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
FQM4CFXQ mass concentration of primary particulate organic matter dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except elemental carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
E16D9FIK mass concentration of prokaryotes expressed as carbon in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Prokaryotes" means all Bacteria and Archaea excluding photosynthetic cyanobacteria such as Synechococcus and Prochlorococcus or other separately named components of the prokaryotic population. 2023-07-05
CF12N313 mass concentration of propane in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N314 mass concentration of propene in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
CF12N315 mass concentration of radon in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for radon is Rn. 2009-07-06
BBAD2111 mass concentration of rain in air Mass concentration means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Rain" means drops of water falling through the atmosphere that have a diameter greater than 0.5 mm. 2011-03-23
CED3MGHH mass concentration of sea salt dry aerosol particles expressed as cations in air Mass concentration means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The phrase "sea_ salt_ cation" is the term used in standard names to describe collectively the group of cationic species that occur in sea salt. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Sea salt cations are mainly sodium (Na+), but also include potassium (K+), magnesium (Mg2+), calcium (Ca2+) and rarer cations. Where possible, the data variable should be accompanied by a complete description of the ions represented, for example, by using a comment attribute. 2017-06-26
555CIR5B mass concentration of sea salt dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2017-06-26
CF12N316 mass concentration of seasalt dry aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
VXU53AOW mass concentration of seasalt dry aerosol particles in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2017-06-26
CF12N317 mass concentration of secondary particulate organic matter dry aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Secondary particulate organic matter " means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
WM3WIV44 mass concentration of secondary particulate organic matter dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Secondary particulate organic matter" means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
CF12N318 mass concentration of silicate in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. 2009-07-06
3TG016CA mass concentration of silver in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Silver means silver in all chemical forms, commonly referred to as "total silver". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
CFSN0530 mass concentration of sulfate aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. 'Aerosol' means the suspended liquid or solid particles in air (except cloud droplets). 2009-07-06
CF12S22 mass concentration of sulfate ambient aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. 2015-01-07
WWO2ZBS0 mass concentration of sulfate ambient aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2015-01-07
CF12N319 mass concentration of sulfate dry aerosol in air DEPRECATED Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
TA5FFG7W mass concentration of sulfate dry aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
CF12N320 mass concentration of sulfur dioxide in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for sulfur dioxide is SO2. 2009-07-06
CF12S23 mass concentration of suspended matter in sea water Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. 2009-07-06
CF12N321 mass concentration of terpenes in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Terpenes are hydrocarbons, that is, they contain only hydrogen and carbon combined in the general proportions (C5H8)n where n is an integer greater than on equal to one. The term "terpenes" is used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual terpene species, e.g., isoprene and limonene. 2009-07-06
CF12N322 mass concentration of toluene in air "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. 2019-03-04
OZAASJ4Q mass concentration of vanadium in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Vanadium means vanadium in all chemical forms, commonly referred to as "total vanadium". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
OFEJXA57 mass concentration of violaxanthin in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of violaxanthin is C40H56O4. 2022-03-18
2NRXNMW3 mass concentration of volcanic ash in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. "Volcanic ash" means the fine-grained products of explosive volcanic eruptions, such as minerals or crystals, older fragmented rock (e.g. andesite) and glass. Particles within a volcanic ash cloud have diameters less than 2 mm. "Volcanic ash" does not include non-volcanic dust. 2018-02-12
CF12N323 mass concentration of water in ambient aerosol in air DEPRECATED "Water" means water in all phases. Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. 2015-01-07
DEFTZ0HG mass concentration of water in ambient aerosol particles in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. 2015-01-07
CF12N324 mass concentration of water vapor in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. 2009-07-06
CF12N325 mass concentration of xylene in air Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
PUHA3XB4 mass concentration of zeaxanthin in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of zeaxanthin is C40H56O2. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/ZEAXXXXX/2/. 2022-03-18
7YZ2U3SR mass concentration of zinc in sea floor sediment "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Zinc means zinc in all chemical forms, commonly referred to as "total zinc". "Sea floor sediment" is sediment deposited at the sea bed. 2024-01-18
SZQEEQA7 mass concentration of zooplankton expressed as carbon in sea water "Mass concentration" means mass per unit volume and is used in the construction "mass_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Zooplankton" means the total zooplankton population, with components such as mesozooplankton, microzooplankton and miscellaneous zooplankton. 2020-02-03
FGJFMKY8 mass content of 13C in vegetation and litter and soil and forestry and agricultural products "Content" indicates a quantity per unit area. "Vegetation" means any living plants e.g. trees, shrubs, grass. "Litter" is dead plant material in or above the soil. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. Examples of "forestry and agricultural products" are paper, cardboard, furniture, timber for construction, biofuels and food for both humans and livestock. Models that simulate land use changes have one or more pools of carbon that represent these products in order to conserve carbon and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. "C" means the element carbon and "13C" is the stable isotope "carbon-13", having six protons and seven neutrons. 2018-03-13
9NTZ29GY mass content of 14C in vegetation and litter and soil and forestry and agricultural products "Content" indicates a quantity per unit area. "Vegetation" means any living plants e.g. trees, shrubs, grass. "Litter" is dead plant material in or above the soil. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. Examples of "forestry and agricultural products" are paper, cardboard, furniture, timber for construction, biofuels and food for both humans and livestock. Models that simulate land use changes have one or more pools of carbon that represent these products in order to conserve carbon and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. 2018-03-13
G2R5WGQW mass content of carbon in vegetation and litter and soil and forestry and agricultural products "Content" indicates a quantity per unit area. "Vegetation" means any living plants e.g. trees, shrubs, grass. "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. Examples of "forestry and agricultural products" are paper, cardboard, furniture, timber for construction, biofuels and food for both humans and livestock. Models that simulate land use changes have one or more pools of carbon that represent these products in order to conserve carbon and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. 2018-05-15
BBAH2150 mass content of cloud condensed water in atmosphere layer "condensed_ water" means liquid and ice. "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
BBAH2149 mass content of cloud ice in atmosphere layer "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
BBAH2147 mass content of cloud liquid water in atmosphere layer The "content_ of_ X_ in_ atmosphere_ layer" refers to the vertical integral between two specified levels in the atmosphere. "Content" indicates a quantity per unit area. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2020-03-09
UEYPUZ0R mass content of nitrogen in vegetation and litter and soil and forestry and agricultural products "Content" indicates a quantity per unit area. "Vegetation" means any living plants e.g. trees, shrubs, grass. "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. Examples of "forestry and agricultural products" are paper, cardboard, furniture, timber for construction, biofuels and food for both humans and livestock. Models that simulate land use changes have one or more pools of carbon that represent these products in order to conserve carbon and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. 2018-05-15
BBAH2121 mass content of water in atmosphere layer "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. "Water" means water in all phases. 2011-07-21
TSZDW8IB mass content of water in soil "Water" means water in all phases. "Content" indicates a quantity per unit area. The mass content of water in soil refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. 2016-12-13
WLG5JE8B mass content of water in soil layer "Content" indicates a quantity per unit area. "Water" means water in all phases. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be "model_ level_ number", but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Quantities defined for a soil layer must have a vertical coordinate variable with boundaries indicating the extent of the layer(s). 2016-12-13
EPBI7YXY mass content of water in soil layer defined by root depth "Content" indicates a quantity per unit area. The content of a soil layer is the vertical integral of the specified quantity within the layer. The quantity with standard name mass_ content_ of_ water_ in_ soil_ layer_ defined_ by_ root_ depth is the vertical integral between the surface and the depth to which plant roots penetrate. A coordinate variable or scalar coordinate variable with standard name root_ depth can be used to specify the extent of the layer. "Water" means water in all phases. 2018-06-11
VH54JHE7 mass content of water vapor containing 17O in atmosphere layer "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be "model_ level_ number", but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. The "content_ of_ X_ in_ atmosphere_ layer" refers to the vertical integral between two specified levels in the atmosphere. The chemical formula for water is H2O. "O" means the element "oxygen" and "17O" is the stable isotope "oxygen-17". 2018-05-15
EOWSGQYD mass content of water vapor containing 18O in atmosphere layer "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be "model_ level_ number", but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. The "content_ of_ X_ in_ atmosphere_ layer" refers to the vertical integral between two specified levels in the atmosphere. The chemical formula for water is H2O. "O" means the element "oxygen" and "18O" is the stable isotope "oxygen-18". 2018-05-15
39LKWYF2 mass content of water vapor containing single 2H in atmosphere layer "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be "model_ level_ number", but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. The "content_ of_ X_ in_ atmosphere_ layer" refers to the vertical integral between two specified levels in the atmosphere. The chemical formula for water is H2O. "H" means the element "hydrogen" and "2H" is the stable isotope "hydrogen-2", usually called "deuterium". The construction "X_ containing_ single_ Y" means the standard name refers to only that part of X composed of molecules containing a single atom of isotope Y. 2018-05-15
BBAH2120 mass content of water vapor in atmosphere layer "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
JY28LLT8 mass flux of carbon into forestry and agricultural products due to crop harvesting In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Examples of "forestry and agricultural products" are paper, cardboard, furniture, timber for construction, biofuels and food for both humans and livestock. Models that simulate land use changes have one or more pools of carbon that represent these products in order to conserve carbon and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The definition of "crop" is model dependent, for example, some models may include fruit trees, trees grown for timber or other types of agricultural and forestry planting as crops. Crop harvesting means the human activity of collecting plant materials for the purpose of turning them into forestry or agricultural products. 2018-04-16
MGOP5BFS mass flux of carbon into litter from vegetation In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Vegetation" means any living plants e.g. trees, shrubs, grass. "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. The sum of the quantities with standard names mass_ flux_ of_ carbon_ into_ litter_ from_ vegetation_ due_ to_ mortality and mass_ flux_ of_ carbon_ into_ litter_ from_ vegetation_ due_ to_ senescence is mass_ flux_ of_ carbon_ into_ litter_ from_ vegetation. 2018-04-16
D30WTAW8 mass flux of carbon into litter from vegetation due to mortality In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Vegetation" means any living plants e.g. trees, shrubs, grass. "Litter" is dead plant material in or above the soil. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The term "mortality" means the loss of living biomass due to plant death. It refers to the death of the whole plant, not only the leaves. 2018-03-13
QDMJPZTF mass flux of carbon into litter from vegetation due to senescence In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Vegetation" means any living plants e.g. trees, shrubs, grass. "Litter" is dead plant material in or above the soil. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The term "senescence" means loss of living biomass excluding plant death, e.g. leaf drop and other seasonal effects. The term refers to changes in the whole plant and is not confined only to leaf drop. 2018-03-13
MRZBZIAU mass flux of carbon into sea water from rivers In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "River" refers to water in the fluvial system (stream and floodplain). 2018-05-29
67HYF5UJ mass flux of carbon into soil from vegetation due to mortality In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Vegetation" means any living plants e.g. trees, shrubs, grass. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The term "mortality" means the loss of living biomass due to plant death. It refers to the death of the whole plant, not only the leaves. 2018-03-13
812MO97V mass flux of carbon into soil from vegetation due to senescence In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Vegetation" means any living plants e.g. trees, shrubs, grass. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The term "senescence" means loss of living biomass excluding plant death, e.g. leaf drop and other seasonal effects. The term refers to changes in the whole plant and is not confined only to leaf drop. 2018-03-13
8C3CFSYC mass flux of carbon out of soil due to leaching and runoff In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Leaching" means the loss of water soluble chemical species from soil. Runoff is the liquid water which drains from land. If not specified, "runoff" refers to the sum of surface runoff and subsurface drainage. 2018-03-13
HBLPLTWJ mass flux of nitrogen compounds expressed as nitrogen into sea from rivers In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "River" refers to water in the fluvial system (stream and floodplain). 2018-05-29
7HBAHG55 mass flux of nitrogen compounds expressed as nitrogen out of litter and soil due to immobilisation and remineralization In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Remineralization is the degradation of organic matter into inorganic forms of carbon, nitrogen, phosphorus and other micronutrients, which consumes oxygen and releases energy. Immobilisation of nitrogen refers to retention of nitrogen by micro-organisms under certain conditions, making it unavailable for plants. 2018-05-15
6SW0L448 mass flux of nitrogen compounds expressed as nitrogen out of vegetation and litter and soil due to leaching and runoff In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. "Vegetation" means any living plants e.g. trees, shrubs, grass. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Leaching" means the loss of water soluble chemical species from soil. Runoff is the liquid water which drains from land. If not specified, "runoff" refers to the sum of surface runoff and subsurface drainage. 2018-05-15
CF12N326 mass fraction of acetic acid in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for acetic_ acid is CH3COOH. The IUPAC name for acetic acid is ethanoic acid. 2009-07-06
CF12N327 mass fraction of aceto nitrile in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for aceto-nitrile is CH3CN. The IUPAC name for aceto-nitrile is ethanenitrile. 2009-07-06
CF12N328 mass fraction of alkanes in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Alkanes are saturated hydrocarbons, i.e. they do not contain any chemical double bonds. Alkanes contain only hydrogen and carbon combined in the general proportions C(n)H(2n+2); "alkanes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual alkane species, e.g., methane and ethane. 2009-07-06
CF12N329 mass fraction of alkenes in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Alkenes are unsaturated hydrocarbons as they contain chemical double bonds between adjacent carbon atoms. Alkenes contain only hydrogen and carbon combined in the general proportions C(n)H(2n); "alkenes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual alkene species, e.g., ethene and propene. 2009-07-06
CF12N330 mass fraction of alpha hexachlorocyclohexane in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for alpha_ hexachlorocyclohexane is C6H6Cl6. 2009-07-06
CF12N331 mass fraction of alpha pinene in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for alpha_ pinene is C10H16. The IUPAC name for alpha-pinene is (1S,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene. 2009-07-06
CF12N332 mass fraction of ammonia in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ammonia is NH3. 2009-07-06
CFSN0788 mass fraction of ammonium dry aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Mass_ fraction_ of_ ammonium" means that the mass is expressed as mass of NH4. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
7QGQFIQV mass fraction of ammonium dry aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Mass_ fraction_ of_ ammonium" means that the mass is expressed as mass of NH4. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2015-01-07
CF12N333 mass fraction of anthropogenic nmvoc expressed as carbon in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Anthropogenic" means influenced, caused, or created by human activity. 2015-01-07
CF12N334 mass fraction of aromatic compounds in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Aromatic compounds in organic chemistry are compounds that contain at least one benzene ring of six carbon atoms joined by alternating single and double covalent bonds. The simplest aromatic compound is benzene itself. In standard names "aromatic_ compounds" is the term used to describe the group of aromatic chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual aromatic species, e.g. benzene and xylene. 2009-07-06
CF12N335 mass fraction of atomic bromine in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for atomic bromine is Br. 2009-07-06
CF12N336 mass fraction of atomic chlorine in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for atomic chlorine is Cl. 2009-07-06
CF12N337 mass fraction of atomic nitrogen in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for atomic nitrogen is N. 2009-07-06
CF12N338 mass fraction of benzene in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
CF12N339 mass fraction of beta pinene in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for beta_ pinene is C10H16. The IUPAC name for beta-pinene is (1S,5S)-6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane. 2009-07-06
CF12N340 mass fraction of biogenic nmvoc expressed as carbon in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Biogenic" means influenced, caused, or created by natural processes. 2015-01-07
CFSN0789 mass fraction of black carbon dry aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. 2015-01-07
CF12N341 mass fraction of bromine chloride in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for bromine chloride is BrCl. 2019-03-04
CF12N342 mass fraction of bromine monoxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for bromine monoxide is BrO. 2019-03-04
CF12N343 mass fraction of bromine nitrate in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for bromine nitrate is BrONO2. 2019-03-04
CF12N344 mass fraction of brox expressed as bromine in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Brox" describes a family of chemical species consisting of inorganic bromine compounds with the exception of hydrogen bromide (HBr) and bromine nitrate (BrONO2). "Brox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. Standard names that use the term "inorganic_ bromine" are used for quantities that contain all inorganic bromine species including HBr and BrONO2. 2019-03-04
CF12N345 mass fraction of butane in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2019-03-04
CF12N346 mass fraction of carbon dioxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for carbon dioxide is CO2. 2019-03-04
J3GXAOH3 mass fraction of carbon dioxide tracer in air The chemical formula for carbon dioxide is CO2. Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". A "tracer" is a quantity advected by a model to facilitate analysis of flow patterns. 2018-04-16
CF12N347 mass fraction of carbon monoxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of carbon monoxide is CO. 2019-03-04
CF12N348 mass fraction of carbon tetrachloride in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of carbon tetrachloride is CCl4. The IUPAC name for carbon tetrachloride is tetrachloromethane. 2019-04-08
CF12N350 mass fraction of cfc113 in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC113 is CCl2FCClF2. The IUPAC name for CFC113 is 1,1,2-trichloro-1,2,2-trifluoroethane. 2019-05-14
CF12N351 mass fraction of cfc113a in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC113a is CCl3CF3. The IUPAC name for CFC113a is 1,1,1-trichloro-2,2,2-trifluoroethane. 2019-05-14
CF12N352 mass fraction of cfc114 in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC114 is CClF2CClF2. The IUPAC name for CFC114 is 1,2-dichloro-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12N353 mass fraction of cfc115 in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC115 is CClF2CF3. The IUPAC name for CFC115 is 1-chloro-1,1,2,2,2-pentafluoroethane. 2019-05-14
CF12N349 mass fraction of cfc11 in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro(fluoro)methane. 2019-05-14
CF12N354 mass fraction of cfc12 in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro(difluoro)methane. 2019-05-14
CF12N355 mass fraction of chlorine dioxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for chlorine dioxide is OClO. 2019-03-04
CF12N356 mass fraction of chlorine monoxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for chlorine monoxide is ClO. 2019-03-04
CF12N357 mass fraction of chlorine nitrate in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for chlorine nitrate is ClONO2. 2019-03-04
ORZ7DVDT mass fraction of chlorophyll a in sea water Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Chlorophylls are the green pigments found in most plants, algae and cyanobacteria; their presence is essential for photosynthesis to take place. There are several different forms of chlorophyll that occur naturally; all contain a chlorin ring which gives the green pigment and a side chain whose structure varies. Chlorophyll-a is the most commonly occurring form of natural chlorophyll. 2013-11-08
P9XAB8CM mass fraction of clay in soil "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the mass of X divided by the mass of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Grain-size class distribution is based on the Udden-Wentworth scale. 2021-09-20
CFSN0531 mass fraction of cloud condensed water in air condensed_ water means liquid and ice. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 2008-04-15
CFSN0532 mass fraction of cloud ice in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 2008-04-15
CFSN0533 mass fraction of cloud liquid water in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CF12N358 mass fraction of clox expressed as chlorine in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Clox" describes a family of chemical species consisting of inorganic chlorine compounds with the exception of hydrogen chloride (HCl) and chlorine nitrate (ClONO2). "Clox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. Standard names that use the term "inorganic_ chlorine" are used for quantities that contain all inorganic chlorine species including HCl and ClONO2. 2019-02-04
CFV8NS1 mass fraction of convective cloud condensed water in air "condensed_ water" means liquid and ice. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 2008-04-15
CFSN0534 mass fraction of convective cloud ice in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). Convective cloud is that produced by the convection schemes in an atmosphere model. 2008-04-15
CFSN0535 mass fraction of convective cloud liquid water in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Convective cloud is that produced by the convection schemes in an atmosphere model. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CFSN0536 mass fraction of convective condensed water in air DEPRECATED 'condensed_ water' means liquid and ice. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). 2008-04-15
CF12N359 mass fraction of dichlorine peroxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for dichlorine peroxide is Cl2O2. 2019-03-04
CFSN0537 mass fraction of dimethyl sulfide in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 2008-04-15
CF12N360 mass fraction of dinitrogen pentoxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for dinitrogen pentoxide is N2O5. 2019-03-04
CFSN0790 mass fraction of dust dry aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
KBOQ4L1S mass fraction of dust dry aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2015-01-07
EDUTEJ6O mass fraction of elemental carbon dry aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
CF12N361 mass fraction of ethane in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2019-03-04
CF12N362 mass fraction of ethanol in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for ethanol is C2H5OH. 2019-03-04
CF12N363 mass fraction of ethene in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2019-03-04
CF12N364 mass fraction of ethyne in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. 2019-03-04
CF12N365 mass fraction of formaldehyde in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for formaldehyde is CH2O. 2019-03-04
CF12N366 mass fraction of formic acid in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for formic acid is HCOOH. The IUPAC name for formic acid is methanoic acid. 2019-03-04
CFSN0538 mass fraction of frozen water in soil moisture frozen_ water means ice. "moisture" means water in all phases contained in soil. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 2008-04-15
CF12N367 mass fraction of gaseous divalent mercury in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Divalent mercury" means all compounds in which the mercury has two binding sites to other ion(s) in a salt or to other atom(s) in a molecule. 2019-03-04
CF12N368 mass fraction of gaseous elemental mercury in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical symbol for mercury is Hg. 2019-03-04
CV47QYMG mass fraction of graupel and hail in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). Graupel consists of heavily rimed snow particles, often called snow pellets; often indistinguishable from very small soft hail except when the size convention that hail must have a diameter greater than 5 mm is adopted. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Graupel. Hail is precipitation in the form of balls or irregular lumps of ice, often restricted by a size convention to diameters of 5 mm or more. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Hail. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. For models that do distinguish between them, separate standard names for hail and graupel are available. 2018-05-15
CFSN0539 mass fraction of graupel in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). Graupel consists of heavily rimed snow particles, often called snow pellets; often indistinguishable from very small soft hail except when the size convention that hail must have a diameter greater than 5 mm is adopted. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Graupel. There are also separate standard names for hail. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. 2018-06-11
BX9QJR9J mass fraction of gravel in soil "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y'', where X is a material constituent of Y. It is evaluated as the mass of X divided by the mass of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Grain-size class distribution is based on the Udden-Wentworth scale. 2021-09-20
XA00ZM9D mass fraction of hail in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). Hail is precipitation in the form of balls or irregular lumps of ice, often restricted by a size convention to diameters of 5 mm or more. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Hail. For diameters of less than 5 mm standard names for "graupel" should be used. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. 2018-05-15
CF12N369 mass fraction of halon1202 in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1202 is CBr2F2. The IUPAC name for Halon1202 is dibromo(difluoro)methane. 2019-05-14
CF12N370 mass fraction of halon1211 in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1211 is CBrClF2. The IUPAC name for Halon1211 is bromo-chloro-difluoromethane. 2019-05-14
CF12N371 mass fraction of halon1301 in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1301 is CBrF3. The IUPAC name for Halon1301 is bromo(trifluoro)methane. 2019-05-14
CF12N372 mass fraction of halon2402 in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon2402 is C2Br2F4. The IUPAC name for Halon2402 is 1,2-dibromo-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12N373 mass fraction of hcc140a in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCC140a, also called methyl chloroform, is CH3CCl3. The IUPAC name for HCC140a is 1,1,1-trichloroethane. 2019-05-14
CF12N374 mass fraction of hcfc141b in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCFC141b is CH3CCl2F. The IUPAC name for HCFC141b is 1,1-dichloro-1-fluoroethane. 2019-03-04
CF12N375 mass fraction of hcfc142b in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCFC142b is CH3CClF2. The IUPAC name for HCFC142b is 1-chloro-1,1-difluoroethane. 2019-03-04
CF12N376 mass fraction of hcfc22 in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCFC22 is CHClF2. The IUPAC name for HCFC22 is chloro(difluoro)methane. 2019-05-14
CF12N377 mass fraction of hexachlorobiphenyl in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hexachlorobiphenyl is C12H4Cl6. The structure of this species consists of two linked benzene rings, each of which is additionally bonded to three chlorine atoms. 2019-03-04
CF12N378 mass fraction of hox expressed as hydrogen in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "HOx" means a combination of two radical species containing hydrogen and oxygen, OH and HO2. 2019-03-04
CF12N379 mass fraction of hydrogen bromide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hydrogen bromide is HBr. 2019-03-04
CF12N380 mass fraction of hydrogen chloride in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hydrogen chloride is HCl. 2019-03-04
CF12N381 mass fraction of hydrogen cyanide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hydrogen cyanide is HCN. 2019-03-04
CF12N382 mass fraction of hydrogen peroxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hydrogen peroxide is H2O2. 2019-03-04
CF12N383 mass fraction of hydroperoxyl radical in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for the hydroperoxyl radical is HO2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N384 mass fraction of hydroxyl radical in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for the hydroxyl radical is OH. In chemistry, a "radical" is a highly reactive, and therefore short lived,species. 2019-03-04
CF12N385 mass fraction of hypobromous acid in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hypobromous acid is HOBr. 2019-03-04
CF12N386 mass fraction of hypochlorous acid in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hypochlorous acid is HOCl. 2019-03-04
CF12N387 mass fraction of inorganic bromine in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. "Inorganic bromine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "brox" are used for quantities that contain all inorganic bromine species except HBr and BrONO2. 2019-03-04
CF12N388 mass fraction of inorganic chlorine in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. "Inorganic chlorine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "clox" are used for quantities that contain all inorganic chlorine species except HCl and ClONO2. 2019-03-04
CF12N389 mass fraction of isoprene in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for isoprene is CH2=C(CH3)CH=CH2. The IUPAC name for isoprene is 2-methylbuta-1,3-diene. Isoprene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
CF12N390 mass fraction of limonene in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for limonene is C10H16. The IUPAC name for limonene is 1-methyl-4-prop-1-en-2-ylcyclohexene. Limonene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
57TUBKUQ mass fraction of liquid precipitation in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Liquid_ precipitation" includes both "rain" and "drizzle". "Rain" means drops of water falling through the atmosphere that have a diameter greater than 0.5 mm. "Drizzle" means drops of water falling through the atmosphere that have a diameter typically in the range 0.2-0.5 mm. 2020-03-09
CFSN0791 mass fraction of mercury dry aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2019-05-14
IKWO62WV mass fraction of mercury dry aerosol particles in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2019-05-14
CF12N391 mass fraction of methane in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2019-03-04
TGN7JAU8 mass fraction of methanesulfonic acid dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for methanesulfonic acid is CH3SO3H. 2015-01-07
CF12N392 mass fraction of methanol in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for ethanol is C2H5OH. The chemical formula for methanol is CH3OH. 2019-03-04
CF12N393 mass fraction of methyl bromide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for methyl bromide is CH3Br. The IUPAC name for methyl bromide is bromomethane. 2019-03-04
CF12N394 mass fraction of methyl chloride in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for methyl chloride is CH3Cl. The IUPAC name for methyl chloride is chloromethane. 2019-03-04
CF12N395 mass fraction of methyl hydroperoxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for methyl hydroperoxide is CH3OOH. 2019-03-04
CF12N396 mass fraction of methyl peroxy radical in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for methyl_ peroxy_ radical is CH3O2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N397 mass fraction of molecular hydrogen in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for molecular hydrogen is H2. 2019-03-04
CFSN0792 mass fraction of nitrate dry aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Mass_ fraction_ of_ nitrate" means that the mass is expressed as mass of NO3. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
6RWOHGO9 mass fraction of nitrate dry aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Mass_ fraction_ of_ nitrate" means that the mass is expressed as mass of NO3. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2015-01-07
CF12N398 mass fraction of nitrate radical in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N399 mass fraction of nitric acid in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for nitric acid is HNO3. 2019-03-04
CF12N400 mass fraction of nitric acid trihydrate ambient aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
MX090E9Y mass fraction of nitric acid trihydrate ambient aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
CF12N401 mass fraction of nitrogen dioxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for nitrogen dioxide is NO2. 2019-03-04
CF12N402 mass fraction of nitrogen monoxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for nitrogen monoxide is NO. 2019-03-04
CF12N403 mass fraction of nitrous acid in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for nitrous acid is HNO2. 2019-03-04
CF12N404 mass fraction of nitrous oxide in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for nitrous oxide is N2O. 2019-03-04
CF12N405 mass fraction of nmvoc expressed as carbon in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
CF12N406 mass fraction of nox expressed as nitrogen in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The term "peroxy_ radicals" means all organic and inorganic peroxy radicals. This includes HO2 and all organic peroxy radicals, sometimes referred to as RO2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N407 mass fraction of noy expressed as nitrogen in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Noy" describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2) , chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)). The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2019-03-04
CFSNA022 mass fraction of o3 in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). 2006-09-26
HAAN5RSL mass fraction of organic matter in soil "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the mass of X divided by the mass of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. 2021-09-20
CF12N408 mass fraction of oxygenated hydrocarbons in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Oxygenated" means containing oxygen. "Hydrocarbon" means a compound containing hydrogen and carbon. 2019-03-04
CFSN0540 mass fraction of ozone in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 2008-04-15
CFSN0793 mass fraction of particulate organic matter dry aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
6OABDF0Q mass fraction of particulate organic matter dry aerosol particles expressed as carbon in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
5UJSYYVL mass fraction of particulate organic matter dry aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
CF12N409 mass fraction of peroxy radicals in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The term "peroxy_ radicals" means all organic and inorganic peroxy radicals. This includes HO2 and all organic peroxy radicals, sometimes referred to as RO2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N410 mass fraction of peroxyacetyl nitrate in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for peroxyacetyl nitrate, sometimes referred to as PAN, is CH3COO2NO2. The IUPAC name for peroxyacetyl nitrate is nitroethaneperoxoate. 2019-03-04
CF12N411 mass fraction of peroxynitric acid in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for peroxynitric acid, sometimes referred to as PNA, is HO2NO2. 2019-03-04
CFSN0795 mass fraction of pm10 aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Pm10 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 10 micrometers. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature". 2009-07-06
CF12S25 mass fraction of pm10 ambient aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. "Pm10 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 10 micrometers. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature". 2015-01-07
ARL7QV7Y mass fraction of pm10 ambient aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of "relative_ humidity" and "air_ temperature." 2017-06-26
9QZ2QHB7 mass fraction of pm10 ammonium dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The chemical formula for ammonium is NH4. 2017-06-26
VBJM9TLW mass fraction of pm10 dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. 2017-06-26
ANXB9UGP mass fraction of pm10 dust dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. 2017-06-26
V6QCY6T5 mass fraction of pm10 elemental carbon dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
NES6QEUW mass fraction of pm10 nitrate dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The chemical formula for the nitrate anion is NO3-. 2017-06-26
XV8G2YEP mass fraction of pm10 particulate organic matter dry aerosol particles expressed as carbon in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2017-06-26
I1LQOQOL mass fraction of pm10 particulate organic matter dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2017-06-26
4H65VZPH mass fraction of pm10 primary particulate organic matter dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. "Primary particulate organic matter" means all organic matter emitted directly to the atmosphere as particles except elemental carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2017-06-26
TTP6IXMO mass fraction of pm10 sea salt dry aerosol particles expressed as cations in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The phrase "sea_ salt_ cation" is the term used in standard names to describe collectively the group of cationic species that occur in sea salt. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Sea salt cations are mainly sodium (Na+), but also include potassium (K+), magnesium (Mg2+), calcium (Ca2+) and rarer cations. Where possible, the data variable should be accompanied by a complete description of the ions represented, for example, by using a comment attribute. 2017-06-26
H00S0SMG mass fraction of pm10 sea salt dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. 2017-06-26
CWT9D7KY mass fraction of pm10 sulfate dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The chemical formula for the sulfate anion is SO4(2-). 2017-06-26
CFSN0794 mass fraction of pm1 aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Pm1 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 1 micrometer. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature". 2009-07-06
CF12S24 mass fraction of pm1 ambient aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. "Pm1 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 1 micrometer. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature". 2015-01-07
A8WMKTJ0 mass fraction of pm1 ambient aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "Pm1 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 1 micrometer. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of "relative_ humidity" and "air_ temperature". 2017-06-26
P4RQBVV8 mass fraction of pm1 dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm1 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 1 micrometer. 2017-06-26
CFSN0796 mass fraction of pm2p5 aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Pm2p5 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 2.5 micrometers. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature". 2009-07-06
CF12S26 mass fraction of pm2p5 ambient aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. "Pm2p5 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 2.5 micrometers. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature". 2015-01-07
GFVM4F3K mass fraction of pm2p5 ambient aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of "relative_ humidity" and "air_ temperature". 2017-06-26
7YP3AA62 mass fraction of pm2p5 ammonium dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The chemical formula for ammonium is NH4. 2017-06-26
GVM5787K mass fraction of pm2p5 dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. 2017-06-26
O4THGLE3 mass fraction of pm2p5 dust dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. 2017-06-26
VUKDVF70 mass fraction of pm2p5 elemental carbon dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
2B2GSLXR mass fraction of pm2p5 nitrate dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The chemical formula for the nitrate anion is NO3-. 2017-06-26
QDRZ34AJ mass fraction of pm2p5 particulate organic matter dry aerosol particles expressed as carbon in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2017-06-26
079HT6L5 mass fraction of pm2p5 particulate organic matter dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2017-06-26
I7TP4Z8H mass fraction of pm2p5 primary particulate organic matter dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. "Primary particulate organic matter" means all organic matter emitted directly to the atmosphere as particles except elemental carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2017-06-26
M1RA6M3C mass fraction of pm2p5 sea salt dry aerosol particles expressed as cations in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The phrase "sea_ salt_ cation" is the term used in standard names to describe collectively the group of cationic species that occur in sea salt. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Sea salt cations are mainly sodium (Na+), but also include potassium (K+), magnesium (Mg2+), calcium (Ca2+) and rarer cations. Where possible, the data variable should be accompanied by a complete description of the ions represented, for example, by using a comment attribute. 2017-06-26
1R2FRHAH mass fraction of pm2p5 sea salt dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. 2017-06-26
C2WKGUFT mass fraction of pm2p5 sulfate dry aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The chemical formula for the sulfate anion is SO4(2-). 2017-06-26
CFSN0541 mass fraction of precipitation in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Precipitation" in the earth's atmosphere means precipitation of water in all phases. 2018-08-06
CFSN0797 mass fraction of primary particulate organic matter dry aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except black carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
PDWSOGYJ mass fraction of primary particulate organic matter dry aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except elemental carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
CF12N412 mass fraction of propane in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2019-03-04
CF12N413 mass fraction of propene in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2019-03-04
CF12N414 mass fraction of radon in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical symbol for radon is Rn. 2019-03-04
IECJ4WAM mass fraction of rain and drizzle in air DEPRECATED "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Rain" means drops of water falling through the atmosphere that have a diameter greater than 0.5 mm. "Drizzle" means drops of water falling through the atmosphere that have a diameter typically in the range 0.2-0.5 mm. 2020-03-09
CFSN0542 mass fraction of rain in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 2020-02-03
SZ9GHK1M mass fraction of rainfall falling onto surface snow The quantity with standard name mass_ fraction_ of_ rainfall_ falling_ onto_ surface_ snow is the mass of rainfall falling onto snow as a fraction of the mass of rainfall falling within the area of interest. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. The surface called "surface" means the lower boundary of the atmosphere. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. 2021-01-18
QYA7ZFMF mass fraction of sand in soil "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y'', where X is a material constituent of Y. It is evaluated as the mass of X divided by the mass of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Grain-size class distribution is based on the Udden-Wentworth scale. 2021-09-20
VBJFQAS9 mass fraction of sea salt dry aerosol particles expressed as cations in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The phrase "sea_ salt_ cation" is the term used in standard names to describe collectively the group of cationic species that occur in sea salt. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Sea salt cations are mainly sodium (Na+), but also include potassium (K+), magnesium (Mg2+), calcium (Ca2+) and rarer cations. Where possible, the data variable should be accompanied by a complete description of the ions represented, for example, by using a comment attribute. 2017-06-26
1IRVLFFX mass fraction of sea salt dry aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2017-06-26
CFSN0798 mass fraction of seasalt dry aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
GMFCAI5Q mass fraction of seasalt dry aerosol particles in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2017-06-26
CFSN0799 mass fraction of secondary particulate organic matter dry aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Secondary particulate organic matter " means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
RNVB2L9N mass fraction of secondary particulate organic matter dry aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Secondary particulate organic matter" means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
0WTCM5TN mass fraction of shallow convective cloud liquid water in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Shallow convective cloud is nonprecipitating cumulus cloud with a cloud top below 3000m above the surface produced by the convection schemes in an atmosphere model. Some atmosphere models differentiate between shallow and deep convection. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2021-01-18
5PJT1ZMA mass fraction of silt in soil "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y'', where X is a material constituent of Y. It is evaluated as the mass of X divided by the mass of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Grain-size class distribution is based on the Udden-Wentworth scale. 2021-09-20
CFSN0543 mass fraction of snow in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Snow" refers to the precipitating part of snow in the atmosphere - the cloud snow content is excluded. 2020-02-03
DE12EGZX mass fraction of solid precipitation falling onto surface snow The quantity with standard name mass_ fraction_ of_ solid_ precipitation_ falling_ onto_ surface_ snow is the mass of solid precipitation falling onto snow as a fraction of the mass of solid precipitation falling within the area of interest. Solid precipitation refers to the precipitation of water in the solid phase. Water in the atmosphere exists in one of three phases: solid, liquid or vapor. The solid phase can exist as snow, hail, graupel, cloud ice, or as a component of aerosol. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. 2021-01-18
CFSN0544 mass fraction of stratiform cloud ice in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2008-04-15
CFSN0545 mass fraction of stratiform cloud liquid water in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CFSN0800 mass fraction of sulfate dry aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Mass_ fraction_ of_ sulfate" means that the mass is expressed as mass of SO4. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. 2015-01-07
3UGROHS3 mass fraction of sulfate dry aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Mass_ fraction_ of_ sulfate" means that the mass is expressed as mass of SO4. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. 2015-01-07
CFSN0546 mass fraction of sulfur dioxide in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 2008-04-15
CF12N415 mass fraction of sulfuric acid in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for sulfuric acid is H2SO4. 2019-03-04
CF12N416 mass fraction of terpenes in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Terpenes are hydrocarbons, that is,they contain only hydrogen and carbon combined in the general proportions (C5H8)n where n is an integer greater than or equal to one. The term "terpenes" is used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual terpene species, e.g., isoprene and limonene. 2019-03-04
CF12N417 mass fraction of toluene in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. 2019-03-04
CFSN0547 mass fraction of unfrozen water in soil moisture moisture means water in all phases contained in soil. "unfrozen_ water" means liquid and vapour. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 2008-04-15
CFSN0548 mass fraction of water in air Water means water in all phases. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). 2008-04-15
CFSN0801 mass fraction of water in ambient aerosol in air DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. 2015-01-07
UJWSGQ2N mass fraction of water in ambient aerosol particles in air Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. 2015-01-07
P94M93AS mass fraction of water in pm10 ambient aerosol particles in air "Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2017-06-26
EF6TBF9F mass fraction of water in pm2p5 ambient aerosol particles in air Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2017-06-26
CF12N418 mass fraction of xylene in air "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic compounds as a group, as well as those for individual species. 2019-03-04
Y7NOULT3 mass ratio of moisture to dry soil The quantity with standard name mass_ ratio_ of_ moisture_ to_ dry_ soil is also known as the water content of a soil or the wet-basis gravimetric moisture content. It is the ratio of the mass of water (liquid and solid) to the mass of the dried sample.The phrase "ratio_ of_ X_ to_ Y" means X/Y. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. 2023-04-24
C1OV82RL maximum over coordinate rotation of sea ice horizontal shear strain rate "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. Axial strain is the symmetric component of the tensor representing the gradient of internal forces (e.g. in ice). Strain rate refers to off-diagonal element(s) of the strain tensor (a single element for horizontal shear strain). "Horizontal" refers to the local horizontal in the location of the sea ice, i.e., perpendicular to the local gravity vector. Each of the strain components is defined with respect to a frame of reference. "Coordinate rotation" refers to the range of all possible orientations of the frame of reference. The shear strain has a maximum value relative to one of these orientations. The second invariant of strain rate, often referred to as the maximum shear strain [rate], is the maximum over coordinate rotations of the shear strain rate. 2018-07-03
PCH8Q2F1 maximum over coordinate rotation of sea ice horizontal shear stress "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. Axial stress is the symmetric component of the tensor representing the gradient of internal forces (e.g. in ice). Shear stress refers to off-diagonal element(s) of the stress tensor (a single element for horizontal shear stress). "Horizontal" refers to the local horizontal in the location of the sea ice, i.e., perpendicular to the local gravity vector. Each of the stress components is defined with respect to a frame of reference. "Coordinate rotation" refers to the range of all possible orientations of the frame of reference. The shear stress has a maximum value relative to one of these orientations. The second invariant of stress, often referred to as the maximum shear stress, is the maximum over coordinate rotations of the shear stress. 2018-07-03
CFV16A19 medium soil pool carbon content DEPRECATED "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. "Soil carbon" is the organic matter present in soil quantified by the mass of carbon it contains. Soil carbon is returned to the atmosphere as the organic matter decays. The decay process takes varying amounts of time depending on the composition of the organic matter, the temperature and the availability of moisture. A carbon "soil pool" means the carbon contained in organic matter which has a characteristic period over which it decays and releases carbon into the atmosphere. "Medium soil pool" refers to the decay of organic matter in soil with a characteristic period of between ten and one hundred years under reference climate conditions of a temperature of 20 degrees Celsius and no water limitations. 2018-04-16
LZJ8947A medium soil pool mass content of carbon "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. Soil carbon is returned to the atmosphere as the organic matter decays. The decay process takes varying amounts of time depending on the composition of the organic matter, the temperature and the availability of moisture. A carbon "soil pool" means the carbon contained in organic matter which has a characteristic period over which it decays and releases carbon into the atmosphere. "Medium soil pool" refers to the decay of organic matter in soil with a characteristic period of between ten and one hundred years under reference climate conditions of a temperature of 20 degrees Celsius and no water limitations. 2018-04-16
FFIBGAFG medium type cloud area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Middle type clouds are: Altostratus, Altocumulus, Nimbostratus. X_ type_ cloud_ area_ fraction is generally determined on the basis of cloud type, though Numerical Weather Prediction (NWP) models often calculate them based on the vertical location of the cloud. For the cloud area fraction between specified levels in the atmosphere, standard names including "cloud_ area_ fraction_ in_ atmosphere_ layer" are used. Standard names referring only to "cloud_ area_ fraction" should be used for quantities for the whole atmosphere column. Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
CF14N15 minimum depth of aragonite undersaturation in sea water Depth is the vertical distance below the surface. 'Undersaturation' means that a solution is unsaturated with respect to a solute. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. Standard names also exist for calcite, another polymorph of calcium carbonate. The "minimum depth of undersaturation", sometimes called the "saturation horizon", is the shallowest depth at which a body of water is an undersaturated solution of a named solute. 2010-05-12
CF14N16 minimum depth of calcite undersaturation in sea water Depth is the vertical distance below the surface. 'Undersaturation' means that a solution is unsaturated with respect to a solute. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. The "minimum depth of undersaturation", sometimes called the "saturation horizon", is the shallowest depth at which a body of water is an undersaturated solution of a named solute. 2010-05-12
5L1T2OVM minimum mass ratio of water to dry soil for soil plastic behavior The phrase "ratio_ of_ X_ to_ Y" means X/Y. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. It is the lower limit of the water content at which a 3 mm diameter cylindrical soil sample will break in 3 to 10 mm pieces. It is the lower limit of the plastic state, which has the liquid limit as the upper bound. Known as the plastic limit. 2023-04-24
ZVTMSND1 minimum mass ratio of water to dry soil for soil viscous flow The phrase "ratio_ of_ X_ to_ Y" means X/Y. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. It is the lower limit of the water content at which a soil sample will flow in a viscous manner. Known as the liquid limit. 2023-04-24
CFV11N10 minus one times surface upwelling longwave flux in air The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Minus one times" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. The surface called "surface" means the lower boundary of the atmosphere. The term "longwave" means longwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFV11N11 minus one times surface upwelling shortwave flux in air The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Minus one times" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. The surface called "surface" means the lower boundary of the atmosphere. The term "shortwave" means shortwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFV11N12 minus one times toa outgoing shortwave flux "Minus one times" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Shortwave means shortwave radiation. "toa" means top of atmosphere. The TOA outgoing shortwave flux is the reflected and scattered solar radiative flux i.e. the "upwelling" TOA shortwave flux, sometimes called the "outgoing shortwave radiation" or "OSR". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-11-11
CFV10N19 minus one times water flux into sea water from rivers The quantity minus_ one_ times_ water_ flux_ into_ sea_ water_ from_ rivers is the quantity with standard name water_ flux_ into_ sea_ water_ from_ rivers multiplied by -1. "Water" means water in all phases. The water flux or volume transport into sea water from rivers is the inflow to the ocean, often applied to the surface in ocean models. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "River" refers to water in the fluvial system (stream and floodplain). 2018-05-29
VBODDE3B minus tendency of atmosphere mass content of ammonia due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for ammonia is NH3. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2018-05-29
DOY6PGHX minus tendency of atmosphere mass content of ammonia due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for ammonia is NH3. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. 2018-05-29
B3A3A5L4 minus tendency of atmosphere mass content of ammonium dry aerosol particles due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for ammonium is NH4. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2018-05-29
LCZEHGWA minus tendency of atmosphere mass content of ammonium dry aerosol particles due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for ammonium is NH4. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. 2018-05-29
EM3CCC6E minus tendency of atmosphere mass content of dust dry aerosol particles due to deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Deposition" is the sum of wet and dry deposition. 2018-06-11
DBC1EZUY minus tendency of atmosphere mass content of dust dry aerosol particles due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2018-05-29
8BYP1YKF minus tendency of atmosphere mass content of dust dry aerosol particles due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. 2018-05-29
KUFDGKZ6 minus tendency of atmosphere mass content of elemental carbon dry aerosol particles due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2018-05-29
MPD2TMYU minus tendency of atmosphere mass content of elemental carbon dry aerosol particles due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000 K and can only be gasified by oxidation starting at temperatures above 340 degrees Celsius. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. 2018-05-29
RTW6FDF9 minus tendency of atmosphere mass content of insoluble dust dry aerosol particles due to deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The mass is the total mass of the particles. "Insoluble aerosol" means aerosol which is not soluble in water, such as mineral dusts. At low temperatures such particles can be efficient nuclei for ice clouds. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Deposition" is the sum of wet and dry deposition. 2018-07-03
4ID7CI3C minus tendency of atmosphere mass content of nitrogen compounds expressed as nitrogen due to deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. Usually, particle bound and gaseous nitrogen compounds, such as atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrate (NO3-), peroxynitric acid (HNO4), ammonia (NH3), ammonium (NH4+), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)) are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Deposition" is the sum of wet and dry deposition. 2018-05-29
6MM115VF minus tendency of atmosphere mass content of noy expressed as nitrogen due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Noy" describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)). The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2018-05-29
XBW0AJC7 minus tendency of atmosphere mass content of noy expressed as nitrogen due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Noy" describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)). The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. 2018-05-29
HR1DOPFG minus tendency of atmosphere mass content of ozone due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for ozone is O3. The IUPAC name for ozone is trioxygen. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2018-05-29
HT907O8O minus tendency of atmosphere mass content of particulate organic matter dry aerosol particles due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2018-05-29
G8OVLDSJ minus tendency of atmosphere mass content of particulate organic matter dry aerosol particles due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. 2018-05-29
R3YIPVDO minus tendency of atmosphere mass content of sea salt dry aerosol particles due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2018-05-29
WY2ML5Q7 minus tendency of atmosphere mass content of sea salt dry aerosol particles due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. 2018-05-29
LE4N54NF minus tendency of atmosphere mass content of sulfate dry aerosol particles due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for the sulfate anion is SO4(2-). The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2018-05-29
RRXU9PEK minus tendency of atmosphere mass content of sulfate dry aerosol particles due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The chemical formula for the sulfate anion is SO4(2-). The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. 2018-05-29
MJFS80CB minus tendency of atmosphere mass content of sulfur dioxide due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for sulfur dioxide is SO2. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2018-05-29
HRHBPY2C minus tendency of atmosphere mass content of sulfur dioxide due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for sulfur dioxide is SO2. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. 2018-05-29
AX19RNVR minus tendency of ocean mole content of elemental nitrogen due to denitrification and sedimentation The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Denitrification" is the conversion of nitrate into gaseous compounds such as nitric oxide, nitrous oxide and molecular nitrogen which are then emitted to the atmosphere. "Sedimentation" is the sinking of particulate matter to the floor of a body of water. 2018-09-24
HM86O1KK minus tendency of ocean mole content of inorganic carbon due to sedimentation The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sedimentation" is the sinking of particulate matter to the floor of a body of water. "Inorganic carbon" describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2018-09-24
FOEDM9I6 minus tendency of ocean mole content of iron due to sedimentation The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sedimentation" is the sinking of particulate matter to the floor of a body of water. 2018-09-24
AR2DPOUK minus tendency of ocean mole content of organic carbon due to sedimentation The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "minus_ tendency" means that the quantity described takes the opposite sign convention to that for the quantity which has the same standard name apart from this phrase, i.e. the two quantities differ from one another by a factor of -1. Thus a "minus_ tendency" in the atmosphere means a positive deposition rate onto the underlying surface. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sedimentation" is the sinking of particulate matter to the floor of a body of water. "Organic carbon" describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2018-09-24
CFV16A20 miscellaneous living matter carbon content DEPRECATED "Content" indicates a quantity per unit area. "Miscellaneous living matter" means all those parts of living vegetation that are not leaf, wood, root or other separately named components. 2018-04-16
WFN37VJ8 miscellaneous living matter mass content of carbon "Content" indicates a quantity per unit area. "Miscellaneous living matter" means all those parts of plants that are not leaf, stem, root or other separately named components. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. 2018-04-16
MKWOPHDH miscellaneous living matter mass content of nitrogen "Content" indicates a quantity per unit area. "Miscellaneous living matter" means all those parts of plants that are not leaf, stem, root or other separately named components. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. 2018-04-16
CFSN0549 model level number Model level number should be understood as equivalent to layer number. 2006-09-26
CFV10N20 model level number at base of ocean mixed layer defined by sigma theta The ocean mixed layer is the upper part of the ocean, regarded as being well-mixed. The base of the mixed layer defined by "temperature", "sigma", "sigma_ theta", "sigma_ t" or vertical diffusivity is the level at which the quantity indicated differs from its surface value by a certain amount. A coordinate variable or scalar coordinate variable with standard name sea_ water_ sigma_ theta_ difference can be used to specify the sigma_ theta criterion that determines the layer thickness. Sigma-theta of sea water is the potential density (i.e. the density when moved adiabatically to a reference pressure) of water having the same temperature and salinity, minus 1000 kg m-3. The quantity model_ level_ number_ at_ base_ of_ ocean_ mixed_ layer_ defined_ by_ sigma_ theta is sometimes referred to as the "bowl index". 2018-05-29
CFSN0550 model level number at convective cloud base cloud_ base refers to the base of the lowest cloud. Model level number should be understood as equivalent to layer number. Convective cloud is that produced by the convection schemes in an atmosphere model. 2006-09-26
CFSN0551 model level number at convective cloud top cloud_ top refers to the top of the highest cloud. Model level number should be understood as equivalent to layer number. Convective cloud is that produced by the convection schemes in an atmosphere model. 2006-09-26
CFV10N21 model level number at sea floor The quantity with standard name model_ level_ number_ at_ sea_ floor is the depth of the ocean expressed in model levels. This could be a non-integer value because some ocean models use partial cells close to the sea floor. For example, if this field were 23.4 at some location, it would mean the water column at that point comprised 23 full model levels plus 40% occupancy of the lowest (24th) gridcell. 2008-10-21
CFSN0552 model level number at top of atmosphere boundary layer Model level number should be understood as equivalent to layer number. 2006-09-26
6B3KYNGV modified fosberg fire weather index The modified Fosberg Fire Weather Index (mFFWI) is a measure of the potential effect of weather conditions on wildland fire. The Fosberg Fire Weather Index is a function of temperature, wind, and humidity. It is modified with a fuel availability factor based on the Keetch Byram Drought Index. 2023-04-24
CFSN0511 moisture content of soil layer DEPRECATED 'moisture' means water in all phases contained in soil. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Quantities defined for a soil layer must have a vertical coordinate variable with boundaries indicating the extent of the layer(s). 2018-02-12
CFSN0512 moisture content of soil layer at field capacity 'moisture' means water in all phases contained in soil. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Quantities defined for a soil layer must have a vertical coordinate variable with boundaries indicating the extent of the layer(s). The field capacity of soil is the maximum content of water it can retain against gravitational drainage. 2006-09-26
CF12N419 mole concentration of acetic acid in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for acetic_ acid is CH3COOH. The IUPAC name for acetic acid is ethanoic acid. 2009-07-06
CF12N420 mole concentration of aceto nitrile in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for aceto-nitrile is CH3CN. The IUPAC name for aceto-nitrile is ethanenitrile. 2009-07-06
TRAKDHD1 mole concentration of adenosine triphosphate in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/ATPXZZDZ/2/. 2022-03-18
CF12N421 mole concentration of alpha hexachlorocyclohexane in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for alpha_ hexachlorocyclohexane is C6H6Cl6. 2009-07-06
CF12N422 mole concentration of alpha pinene in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for alpha_ pinene is C10H16. The IUPAC name for alpha-pinene is (1S,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene. 2009-07-06
CF12N423 mole concentration of ammonia in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ammonia is NH3. 2009-07-06
CFSN0802 mole concentration of ammonium in sea water Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
CF12N424 mole concentration of anthropogenic nmvoc expressed as carbon in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituentsof A. The abbreviation "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Anthropogenic" means influenced, caused, or created by human activity. 2019-02-04
CF14N17 mole concentration of aragonite expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. Standard names also exist for calcite, another polymorph of calcium carbonate. 2010-05-12
CF14N18 mole concentration of aragonite expressed as carbon in sea water at saturation Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Mole concentration at saturation" means the mole concentration in a saturated solution. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. Standard names also exist for calcite, another polymorph of calcium carbonate. 2018-12-17
CF12N425 mole concentration of atomic bromine in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for atomic bromine is Br. 2009-07-06
CF12N426 mole concentration of atomic chlorine in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for atomic chlorine is Cl. 2009-07-06
CF12N427 mole concentration of atomic nitrogen in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for atomic nitrogen is N. 2009-07-06
CF14N19 mole concentration of bacteria expressed as carbon in sea water DEPRECATED Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2018-02-12
CF37JAPZ mole concentration of bacteria expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2016-11-15
CF12N428 mole concentration of benzene in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
CF12N429 mole concentration of beta pinene in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for beta_ pinene is C10H16. The IUPAC name for beta-pinene is (1S,5S)-6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane. 2009-07-06
CF12N430 mole concentration of biogenic nmvoc expressed as carbon in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Biogenic" means influenced, caused, or created by natural processes. 2015-01-07
7IQMB8XJ mole concentration of biological taxon expressed as carbon in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Biological taxon" is a name or other label identifying an organism or a group of organisms as belonging to a unit of classification in a hierarchical taxonomy. There must be an auxiliary coordinate variable with standard name biological_ taxon_ name to identify the taxon in human readable format and optionally an auxiliary coordinate variable with standard name biological_ taxon_ lsid to provide a machine-readable identifier. See Section 6.1.2 of the CF convention (version 1.8 or later) for information about biological taxon auxiliary coordinate variables. 2021-09-20
K1HC6TUK mole concentration of biological taxon expressed as nitrogen in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Biological taxon" is a name or other label identifying an organism or a group of organisms as belonging to a unit of classification in a hierarchical taxonomy. There must be an auxiliary coordinate variable with standard name biological_ taxon_ name to identify the taxon in human readable format and optionally an auxiliary coordinate variable with standard name biological_ taxon_ lsid to provide a machine-readable identifier. See Section 6.1.2 of the CF convention (version 1.8 or later) for information about biological taxon auxiliary coordinate variables. 2021-09-20
CF12N431 mole concentration of bromine chloride in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for bromine chloride is BrCl. 2009-07-06
CF12N432 mole concentration of bromine monoxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for bromine monoxide is BrO. 2009-07-06
CF12N433 mole concentration of bromine nitrate in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for bromine nitrate is BrONO2. 2009-07-06
CF12N434 mole concentration of brox expressed as bromine in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Brox" describes a family of chemical species consisting of inorganic bromine compounds with the exception of hydrogen bromide (HBr) and bromine nitrate (BrONO2). "Brox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. Standard names that use the term "inorganic_ bromine" are used for quantities that contain all inorganic bromine species including HCl and ClONO2. 2019-02-04
CF12N435 mole concentration of butane in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF14N20 mole concentration of calcareous phytoplankton expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Calcareous phytoplankton" are phytoplankton that produce calcite. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. 2018-12-17
CF14N21 mole concentration of calcite expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. 2010-05-12
CF14N22 mole concentration of calcite expressed as carbon in sea water at saturation Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Mole concentration at saturation" means the mole concentration in a saturated solution.The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. 2018-12-17
CF12N436 mole concentration of carbon dioxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for carbon dioxide is CO2. 2009-07-06
CF12N437 mole concentration of carbon monoxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula of carbon monoxide is CO. 2009-07-06
CF12N438 mole concentration of carbon tetrachloride in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of carbon tetrachloride is CCl4. The IUPAC name for carbon tetrachloride is tetrachloromethane. 2019-04-08
20C653S8 mole concentration of carbonate abiotic analogue expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. 2017-03-27
QZFO8L1Q mole concentration of carbonate expressed as carbon at equilibrium with pure aragonite in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. At a given salinity, the thermodynamic equilibrium is that between dissolved carbonate ion and solid aragonite. Standard names also exist for calcite, another polymorph of calcium carbonate. 2017-05-22
85V2Y3OS mole concentration of carbonate expressed as carbon at equilibrium with pure calcite in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. At a given salinity, the thermodynamic equilibrium is that between dissolved carbonate ion and solid calcite. Standard names also exist for aragonite, another polymorph of calcium carbonate. 2017-05-22
CF14N23 mole concentration of carbonate expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with a charge of minus two. 2018-12-17
CH76Q43I mole concentration of carbonate natural analogue expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In ocean biogeochemistry models, a "natural analogue" is used to simulate the effect on a modelled variable of imposing preindustrial atmospheric carbon dioxide concentrations, even when the model as a whole may be subjected to varying forcings. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula of the carbonate anion is CO3 with an electrical charge of minus two. 2017-03-27
CF12N440 mole concentration of cfc113 in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC113 is CCl2FCClF2. The IUPAC name for CFC113 is 1,1,2-trichloro-1,2,2-trifluoroethane. 2019-05-14
CF12N441 mole concentration of cfc113a in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC113a is CCl3CF3. The IUPAC name for CFC113a is 1,1,1-trichloro-2,2,2-trifluoroethane. 2019-05-14
CF12N442 mole concentration of cfc114 in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC114 is CClF2CClF2. The IUPAC name for CFC114 is 1,2-dichloro-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12N443 mole concentration of cfc115 in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC115 is CClF2CF3. The IUPAC name for CFC115 is 1-chloro-1,1,2,2,2-pentafluoroethane. 2019-05-14
CF12N439 mole concentration of cfc11 in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro(fluoro)methane. 2019-05-14
U3AEH0Q5 mole concentration of cfc11 in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro(fluoro)methane. 2019-05-14
CF12N444 mole concentration of cfc12 in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro(difluoro)methane. 2019-05-14
FOQ2TGCS mole concentration of cfc12 in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro(difluoro)methane. 2019-05-14
CF12N445 mole concentration of chlorine dioxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for chlorine dioxide is OClO. 2009-07-06
CF12N446 mole concentration of chlorine monoxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for chlorine monoxide is ClO. 2009-07-06
CF12N447 mole concentration of chlorine nitrate in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for chlorine nitrate is ClONO2. 2009-07-06
CF12N448 mole concentration of clox expressed as chlorine in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Clox" describes a family of chemical species consisting of inorganic chlorine compounds with the exception of hydrogen chloride (HCl) and chlorine nitrate (ClONO2). "Clox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic chlorine", sometimes referred to as "Cly", describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. Standard names that use the term "inorganic_ chlorine" are used for quantities that contain all inorganic chlorine species including HCl and ClONO2. 2019-03-04
CF14N24 mole concentration of diatoms expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Diatoms are single-celled phytoplankton with an external skeleton made of silica. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. 2010-05-12
CF12S27 mole concentration of diatoms expressed as nitrogen in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated in terms of B alone, neglecting all other chemical constituents of A. Diatoms are phytoplankton with an external skeleton made of silica. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
CFSN0803 mole concentration of diatoms in sea water expressed as nitrogen DEPRECATED Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. The construction expressed_ as_ nitrogen means that the mole concentration is that of nitrogen atoms due to the diatoms. Diatoms are single-celled phytoplankton with an external skeleton made of silica. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. 2009-07-06
TKJCRI8X mole concentration of diazotrophic phytoplankton expressed as carbon in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Diazotrophic phytoplankton are phytoplankton (predominantly from Phylum Cyanobacteria) that are able to fix molecular nitrogen (gas or solute) in addition to nitrate and ammonium. 2020-03-09
CF14N25 mole concentration of diazotrophs expressed as carbon in sea water DEPRECATED Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2020-03-09
CF12N449 mole concentration of dichlorine peroxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for dichlorine peroxide is Cl2O2. 2009-07-06
CF12N450 mole concentration of dimethyl sulfide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for dimethyl sulfide is (CH3)2S. Dimethyl sulfide is sometimes referred to as DMS. 2009-07-06
CF14N26 mole concentration of dimethyl sulfide in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for dimethyl sulfide is (CH3)2S. Dimethyl sulfide is sometimes referred to as DMS. 2018-12-17
CF12N451 mole concentration of dinitrogen pentoxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for dinitrogen pentoxide is N2O5. 2009-07-06
DORXA6DP mole concentration of dissolved inorganic 13C in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "C" means the element carbon and "13C" is the stable isotope "carbon-13", having six protons and seven neutrons. 2018-04-16
9HADKG3D mole concentration of dissolved inorganic 14C in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. 2018-04-16
3B2JG9UV mole concentration of dissolved inorganic carbon13 in sea water DEPRECATED Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Carbon13 is a stable isotope of carbon having six protons and seven neutrons. 2018-04-16
UMZS988Y mole concentration of dissolved inorganic carbon14 in sea water DEPRECATED Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Carbon14 is a radioactive isotope of carbon having six protons and eight neutrons, used in radiocarbon dating. 2018-04-16
WTITDJDL mole concentration of dissolved inorganic carbon abiotic analogue in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2017-03-27
SMGGKC6B mole concentration of dissolved inorganic carbon in sea floor sediment pore water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Sea floor sediment" is sediment deposited at the sea bed. "Water" means water in all phases. 2024-01-18
CF14N27 mole concentration of dissolved inorganic carbon in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2019-03-04
YJL4TNO1 mole concentration of dissolved inorganic carbon natural analogue in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In ocean biogeochemistry models, a "natural analogue" is used to simulate the effect on a modelled variable of imposing preindustrial atmospheric carbon dioxide concentrations, even when the model as a whole may be subjected to varying forcings. "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2017-03-27
TIFFNDIL mole concentration of dissolved inorganic nitrogen in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Inorganic nitrogen" describes a family of chemical species which, in an ocean model, usually includes nitrite, nitrate and ammonium which act as nitrogen nutrients. "Inorganic nitrogen" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2018-12-17
6MD5UITW mole concentration of dissolved inorganic phosphorus in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved inorganic phosphorus" means the sum of all inorganic phosphorus in solution (including phosphate, hydrogen phosphate, dihydrogen phosphate, and phosphoric acid). 2017-05-22
66VP4DXW mole concentration of dissolved inorganic silicon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved inorganic silicon" means the sum of all inorganic silicon in solution (including silicic acid and its first dissociated anion SiO(OH)3-). 2017-06-26
CF14N28 mole concentration of dissolved iron in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". 2018-12-17
B6RNUI5Q mole concentration of dissolved molecular nitrogen in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for molecular nitrogen is N2. 2019-06-17
CF14N29 mole concentration of dissolved molecular oxygen in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for molecular oxygen is O2. 2018-12-17
9L3UAHA4 mole concentration of dissolved molecular oxygen in sea water at saturation "Mole concentration at saturation" means the mole concentration in a saturated solution. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". 2016-11-15
CF14N30 mole concentration of dissolved molecular oxygen in sea water at shallowest local minimum in vertical profile Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The concentration of any chemical species, whether particulate or dissolved, may vary with depth in the ocean. A depth profile may go through one or more local minima in concentration. The mole_ concentration_ of_ molecular_ oxygen_ in_ sea_ water_ at_ shallowest_ local_ minimum_ in_ vertical_ profile is the mole concentration of oxygen at the local minimum in the concentration profile that occurs closest to the sea surface. The chemical formula for molecular oxygen is O2. 2018-12-17
UAHJU591 mole concentration of dissolved nitrogen in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved nitrogen" means the sum of all nitrogen in solution: inorganic nitrogen (nitrite, nitrate and ammonium) plus nitrogen in carbon compounds. 2022-03-18
GBBLMM7I mole concentration of dissolved organic 13C in sea water Sum of dissolved organic carbon-13 component concentrations. "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Organic carbon" describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "C" means the element carbon and "13C" is the stable isotope "carbon-13", having six protons and seven neutrons. 2023-04-24
ZPZ35UXA mole concentration of dissolved organic carbon in sea floor sediment pore water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen' or a phrase such as "nox_ expressed_ as_ nitrogen". "Organic carbon" describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Sea floor sediment" is sediment deposited at the sea bed. "Water" means water in all phases. 2024-01-18
CF14N31 mole concentration of dissolved organic carbon in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen' or a phrase such as "nox_ expressed_ as_ nitrogen". "Organic carbon" describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2019-02-04
CFSN2204 mole concentration of dissolved organic nitrogen in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved organic nitrogen" describes the nitrogen held in carbon compounds in solution. These are mostly generated by plankton excretion and decay. 2020-06-22
JBV28576 mole concentration of dissolved organic phosphorus in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Organic phosphorus" means phosphorus in carbon compounds. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/ORGPDSZZ/4/. 2022-03-18
919O9Z29 mole concentration of dissolved phosphorus in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Phosphorus means phosphorus in all chemical forms, commonly referred to as "total phosphorus". The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/TPHSDSZZ/6/. 2022-03-18
CF12N452 mole concentration of ethane in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N453 mole concentration of ethanol in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ethanol is C2H5OH. 2009-07-06
CF12N454 mole concentration of ethene in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
CF12N455 mole concentration of ethyne in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. 2019-02-04
CF12N456 mole concentration of formaldehyde in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. 2009-07-06
CF12N457 mole concentration of formic acid in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for formic acid is HCOOH. The IUPAC name for formic acid is methanoic acid. 2009-07-06
CF12N458 mole concentration of gaseous divalent mercury in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Divalent mercury" means all compounds in which the mercury has two binding sites to other ion(s) in a salt or to other atom(s) in a molecule. 2009-07-06
CF12N459 mole concentration of gaseous elemental mercury in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for mercury is Hg. 2009-07-06
CDRAIE77 mole concentration of guanosine triphosphate in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of guanosine triphosphate is C10H16N5O14P3. 2023-02-06
CF12N460 mole concentration of halon1202 in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1202 is CBr2F2. The IUPAC name for Halon1202 is dibromo(difluoro)methane. 2019-05-14
CF12N461 mole concentration of halon1211 in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1211 is CBrClF2. The IUPAC name for Halon1211 is bromo-chloro-difluoromethane. 2019-05-14
CF12N462 mole concentration of halon1301 in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1301 is CBrF3. The IUPAC name for Halon1301 is bromo(trifluoro)methane. 2019-05-14
CF12N463 mole concentration of halon2402 in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon2402 is C2Br2F4. The IUPAC name for Halon2402 is 1,2-dibromo-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12N464 mole concentration of hcc140a in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCC140a, also called methyl chloroform, is CH3CCl3. The IUPAC name for HCC140a is 1,1,1-trichloroethane. 2019-05-14
CF12N465 mole concentration of hcfc141b in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for HCFC141b is CH3CCl2F. The IUPAC name for HCFC141b is 1,1-dichloro-1-fluoroethane. 2009-07-06
CF12N466 mole concentration of hcfc142b in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for HCFC142b is CH3CClF2. The IUPAC name for HCFC142b is 1-chloro-1,1-difluoroethane. 2009-07-06
CF12N467 mole concentration of hcfc22 in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCFC22 is CHClF2. The IUPAC name for HCFC22 is chloro(difluoro)methane. 2019-05-14
CF12N468 mole concentration of hexachlorobiphenyl in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hexachlorobiphenyl is C12H4Cl6. This structure of this species consists of two linked benzene rings, each of which is additionally bonded to three chlorine atoms. 2009-07-06
CF12N469 mole concentration of hox expressed as hydrogen in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "HOx" means a combination of two radical species containing hydrogen and oxygen: OH and HO2. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
CF12N470 mole concentration of hydrogen bromide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hydrogen bromide is HBr. 2009-07-06
CF12N471 mole concentration of hydrogen chloride in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hydrogen chloride is HCl. 2009-07-06
CF12N472 mole concentration of hydrogen cyanide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hydrogen cyanide is HCN. 2009-07-06
CF12N473 mole concentration of hydrogen peroxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hydrogen peroxide is H2O2. 2009-07-06
C0W93NJN mole concentration of hydrogen sulfide in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of hydrogen sulfide is H2S. 2019-06-17
CF12N474 mole concentration of hydroperoxyl radical in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for the hydroperoxyl radical is HO2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N475 mole concentration of hydroxyl radical in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for the hydroxyl radical is OH. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N476 mole concentration of hypobromous acid in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hypobromous acid is HOBr. 2009-07-06
CF12N477 mole concentration of hypochlorous acid in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for hypochlorous acid is HOCl. 2009-07-06
CF12N478 mole concentration of inorganic bromine in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. "Inorganic bromine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "brox" are used for quantities that contain all inorganic bromine species except HBr and BrONO2. 2019-03-04
CF12N479 mole concentration of inorganic chlorine in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. "Inorganic chlorine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "clox" are used for quantities that contain all inorganic chlorine species except HCl and ClONO2. 2019-02-04
CF12N480 mole concentration of isoprene in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for isoprene is CH2=C(CH3)CH=CH2. The IUPAC name for isoprene is 2-methylbuta-1,3-diene. Isoprene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
CF12N481 mole concentration of limonene in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for limonene is C10H16. The IUPAC name for limonene is 1-methyl-4-prop-1-en-2-ylcyclohexene. Limonene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
CF14N32 mole concentration of mesozooplankton expressed as carbon in sea water Mole concentration' means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Mesozooplankton are zooplankton ranging between 20 micrometers and 200 micrometers in size. 2010-05-12
CF12S28 mole concentration of mesozooplankton expressed as nitrogen in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated in terms of B alone, neglecting all other chemical constituents of A. 2009-07-06
CFSN0804 mole concentration of mesozooplankton in sea water expressed as nitrogen DEPRECATED Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. The construction expressed_ as_ nitrogen means that the mole concentration is that of nitrogen atoms due to the mesozooplankton. Mesozooplankton are large protozoans (single-celled organisms) and small metazoans (multi-celled organisms) sized between 2x10-4 m and 2x10-2 m that feed on other plankton and telonemia. 2009-07-06
CF12N482 mole concentration of methane in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N483 mole concentration of methanol in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for methanol is CH3OH. 2009-07-06
CF12N484 mole concentration of methyl bromide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for methyl bromide is CH3Br. The IUPAC name for methyl bromide is bromomethane. 2009-07-06
CF12N485 mole concentration of methyl chloride in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for methyl chloride is CH3Cl. The IUPAC name for methyl chloride is chloromethane. 2009-07-06
CF12N486 mole concentration of methyl hydroperoxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for methyl hydroperoxide is CH3OOH. 2009-07-06
CF12N487 mole concentration of methyl peroxy radical in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for methyl_ peroxy_ radical is CH3O2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF14N33 mole concentration of microzooplankton expressed as carbon in sea water Mole concentration' means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Microzooplankton are zooplankton of less than 20 micrometers in size. 2010-05-12
CF12S29 mole concentration of microzooplankton expressed as nitrogen in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated in terms of B alone, neglecting all other chemical constituents of A. 2009-07-06
CFSN0805 mole concentration of microzooplankton in sea water expressed as nitrogen DEPRECATED Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. The construction expressed_ as_ nitrogen means that the mole concentration is that of nitrogen atoms due to the microzooplankton. Microzooplankton are protozoans (single-celled organisms) sized between 2x10-5 m and 2x10-4 m that feed on other plankton and telonemia. 2009-07-06
CF14N34 mole concentration of miscellaneous phytoplankton expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Miscellaneous phytoplankton" are all those phytoplankton that are not diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton or other separately named components of the phytoplankton population. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
CF14N35 mole concentration of miscellaneous zooplankton expressed as carbon in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Miscellaneous zooplankton" are all those zooplankton that are not mesozooplankton, microzooplankton or other separately named components of the zooplankton population. 2019-03-04
CF12N488 mole concentration of molecular hydrogen in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for molecular hydrogen is H2. 2009-07-06
DABDADJB mole concentration of nitrate and nitrite in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. The chemical formula for the nitrate anion is NO3-. The chemical formula for the nitrite anion is NO2-. 2012-09-19
CFSN0806 mole concentration of nitrate in sea water Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
CF12N489 mole concentration of nitrate radical in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N490 mole concentration of nitric acid in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for nitric acid is HNO3. 2009-07-06
CF12N491 mole concentration of nitric acid trihydrate ambient aerosol in air DEPRECATED Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
URHC8AYC mole concentration of nitric acid trihydrate ambient aerosol particles in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
DDAEDBBI mole concentration of nitrite in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. The chemical formula for the nitrite anion is NO2-. 2012-09-19
CF12N492 mole concentration of nitrogen dioxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for nitrogen dioxide is NO2. 2009-07-06
CF12N493 mole concentration of nitrogen monoxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for nitrogen monoxide is NO. 2009-07-06
CF12N494 mole concentration of nitrous acid in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for nitrous acid is HNO2. 2009-07-06
CF12N495 mole concentration of nitrous oxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for nitrous oxide is N2O. 2009-07-06
CF12N496 mole concentration of nmvoc expressed as carbon in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
CF12N497 mole concentration of nox expressed as nitrogen in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2019-03-04
CF12N498 mole concentration of noy expressed as nitrogen in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Noy" describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2) , chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)). The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2019-02-04
CF14N36 mole concentration of organic detritus expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Organic detritus are particles of debris from decaying plants and animals. 2010-05-12
CF12S30 mole concentration of organic detritus expressed as nitrogen in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Organic detritus are particles of debris from decaying plants and animals. 2009-07-06
CF12S31 mole concentration of organic detritus expressed as silicon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Organic detritus are particles of debris from decaying plants and animals. 2009-07-06
CFSN0807 mole concentration of organic detritus in sea water expressed as nitrogen DEPRECATED Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. The construction expressed_ as_ nitrogen means that the mole concentration is that of nitrogen atoms due to the organic detritus. Organic detritus are particles of debris from decaying plants and animals. 2009-07-06
CFSN0808 mole concentration of organic detritus in sea water expressed as silicon DEPRECATED Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. The construction expressed_ as_ silicon means that the mole concentration is that of silicon atoms due to the organic detritus. Organic detritus are particles of debris from decaying plants and animals. 2009-07-06
CF12N499 mole concentration of ozone in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for ozone is O3. 2009-07-06
ROMMVJ45 mole concentration of particulate matter expressed as calcium in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. 2023-07-05
OWEKUJ7H mole concentration of particulate matter expressed as carbon in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2022-03-18
03ABEUPC mole concentration of particulate matter expressed as iron in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. 2023-07-05
UDS3QBKR mole concentration of particulate matter expressed as magnesium in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. 2023-07-05
8U3C3SPG mole concentration of particulate matter expressed as manganese in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. 2023-07-05
VXY9YFQO mole concentration of particulate matter expressed as phosphorus in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. Phosphorus means phosphorus in all chemical forms, commonly referred to as "total phosphorus". 2023-07-05
9T7YW0UY mole concentration of particulate matter expressed as potassium in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. 2023-07-05
CF14N37 mole concentration of particulate matter expressed as silicon in sea water Mole concentration means number of moles per unit volume, also called"molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2018-12-17
L7HK0CKS mole concentration of particulate matter expressed as sodium in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. 2023-07-05
7J5A4SLU mole concentration of particulate matter expressed as sulfur in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. 2023-07-05
UGHJFA2T mole concentration of particulate matter expressed as zinc in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. 2023-07-05
CF14N38 mole concentration of particulate organic matter expressed as iron in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2018-12-17
CF14N39 mole concentration of particulate organic matter expressed as nitrogen in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2018-12-17
CF14N40 mole concentration of particulate organic matter expressed as phosphorus in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2018-12-17
C3W9JYOR mole concentration of particulate organic matter expressed as silicon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-04-24
HU75AF06 mole concentration of particulate organic nitrogen in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Particulate organic nitrogen" means the sum of all organic nitrogen compounds that are solid, or bound to solid particles. "Organic nitrogen", when measured, always refers to all nitrogen incorporated in carbon compounds in the sample. Models may use the term to refer to nitrogen contained in specific groups of organic compounds in which case the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2018-12-17
CF12N500 mole concentration of peroxyacetyl nitrate in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for peroxyacetyl nitrate, sometimes referred to as PAN, is CH3COO2NO2. The IUPAC name for peroxyacetyl nitrate is nitroethaneperoxoate. 2019-02-04
CF12N501 mole concentration of peroxynitric acid in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for peroxynitric acid, sometimes referred to as PNA, is HO2NO2. 2009-07-06
CF12N502 mole concentration of phosphate in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. 2009-07-06
CF14N41 mole concentration of phytoplankton expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Standard names also exist for the mole concentration of a number of components that make up the total phytoplankton population, such as diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton and miscellaneous phytoplankton. 2018-12-17
CF14N42 mole concentration of phytoplankton expressed as iron in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
CF12S32 mole concentration of phytoplankton expressed as nitrogen in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2019-02-04
CF14N43 mole concentration of phytoplankton expressed as phosphorus in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
CF14N44 mole concentration of phytoplankton expressed as silicon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
CFSN0809 mole concentration of phytoplankton in sea water expressed as nitrogen DEPRECATED Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. The construction expressed_ as_ nitrogen means that the mole concentration is that of nitrogen atoms due to the phytoplankton. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. 2009-07-06
CF14N45 mole concentration of picophytoplankton expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
1J3O1KPX mole concentration of prokaryotes expressed as carbon in sea water "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Prokaryotes" means all Bacteria and Archaea excluding photosynthetic cyanobacteria such as Synechococcus and Prochlorococcus or other separately named components of the prokaryotic population. 2023-07-05
CF12N503 mole concentration of propane in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N504 mole concentration of propene in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
CF12N505 mole concentration of radon in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical symbol for radon is Rn. 2009-07-06
CFSN0810 mole concentration of silicate in sea water Mole concentration means moles (amount of substance) per unit volume and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
CF12N506 mole concentration of sulfur dioxide in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for sulfur dioxide is SO2. 2009-07-06
4DCD20NU mole concentration of sulfur hexafluoride in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of sulfur hexafluoride is SF6. 2016-11-15
CF12N507 mole concentration of toluene in air "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. 2019-02-04
CF12N508 mole concentration of water vapor in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. 2009-07-06
CF12N509 mole concentration of xylene in air Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
CF14N46 mole concentration of zooplankton expressed as carbon in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Standard names also exist for the mole concentration of a number of components that make up the total zooplankton population, such as mesozooplankton, microzooplankton and miscellaneous zooplankton. 2019-02-04
7WW6WT3B mole concentration of zooplankton expressed as nitrogen in sea water Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated in terms of B alone, neglecting all other chemical constituents of A. Standard names also exist for the mole concentration of a number of components that make up the total zooplankton population, such as mesozooplankton, and microzooplankton. 2016-05-17
YYFUVSQ9 mole content of carbon monoxide in atmosphere layer "Content" indicates a quantity per unit area. The "content_ of_ X_ in_ atmosphere_ layer" refers to the vertical integral between two specified levels in the atmosphere. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. For the mole content integrated from the surface to the top of the atmosphere, standard names including "atmosphere_ mole_ content_ of_ X" are used. The chemical formula for carbon monoxide is CO. 2018-05-15
AW3W63S6 mole content of methane in atmosphere layer "Content" indicates a quantity per unit area. The "content_ of_ X_ in_ atmosphere_ layer" refers to the vertical integral between two specified levels in the atmosphere. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. For the mole content integrated from the surface to the top of the atmosphere, standard names including "atmosphere_ mole_ content_ of_ X" are used. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2018-05-15
U1SQ0AEP mole content of nitrogen dioxide in atmosphere layer "Content" indicates a quantity per unit area. The "content_ of_ X_ in_ atmosphere_ layer" refers to the vertical integral between two specified levels in the atmosphere. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. For the mole content integrated from the surface to the top of the atmosphere, standard names including "atmosphere_ mole_ content_ of_ X" are used. The chemical formula for nitrogen dioxide is NO2. 2018-05-15
IFDIAFIF mole content of ozone in atmosphere layer "Content" indicates a quantity per unit area. The "content_ of_ X_ in_ atmosphere_ layer" refers to the vertical integral between two specified levels in the atmosphere. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. For the mole content integrated from the surface to the top of the atmosphere, standard names including "atmosphere_ mole_ content_ of_ X" are used. The chemical formula for ozone is O3. "mole_ content_ of_ ozone_ in_ atmosphere_ layer" is usually measured in Dobson Units which are equivalent to 446.2 micromoles m-2. N.B. Data variables containing column content of ozone can be given the standard name of either equivalent_ thickness_ at_ stp_ of_ atmosphere_ ozone_ content or atmosphere_ mole_ content_ of_ ozone. The latter name is recommended for consistency with mole content names for chemical species other than ozone. 2013-02-12
UBNDM2MJ mole fraction of acetaldehyde in air Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for acetaldehyde is CH3CHO. The IUPAC name for acetaldehyde is ethanal. 2015-01-07
CF12N510 mole fraction of acetic acid in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for acetic acid is CH3COOH. The IUPAC name for acetic acid is ethanoic acid. 2019-02-04
CF12N511 mole fraction of aceto nitrile in air "Mole fraction" is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for acetonitrile is CH3CN. The IUPAC name for acetonitrile is ethanenitrile. 2019-02-04
0BANM54Q mole fraction of acetone in air Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Acetone is an organic molecule with the chemical formula CH3CH3CO. The IUPAC name for acetone is propan-2-one. Acetone is a member of the group of organic compounds known as ketones. There are standard names for the ketone group as well as for some of the individual species. 2015-01-07
GCCDGGCA mole fraction of aldehydes in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Aldehydes are organic compounds with a CHO group; "aldehydes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for formaldehyde as the simplest member of the aldehydes group. 2019-03-04
HGGIACEG mole fraction of alkanes in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. Alkanes are saturated hydrocarbons, i.e. they do not contain any chemical double bonds. Alkanes contain only hydrogen and carbon combined in the general proportions C(n)H(2n+2); "alkanes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual alkane species, e.g., methane and ethane. 2012-04-27
7KBKC1NS mole fraction of alkenes in air Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Alkenes are unsaturated hydrocarbons as they contain chemical double bonds between adjacent carbon atoms. "Hydrocarbon" means a compound containing hydrogen and carbon. Alkenes contain only hydrogen and carbon combined in the general proportions C(n)H(2n); "alkenes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual alkene species, e.g., ethene and propene. 2015-01-07
CFSN0811 mole fraction of alpha hexachlorocyclohexane in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
CF12N512 mole fraction of alpha pinene in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for alpha-pinene is C10H16. The IUPAC name for alpha-pinene is (1S,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene. 2019-02-04
CF12N513 mole fraction of ammonia in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for ammonia is NH3. 2019-02-04
CF12N514 mole fraction of anthropogenic nmvoc expressed as carbon in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Anthropogenic" means influenced, caused, or created by human activity. 2015-01-07
DZ3BYFZL mole fraction of artificial tracer with fixed lifetime in air Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Artificial tracer" means a passive atmospheric tracer that is used to study atmospheric transport and deposition. To specify the length of the tracer lifetime in the atmosphere, a scalar coordinate variable with the standard name of tracer_ lifetime should be used. 2015-01-07
CFV8N10 mole fraction of atomic bromine in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical symbol of atomic bromine is Br. 2008-04-15
CFV8N11 mole fraction of atomic chlorine in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical symbol of atomic chlorine is Cl. 2008-04-15
CFV8N12 mole fraction of atomic nitrogen in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical symbol of atomic nitrogen is N. 2008-04-15
CFV7N46 mole fraction of benzene in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-11-21
CF12N515 mole fraction of beta pinene in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for beta pinene is C10H16. The IUPAC name for beta-pinene is (1S,5S)-6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane. 2019-02-04
CF12N516 mole fraction of biogenic nmvoc expressed as carbon in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Biogenic" means influenced, caused, or created by natural processes. 2015-01-07
CFV8N13 mole fraction of bromine chloride in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of bromine chloride is BrCl. 2008-04-15
CFV8N14 mole fraction of bromine monoxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of bromine monoxide is BrO. 2008-04-15
CFV8N15 mole fraction of bromine nitrate in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of bromine nitrate is BrONO2. 2008-04-15
A11O6XFX mole fraction of bromochloromethane in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for bromochloromethane is CH2BrCl. The IUPAC name is bromochloromethane. 2023-02-06
J02A9ORC mole fraction of bromodichloromethane in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for bromodichloromethane is CHBrCl2. The IUPAC name is bromodichloromethane. 2023-02-06
CF12N517 mole fraction of brox expressed as bromine in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Brox" describes a family of chemical species consisting of inorganic bromine compounds with the exception of hydrogen bromide (HBr) and bromine nitrate (BrONO2). "Brox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. Standard names that use the term "inorganic_ bromine" are used for quantities that contain all inorganic bromine species including HCl and ClONO2. 2019-02-04
CF12N518 mole fraction of butane in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2019-02-04
CFV7N47 mole fraction of carbon dioxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-11-21
GAXBFKR9 mole fraction of carbon dioxide in dry air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "in_ dry_ air" means that the quantity is calculated as the total number of particles of X divided by the number of dry air particles, i.e. the effect of water vapor is excluded. The chemical formula for carbon dioxide is CO2. 2024-01-18
CFSN0812 mole fraction of carbon monoxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
8RT94HBX mole fraction of carbon monoxide in dry air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "in_ dry_ air" means that the quantity is calculated as the total number of particles of X divided by the number of dry air particles, i.e. the effect of water vapor is excluded. The chemical formula of carbon monoxide is CO. 2024-01-18
CFV8N16 mole fraction of carbon tetrachloride in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. The chemical formula of carbon tetrachloride is CCl4. The IUPAC name for carbon tetrachloride is tetrachloromethane. 2019-04-08
GYGQPPOA mole fraction of carbon tetrafluoride in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for carbon tetrafluoride, also called PFC14, is CF4. The IUPAC name for carbon tetrafluoride is tetrafluoromethane. 2019-05-14
JEB22TKP mole fraction of carbonyl fluoride in air Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of carbonyl fluoride is COF2. The IUPAC name for carbonyl fluoride is carbonyl difluoride. 2017-07-24
Y8LMUTED mole fraction of carbonyl sulfide in air Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for carbonyl sulfide is COS. The IUPAC name for carbonyl sulfide is carbon oxide sulfide. 2017-07-24
CFV8N18 mole fraction of cfc113 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC113 is CCl2FCClF2. The IUPAC name for CFC113 is 1,1,2-trichloro-1,2,2-trifluoroethane. 2019-05-14
CFV8N19 mole fraction of cfc113a in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC113a is CCl3CF3. The IUPAC name for CFC113a is 1,1,1-trichloro-2,2,2-trifluoroethane. 2019-05-14
CFV8N20 mole fraction of cfc114 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC114 is CClF2CClF2. The IUPAC name for CFC114 is 1,2-dichloro-1,1,2,2-tetrafluoroethane. 2019-05-14
CFV8N21 mole fraction of cfc115 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC115 is CClF2CF3. The IUPAC name for CFC115 is 1-chloro-1,1,2,2,2-pentafluoroethane. 2019-05-14
CFV8N17 mole fraction of cfc11 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro(fluoro)methane. 2019-05-14
CFV8N22 mole fraction of cfc12 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro(difluoro)methane. 2019-05-14
B79DQ8TZ mole fraction of cfc13 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for CFC13 is CF3Cl. The IUPAC name for CFC13 is chloro(trifluoro)methane. 2024-01-18
CFV8N23 mole fraction of chlorine dioxide in air DEPRECATED Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of chlorine dioxide is OClO. 2008-11-11
CFV8N24 mole fraction of chlorine monoxide in air DEPRECATED Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of chlorine monoxide is ClO. 2008-11-11
CFV11S2 mole fraction of chlorine dioxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of chlorine dioxide is OClO. 2008-11-11
CFV11S3 mole fraction of chlorine monoxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of chlorine monoxide is ClO. 2008-11-11
CFV8N25 mole fraction of chlorine nitrate in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of chlorine nitrate is ClONO2. 2008-04-15
M97DOKAK mole fraction of chloroform in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for chloroform is CHCl3. The IUPAC name for chloroform is trichloromethane. 2019-04-08
CF12N519 mole fraction of clox expressed as chlorine in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Clox" describes a family of chemical species consisting of inorganic chlorine compounds with the exception of hydrogen chloride (HCl) and chlorine nitrate (ClONO2). "Clox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. Standard names that use the term "inorganic_ chlorine" are used for quantities that contain all inorganic chlorine species including HCl and ClONO2. 2019-02-04
HEWYK2XY mole fraction of dibromochloromethane in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for dibromochloromethane is CHBr2Cl. The IUPAC name is dibromochloromethane. 2023-02-06
GGUEVS8B mole fraction of dibromomethane in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for dibromomethane is CH2Br2. The IUPAC name is dibromomethane. 2023-02-06
CFV8N26 mole fraction of dichlorine peroxide in air DEPRECATED Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of dichlorine peroxide is Cl2O2. 2008-11-11
CGAFCEHA mole fraction of dichlorine in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Dichlorine is the molecular form of elemental chlorine with the chemical formula Cl2. 2019-03-04
CFV11S4 mole fraction of dichlorine peroxide in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of dichlorine peroxide is Cl2O2. 2019-03-04
LCZWET9R mole fraction of dichloromethane in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for dichloromethane is CH2Cl2. The IUPAC name is dichloromethane. 2019-04-08
CFSN0813 mole fraction of dimethyl sulfide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
CFV8N27 mole fraction of dinitrogen pentoxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of dinitrogen pentoxide is N2O5. 2008-04-15
CFV7N48 mole fraction of ethane in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-11-21
CF12N520 mole fraction of ethanol in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for ethanol is C2H5OH. 2019-02-04
CFV7N49 mole fraction of ethene in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-11-21
CFV7N50 mole fraction of ethyne in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-11-21
CFV7N51 mole fraction of formaldehyde in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-11-21
CF12N521 mole fraction of formic acid in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for formic acid is HCOOH. The IUPAC name for formic acid is methanoic acid. 2019-02-04
CFV7N52 mole fraction of gaseous divalent mercury in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. "Divalent mercury" means all compounds in which the mercury has two binding sites to other ion(s) in a salt or to other atom(s) in a molecule. 2007-11-21
CFV7N53 mole fraction of gaseous elemental mercury in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-11-21
Y4E46BJR mole fraction of glyoxal in air Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for glyoxal is CHOCHO. The IUPAC name for glyoxal is ethanedial. 2015-01-07
CFV8N28 mole fraction of halon1202 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1202 is CBr2F2. The IUPAC name for Halon1202 is dibromo(difluoro)methane. 2019-05-14
CFV8N29 mole fraction of halon1211 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1211 is CBrClF2. The IUPAC name for Halon1211 is bromo-chloro-difluoromethane. 2019-05-14
CFV8N30 mole fraction of halon1301 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon1301 is CBrF3. The IUPAC name for Halon1301 is bromo(trifluoro)methane. 2019-05-14
CFV8N31 mole fraction of halon2402 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for Halon2402 is C2Br2F4. The IUPAC name for Halon2402 is 1,2-dibromo-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12N522 mole fraction of hcc140a in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCC140a, also called methyl chloroform, is CH3CCl3. The IUPAC name for HCC140a is 1,1,1-trichloroethane. 2019-05-14
VZ8ASN37 mole fraction of hcfc124 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hcfc124 is C2HClF4. The IUPAC name for hcfc124 is 1-chloro-1,2,2,2-tetrafluoroethane. 2019-04-08
CL1JLKLJ mole fraction of hcfc132b in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCFC132b is CH2ClCClF2. The IUPAC name for HCFC132b is 1,2-dichloro-1,1-difluoroethane. 2024-01-18
S2L9T054 mole fraction of hcfc133a in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCFC133a is CH2ClCF3. The IUPAC name for HCFC133a is 2-chloro-1,1,1-trifluoroethane. 2024-01-18
CF12N523 mole fraction of hcfc141b in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCFC141b is CH3CCl2F. The IUPAC name for HCFC141b is 1,1-dichloro-1-fluoroethane. 2019-02-04
CF12N524 mole fraction of hcfc142b in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCFC142b is CH3CClF2. The IUPAC name for HCFC142b is 1-chloro-1,1-difluoroethane. 2019-02-04
CF12N525 mole fraction of hcfc22 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for HCFC22 is CHClF2. The IUPAC name for HCFC22 is chloro(difluoro)methane. 2019-05-14
CFSN0814 mole fraction of hexachlorobiphenyl in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-07-17
EWMAPRJO mole fraction of hfc125 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hfc125 is CF3CF2H. The IUPAC name for hfc125 is 1,1,1,2,2-pentafluoroethane. 2019-04-08
BU0SQG0F mole fraction of hfc134a in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hfc134a is CF3CFH2. The IUPAC name for hfc134a is 1,1,1,2-tetrafluoroethane. 2019-04-08
1UCLCK0S mole fraction of hfc143a in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hfc143a is CF3CH3. The IUPAC name for hfc143a is 1,1,1-trifluoroethane. 2019-04-08
8V0G6IXE mole fraction of hfc152a in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hfc152a is CF2HCH3. The IUPAC name for hfc152a is 1,1-difluoroethane. 2019-04-08
RAO97MVK mole fraction of hfc227ea in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hfc227ea is C3HF7. The IUPAC name for hfc227ea is 1,1,1,2,3,3,3-heptafluoropropane. 2019-04-08
042CV38X mole fraction of hfc236fa in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hfc236fa is C3H2F6. The IUPAC name for hfc236fa is 1,1,1,3,3,3-hexafluoropropane. 2019-04-08
XQNX4ZZ3 mole fraction of hfc23 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hfc23 is CF3H. The IUPAC name for hfc23 is trifluoromethane. 2019-04-08
IBLOP51J mole fraction of hfc245fa in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hfc245fa is C3H3F5. The IUPAC name for hfc245fa is 1,1,1,3,3-pentafluoropropane. 2019-04-08
CJ1SCFXE mole fraction of hfc32 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hfc32 is CF2H2. The IUPAC name for hfc32 is difluoromethane. 2019-04-08
GRA5B5ST mole fraction of hfc365mfc in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hfc365mfc is C4H5F5. The IUPAC name for hfc365mfc is 1,1,1,3,3-pentafluorobutane. 2019-04-08
LTWDCI0A mole fraction of hfc4310mee in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hfc4310mee is C5H2F10. The IUPAC name for hfc4310mee is 1,1,1,2,2,3,4,5,5,5-decafluoropentane. 2019-04-08
CF12N526 mole fraction of hox expressed as hydrogen in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "HOx" means a combination of two radical species containing hydrogen and oxygen: OH and HO2. 2019-03-04
CFV8N32 mole fraction of hydrogen bromide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of hydrogen bromide is HBr. 2008-04-15
CFV8N33 mole fraction of hydrogen chloride in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of hydrogen chloride is HCl. 2008-04-15
CFV8N34 mole fraction of hydrogen cyanide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of hydrogen cyanide is HCN. 2008-04-15
CFV8N35 mole fraction of hydrogen peroxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of hydrogen peroxide is H202. 2008-04-15
CADJBCCG mole fraction of hydrogen sulfide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. The chemical formula of hydrogen sulfide is H2S. 2012-04-27
CFV8N36 mole fraction of hydroperoxyl radical in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of hydroperoxyl radical is HO2. 2008-04-15
CFSN0815 mole fraction of hydroxyl radical in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
CFV8N37 mole fraction of hypobromous acid in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of hypobromous acid is HOBr. 2008-04-15
CFV8N38 mole fraction of hypochlorous acid in air DEPRECATED Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of hypochlorous acid is HOCl. 2008-11-11
CFV11S5 mole fraction of hypochlorous acid in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of hypochlorous acid is HOCl. 2008-11-11
CF12S33 mole fraction of inorganic bromine in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of bromine containing source gases (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. "Inorganic bromine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "brox" are used for quantities that contain all inorganic bromine species except HBr and BrONO2. 2019-03-04
CFV8N39 mole fraction of inorganic chlorine in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. "Inorganic chlorine",sometimes referred to as Cly, describes a family of chemical species which result from the degradation of chlorine-containing source gases (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea-salt and other aerosols. mole_ fraction_ of_ inorganic_ chlorine is the sum of all species belonging to the family that are represented within a given model. 2008-04-15
CFV7N54 mole fraction of isoprene in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for isoprene is CH2=C(CH3)CH=CH2. The IUPAC name for isoprene is 2-methylbuta-1,3-diene. Isoprene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
CF12N527 mole fraction of limonene in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for limonene is C10H16. The IUPAC name for limonene is 1-methyl-4-prop-1-en-2-ylcyclohexene. Limonene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
CFV7N55 mole fraction of methane in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-11-21
760D4K7J mole fraction of methane in dry air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "in_ dry_ air" means that the quantity is calculated as the number of particles of X divided by the number of dry air particles, i.e. the effect of water vapor is excluded. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2024-01-18
CF12N528 mole fraction of methanol in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for methanol is CH3OH. 2019-02-04
HDFFIHBC mole fraction of methlyglyoxal in air DEPRECATED Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, whereX is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. Methylglyoxal is an organic molecule with the chemical formula CH3COCHO. It is also called pyruvaldehyde or 2-oxopropanal. 2019-03-04
CFV8N40 mole fraction of methyl bromide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of methyl bromide is CH3Br. 2008-04-15
CFV8N41 mole fraction of methyl chloride in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of methyl chloride is CH3Cl. 2008-06-10
CFV8N42 mole fraction of methyl hydroperoxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of methyl hydroperoxide is CH3OOH. 2008-04-15
CF12N529 mole fraction of methyl peroxy radical in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for methyl peroxy radical is CH3O2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-02-04
ML5LCAE4 mole fraction of methylglyoxal in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Methylglyoxal is an organic molecule with the chemical formula CH3COCHO. It is also called pyruvaldehyde or 2-oxopropanal. 2019-03-04
CFV8N43 mole fraction of molecular hydrogen in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of molecular hydrogen is H2. 2008-04-15
CF12N530 mole fraction of nitrate radical in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CFSN0816 mole fraction of nitric acid in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
CF12N531 mole fraction of nitric acid trihydrate ambient aerosol in air DEPRECATED Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
URGNWFUF mole fraction of nitric acid trihydrate ambient aerosol particles in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
CFSN0817 mole fraction of nitrogen dioxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
CFSN0818 mole fraction of nitrogen monoxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
1X7MO7TH mole fraction of nitrogen trifluoride in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for nitrogen trifluoride is NF3. Nitrogen trifluoride is the IUPAC name. 2019-04-08
CF12N532 mole fraction of nitrous acid in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for nitrous acid is HNO2. 2019-02-04
CFV8N44 mole fraction of nitrous oxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of nitrous oxide is N2O. 2008-04-15
M8TGRULE mole fraction of nitrous oxide in dry air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "in_ dry_ air" means that the quantity is calculated as the number of particles of X divided by the number of dry air particles, i.e. the effect of water vapor is excluded. The chemical formula for nitrous oxide is N2O. 2024-01-18
CF12N533 mole fraction of nmvoc expressed as carbon in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
CF12N534 mole fraction of nox expressed as nitrogen in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. 2019-03-04
CF12N535 mole fraction of noy expressed as nitrogen in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Noy" describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2) , chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)). The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2019-03-04
CFSNA012 mole fraction of o3 in air DEPRECATED Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2006-09-26
XALF0BMD mole fraction of organic nitrates in air Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Organic nitrates are nitrogen-containing compounds having the general formula RONO2, where R is an alkyl (or organic) group; "organic_ nitrates" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
E51UYNQI mole fraction of ox in air Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The term "ox" means a combination of three radical species containing 1 or 3 oxygen atoms: O + O1d + O3. 2018-06-11
CFSN0513 mole fraction of ozone in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2006-09-26
XK25S2YP mole fraction of perchloroethene in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for perchloroethene is CCl2CCl2. The IUPAC name for perchloroethene is tetrachloroethene. 2019-04-08
CFSN0820 mole fraction of peroxyacetyl nitrate in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
CFV8N45 mole fraction of peroxynitric acid in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of peroxynitric acid is HNO4. 2008-04-15
BTBIQPHD mole fraction of pfc116 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for pfc116 is C2F6. The IUPAC name for pfc116 is hexafluoroethane. 2019-04-08
CNZT2ZMQ mole fraction of pfc218 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for pfc218 is C3F8. The IUPAC name for pfc218 is octafluoropropane. 2019-04-08
KD40CHA6 mole fraction of pfc318 in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for pfc318 is c-C4F8. The IUPAC name for pfc318 is octafluorocyclobutane. 2019-04-08
CFV7N56 mole fraction of propane in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-11-21
CFV7N57 mole fraction of propene in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-11-21
CF12N536 mole fraction of radon in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical symbol for radon is Rn. 2019-02-04
CFSN0821 mole fraction of sulfur dioxide in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
49ICY8QO mole fraction of sulfur hexafluoride in air Mole fraction is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of sulfur hexafluoride is SF6. 2017-07-24
9O4GJXPD mole fraction of sulfuryl fluoride in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for sulfuryl fluoride is SO2F2. Sulfuryl fluoride is the IUPAC name. 2019-04-08
CFV7N58 mole fraction of toluene in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. 2019-03-04
CFV8N46 mole fraction of total inorganic bromine in air DEPRECATED Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. "Inorganic bromine",sometimes referred to as Bry, describes a family of chemical species which result from the degradation of bromine-containing source gases (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea-salt and other aerosols. mole_ fraction_ of_ inorganic_ bromine is the sum of all species belonging to the family that are represented within a given model. 2009-07-06
CFV8N47 mole fraction of total reactive nitrogen in air DEPRECATED Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. "Reactive nitrogen", sometimes referred to as Noy, describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2) and chlorine nitrate (ClONO2). 2009-07-06
6TLT0W2W mole fraction of tribromomethane in air "Mole fraction" is used in the construction "mole_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for tribromomethane is CHBr3. The IUPAC name is tribromomethane. 2023-02-06
CFV8N48 mole fraction of water vapor in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The chemical formula of water vapor is H2O. 2008-04-15
CFV7N59 mole fraction of xylene in air Mole fraction is used in the construction mole_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-11-21
CF12N537 mole ratio of nitrate to phosphate in sea water "Mole ratio" is used in the construction "mole_ ratio_ of_ X_ to_ Y_ in_ medium", where X and Y are both material constituents of the medium. "Medium" can take any of the values given in the "medium" section of the standard name Guidelines document. The phrase "ratio_ of_ X_ to_ Y" means X/Y. The chemical formula for the nitrate anion is NO3-. The chemical formula of the phosphate anion is PO4 with a charge of minus three. 2019-02-04
5RB7GBXQ moles of adenosine triphosphate per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/ATPXZZDZ/2/. 2023-10-16
KTNC31AC moles of ammonium per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of ammonium is NH4. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/MDMAP004/3/. 2023-10-16
CFV8N49 moles of carbon monoxide in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of carbon monoxide is CO. 2009-07-06
CFV8N50 moles of carbon tetrachloride in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of carbon tetrachloride is CCl4. 2009-07-06
CFV8N52 moles of cfc113 in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of CFC113 is CCl2FCClF2. The IUPAC name for CFC113 is 1,1,2-trichloro-1,2,2-trifluoro-ethane. 2009-07-06
CFV8N53 moles of cfc114 in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of CFC114 is CClF2CClF2. The IUPAC name for CFC114 is 1,2-dichloro-1,1,2,2-tetrafluoro-ethane. 2009-07-06
CFV8N54 moles of cfc115 in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of CFC115 is CClF2CF3. The IUPAC name for CFC115 is 1-chloro-1,1,2,2,2-pentafluoro-ethane. 2009-07-06
CFV8N51 moles of cfc11 in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro-fluoro-methane. 2009-07-06
CFV13A4 moles of cfc11 per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro(fluoro)methane. 2019-05-14
CFV8N55 moles of cfc12 in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro-difluoro-methane. 2009-07-06
EM1D7XWJ moles of dissolved inorganic carbon per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2021-09-20
0D56ZL18 moles of dissolved nitrogen per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved nitrogen" means the sum of all nitrogen in solution: inorganic nitrogen (nitrite, nitrate and ammonium) plus nitrogen in carbon compounds. 2023-10-16
QVPPPWEN moles of dissolved organic carbon per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Organic carbon" describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/CORGZZKG/1/. 2023-10-16
TU0A9UA8 moles of dissolved organic nitrogen per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved organic nitrogen" describes the nitrogen held in carbon compounds in solution. These are mostly generated by plankton excretion and decay. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/MDMAP008/3/. 2023-10-16
PJLQXZRK moles of dissolved organic phosphorus per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Organic phosphorus" means phosphorus in carbon compounds. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/ORGPMSZZ/4/. 2023-10-16
2NMYVULV moles of dissolved phosphorus per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Phosphorus" means phosphorus in all chemical forms, commonly referred to as "total phosphorus". The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/TPHSDSZZ/6/. 2023-10-16
397I6G5S moles of guanosine triphosphate per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of guanosine triphosphate is C10H16N5O14P3. 2023-10-16
CFV8N56 moles of halon1202 in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of halon1202 is CBr2F2. The IUPAC name for halon 1202 is dibromo-difluoro-methane. 2009-07-06
CFV8N57 moles of halon1211 in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of halon1211 is CBrClF2. The IUPAC name for halon 1211 is bromo-chloro-difluoro-methane. 2009-07-06
CFV8N58 moles of halon1301 in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of halon1301 is CBrF3. The IUPAC name for halon 1301 is bromo-trifluoro-methane. 2009-07-06
CFV8N59 moles of halon2402 in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of halon2402 is C2Br2F4. The IUPAC name for halon 2402 is 1,2-dibromo-1,1,2,2-tetrafluoro-ethane. 2009-07-06
CFV8N60 moles of hcc140a in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of HCC140a is CH3CCl3. The IUPAC name for HCC 140a is 1,1,1-trichloroethane. 2009-07-06
CFV8N61 moles of hcfc22 in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of HCFC22 is CHClF2. The IUPAC name for HCFC 22 is chloro-difluoro-methane. 2009-07-06
9UYOFIKP moles of hydrogen peroxide per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for hydrogen peroxide is H2O2. 2023-02-06
CFV8N62 moles of methane in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of methane is CH4. 2009-07-06
CFV8N63 moles of methyl bromide in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of methyl bromide is CH3Br. 2009-07-06
CFV8N64 moles of methyl chloride in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of methyl chloride is CH3Cl. 2009-07-06
CFV8N65 moles of molecular hydrogen in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of molecular hydrogen is H2. 2009-07-06
CFSN0514 moles of nitrate and nitrite per unit mass in sea water moles_ of_ X_ per_ unit_ mass_ inY is also called 'molality' of X in Y, where X is a material constituent of Y. 2006-09-26
CFSN0515 moles of nitrate per unit mass in sea water moles_ of_ X_ per_ unit_ mass_ inY is also called 'molality' of X in Y, where X is a material constituent of Y. 2006-09-26
CFSN0516 moles of nitrite per unit mass in sea water moles_ of_ X_ per_ unit_ mass_ inY is also called 'molality' of X in Y, where X is a material constituent of Y. 2006-09-26
CFV8N66 moles of nitrous oxide in atmosphere DEPRECATED The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of nitrous oxide is N2O. 2009-07-06
HMZSV9F1 moles of nitrous oxide per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for nitrous oxide is N2O. The chemical formula for nitrous oxide is N2O. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/DN2OZZ01/. 2023-02-06
CFSN0517 moles of oxygen per unit mass in sea water moles_ of_ X_ per_ unit_ mass_ inY is also called 'molality' of X in Y, where X is a material constituent of Y. 2006-09-26
KMQ44QVB moles of particulate biogenic silica per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Particulate means suspended solids of all sizes. Biogenic silica is a hydrated form of silica (silicon dioxide) with the chemical formula SiO2.nH2O sometimes referred to as opaline silica or opal. It is created by biological processes and in sea water it is predominantly the skeletal material of diatoms. 2023-02-06
4NPZATWY moles of particulate inorganic carbon per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Particulate means suspended solids of all sizes. Particulate inorganic carbon is carbon bound in molecules ionically that may be liberated from the particles as carbon dioxide by acidification. 2023-04-24
1ZSEWIZU moles of particulate inorganic carbon per unit mass of sea water DEPRECATED The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Particulate means suspended solids of all sizes. Particulate inorganic carbon is carbon bound in molecules ionically that may be liberated from the particles as carbon dioxide by acidification. 2023-04-24
NV9RKL0Z moles of particulate matter expressed as carbon per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/MDMAP011/4/. 2023-10-16
QMZP5V9M moles of particulate matter expressed as nitrogen per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/MDMAP013/4/. 2023-10-16
BOLKQRRO moles of particulate matter expressed as phosphorus per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. Phosphorus means phosphorus in all chemical forms, commonly referred to as "total phosphorus". The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/TPHSVLPT/5/. 2023-10-16
A14TB3JS moles of particulate organic matter expressed as carbon per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. 2023-10-16
QO4DM915 moles of particulate organic matter expressed as nitrogen per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. 2023-10-16
827N8JJT moles of particulate organic matter expressed as phosphorus per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Particulate means suspended solids of all sizes. Phosphorus means phosphorus in all chemical forms, commonly referred to as "total phosphorus". The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/OPHSVLPT/6/. 2023-10-16
CFSN0518 moles of phosphate per unit mass in sea water moles_ of_ X_ per_ unit_ mass_ inY is also called 'molality' of X in Y, where X is a material constituent of Y. 2006-09-26
CFSN0519 moles of silicate per unit mass in sea water moles_ of_ X_ per_ unit_ mass_ inY is also called 'molality' of X in Y, where X is a material constituent of Y. 2006-09-26
S4CS642P moles of sulfur hexafluoride per unit mass in sea water The construction "moles_ of_ X_ per_ unit_ mass_ in_ Y" is also called "molality" of X in Y, where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula of sulfur hexafluoride is SF6. 2023-10-16
CF12N538 moles per unit mass of cfc11 in sea water DEPRECATED The chemical formula of CFC11 is CFCl3. The IUPAC name fof CFC11 is trichloro-fluoro-methane. 2010-03-11
6P7MT1WN multi variate test quality flag A quality flag that reports the result of the Multi-variate test, which checks that values are reasonable when compared with related variables. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. There are standard names for other specific quality tests which take the form of X_ quality_ flag. Quality information that does not match any of the specific quantities should be given the more general standard name of quality_ flag. 2020-03-09
3ZX9BPRR neighbor test quality flag A quality flag that reports the result of the Neighbor test, which checks that values are reasonable when compared with nearby measurements. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. There are standard names for other specific quality tests which take the form of X_ quality_ flag. Quality information that does not match any of the specific quantities should be given the more general standard name of quality_ flag. 2020-03-09
CFSN0520 net downward longwave flux in air 'longwave' means longwave radiation. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0521 net downward longwave flux in air assuming clear sky A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'longwave' means longwave radiation. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0522 net downward radiative flux at top of atmosphere model Fluxes at the top_ of_ atmosphere_ model differ from TOA fluxes only if the model TOA fluxes make some allowance for the atmosphere above the top of the model; if not, it is usual to give standard names with toa to the fluxes at the top of the model atmosphere. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). Radiative flux is the sum of shortwave and longwave radiative fluxes. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFV16A21 net downward shortwave flux at sea water surface "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The term "shortwave" means shortwave radiation. The phrase "sea water surface" means the upper boundary of the liquid portion of an ocean or sea, including the boundary to floating ice if present. 2019-06-17
CFSN0523 net downward shortwave flux in air 'shortwave' means shortwave radiation. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0524 net downward shortwave flux in air assuming clear sky A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'shortwave' means shortwave radiation. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
Z2DYHW05 net primary mole productivity of biomass expressed as carbon by calcareous phytoplankton "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Calcareous phytoplankton" are phytoplankton that produce calcite. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. 2018-12-17
RMOQBF66 net primary mole productivity of biomass expressed as carbon by diatoms "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Diatoms are single-celled phytoplankton with an external skeleton made of silica. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
RANNNNUF net primary mole productivity of biomass expressed as carbon by diazotrophic phytoplankton "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Diazotrophic phytoplankton are phytoplankton (predominantly from Phylum Cyanobacteria) that are able to fix molecular nitrogen (gas or solute) in addition to nitrate and ammonium. 2020-03-09
6ZGAK5Q0 net primary mole productivity of biomass expressed as carbon by diazotrophs DEPRECATED "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2020-03-09
R5C60WOO net primary mole productivity of biomass expressed as carbon by miscellaneous phytoplankton "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Miscellaneous phytoplankton" are all those phytoplankton that are not diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton or other separately named components of the phytoplankton population. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2019-03-04
W7YFSHUY net primary mole productivity of biomass expressed as carbon by phytoplankton "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
2313HZTW net primary mole productivity of biomass expressed as carbon by picophytoplankton "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
ZWN04FAY net primary mole productivity of biomass expressed as carbon due to nitrate utilization "Production of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Nitrate utilization" means net primary production by phytoplankton based on nitrate alone. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. The chemical formula for the nitrate anion is NO3-. 2018-12-17
CF14N47 net primary mole productivity of carbon by calcareous phytoplankton DEPRECATED "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. Net primary productivity is the excess of gross primary productivity of organic carbon (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. 'Calcareous phytoplankton' are phytoplankton that produce calcite. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. 2013-11-28
CF14N48 net primary mole productivity of carbon by diatoms DEPRECATED "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. Net primary productivity is the excess of gross primary productivity of organic carbon (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. Diatoms are single-celled phytoplankton with an external skeleton made of silica. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. 2013-11-28
CF14N49 net primary mole productivity of carbon by diazotrophs DEPRECATED "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. Net primary productivity is the excess of gross primary productivity of organic carbon (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. 2013-11-28
CF14N50 net primary mole productivity of carbon by miscellaneous phytoplankton DEPRECATED "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. Net primary productivity is the excess of gross primary productivity of organic carbon (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. 'Miscellaneous phytoplankton' are all those phytoplankton that are not diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton or other seperately named components of the phytoplankton population. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. 2013-11-28
CF14N51 net primary mole productivity of carbon by phytoplankton DEPRECATED "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. Net primary productivity is the excess of gross primary productivity of organic carbon (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. 2013-11-28
CF14N52 net primary mole productivity of carbon by picophytoplankton DEPRECATED "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. Net primary productivity is the excess of gross primary productivity of organic carbon (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are autotrophic prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. 2013-11-28
CF14N53 net primary mole productivity of carbon due to nitrate utilization DEPRECATED "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. Net primary productivity is the excess of gross primary productivity of organic carbon (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Nitrate utilization" means net primary production by phytoplankton based on nitrate alone. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The chemical formula for the nitrate anion is NO3-. 2013-11-28
B5891AKR net primary production of biomass expressed as carbon per unit volume in sea water Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. In the oceans, carbon production per unit volume is often found at a number of depths at a given horizontal location. That quantity can then be integrated to calculate production per unit area at the location. Standard names for production per unit area use the term "productivity". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2019-02-04
5M3131AO net primary productivity of biomass expressed as carbon "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2013-11-28
11WSJRTK net primary productivity of biomass expressed as carbon accumulated in leaves "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2013-11-28
99NA57YY net primary productivity of biomass expressed as carbon accumulated in miscellaneous living matter "Miscellaneous living matter" means all those parts of plants that are not leaf, stem, root or other separately named components. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. 2018-04-16
EH4D6MT4 net primary productivity of biomass expressed as carbon accumulated in roots "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2013-11-28
342IZKMV net primary productivity of biomass expressed as carbon accumulated in stems "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The stem of a plant is the axis that bears buds and shoots with leaves and, at its basal end, roots. Its function is to carry water and nutrients. Examples include the stalk of a plant or the main trunk of a tree. 2018-05-15
NCI7OEMC net primary productivity of biomass expressed as carbon accumulated in wood "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. "Productivity" means production per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2013-11-28
CFSN0525 net primary productivity of carbon DEPRECATED Net primary productivity is the excess of gross_ primary_ productivity (rate of synthesis of biomass per unit area from inorganic precursors by autotrophs, or "producers", especially by photosynthesising plants using sunlight for energy) over the rate at which they themselves respire some of this biomass (plant_ respiration, assuming all producers to be plants). "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. 2013-11-28
CFV16A22 net primary productivity of carbon accumulated in leaves DEPRECATED Net primary productivity is the excess of gross_ primary_ productivity (rate of synthesis of biomass per unit area from inorganic precursors by autotrophs, or "producers", especially by photosynthesising plants using sunlight for energy) over the rate at which they themselves respire some of this biomass (plant_ respiration, assuming all producers to be plants). "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. 2013-11-28
CFV16A23 net primary productivity of carbon accumulated in roots DEPRECATED Net primary productivity is the excess of gross_ primary_ productivity (rate of synthesis of biomass per unit area from inorganic precursors by autotrophs, or "producers", especially by photosynthesising plants using sunlight for energy) over the rate at which they themselves respire some of this biomass (plant_ respiration, assuming all producers to be plants). "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. 2013-11-28
CFV16A24 net primary productivity of carbon accumulated in wood DEPRECATED Net primary productivity is the excess of gross_ primary_ productivity (rate of synthesis of biomass per unit area from inorganic precursors by autotrophs, or "producers", especially by photosynthesising plants using sunlight for energy) over the rate at which they themselves respire some of this biomass (plant_ respiration, assuming all producers to be plants). "Productivity of carbon" refers to the production of biomass expressed as the mass of carbon which it contains. "Productivity" means production per unit area. 2013-11-28
CFSN0526 net rate of absorption of longwave energy in atmosphere layer 'longwave' means longwave radiation. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Net absorbed radiation is the difference between absorbed and emitted radiation. 2006-09-26
CFSN0496 net rate of absorption of shortwave energy in atmosphere layer 'shortwave' means shortwave radiation. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Net absorbed radiation is the difference between absorbed and emitted radiation. 2006-09-26
GE3BJ3SJ net rate of absorption of shortwave energy in ocean layer "shortwave" means shortwave radiation. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Net absorbed radiation is the difference between absorbed and emitted radiation. 2016-05-17
CFSN0497 net upward longwave flux in air 'longwave' means longwave radiation. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Net upward radiation is the difference between radiation from below (upwelling) and radiation from above (downwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0498 net upward longwave flux in air assuming clear sky A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'longwave' means longwave radiation. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Net upward radiation is the difference between radiation from below (upwelling) and radiation from above (downwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0499 net upward shortwave flux in air 'shortwave' means shortwave radiation. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Net upward radiation is the difference between radiation from below (upwelling) and radiation from above (downwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0500 net upward shortwave flux in air assuming clear sky A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'shortwave' means shortwave radiation. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Net upward radiation is the difference between radiation from below (upwelling) and radiation from above (downwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
7JEAQGYH nfdrs 1000 hour fuel moisture 1000 hour fuel moisture (FM1000) represents the modelled moisture content in the dead fuels in the 3 to 8 inch diameter class and the layer of the forest floor about 4 inches below the surface. The value is based on a running 7-day average. The 1000-hour time lag fuel moisture is a function of length of day (as influenced by latitude and calendar date), daily temperature and relative humidity extremes (maximum and minimum values) and the 24-hour precipitation duration values for a 7-day period. It is a component in the US National Fire Danger Rating System. The US National Fire Danger Rating System comprises several numeric indexes that rate the potential over a large area for wildland fires to ignite, spread, and require action to suppress or manage. It was designed for use in the continental United States, and all its components are relative, not absolute. 2023-04-24
FCEXO7DJ nfdrs 100 hour fuel moisture 100 hour fuel moisture (FM100) represents the modeled moisture content of dead fuels in the 1 to 3 inch diameter class. It can also be used as a very rough estimate of the average moisture content of the forest floor from three-fourths inch to 4 inches below the surface. The 100-hour timelag fuel moisture is a function of length of day (as influenced by latitude and calendar date), maximum and minimum temperature and relative humidity, and precipitation duration in the previous 24 hours. It is a component in the US National Fire Danger Rating System. The US National Fire Danger Rating System comprises several numeric indexes that rate the potential over a large area for wildland fires to ignite, spread, and require action to suppress or manage. It was designed for use in the continental United States, and all its components are relative, not absolute. 2023-04-24
OK7Z6IG0 nfdrs burning index The Burning Index (BI) is a numeric value closely related to the flame length in feet multiplied by 10, which is related to the contribution of fire behaviour to the effort of containing a fire. The BI is a function of fire spread and fire intensity and is derived from a combination of Spread and Energy Release Components. The Spread Component is a rating of the forward rate of spread of a head fire and wind is a key input. The scale is open ended which allows the range of numbers to adequately define fire problems, even in time of low to moderate fire danger. Computed BI values represent the near upper limit to be expected on the rating area. In other words, if a fire occurs in the worst fuel, weather and topography conditions of the rating area, these numbers indicate its expected fire line intensities and flame length. It is an index in the US National Fire Danger Rating System. The US National Fire Danger Rating System comprises several numeric indexes that rate the potential over a large area for wildland fires to ignite, spread, and require action to suppress or manage. It was designed for use in the continental United States, and all its components are relative, not absolute. 2023-04-24
KPMSIGCX nfdrs energy release component The Energy Release Component (ERC) is a number related to the available energy per unit area within the flaming front at the head of a fire. It is usually given in BTU ft-2. Daily variations in ERC are due to changes in moisture content of the various fuels present, both live and dead. It may also be considered a composite fuel moisture value as it reflects the contribution that all live and dead fuels have to potential fire intensity. Energy Release Component is a cumulative index. The scale is open-ended and relative. Energy Release Component values depend on the fuel model input into the calculations and interpretation of precise values varies with ecology and region. It is an index in the US National Fire Danger Rating System. The US National Fire Danger Rating System comprises several numeric indexes that rate the potential over a large area for wildland fires to ignite, spread, and require action to suppress or manage. It was designed for use in the continental United States, and all its components are relative, not absolute. 2023-04-24
WMDR89AT nfdrs severe fire danger index Severe Fire Danger Index (SFDI) is the normalized product of normalized Energy Release Component (ERC) and normalized Burning Index (BI) from the United States National Fire Danger Rating System (NFDRS). While SFDI is not officially part of the National Fire Danger Rating System, it is related to and intended to supplement NFDRS. It is commonly categorized into five classes based on percentile: low (0-60), moderate (60-80), high (80-90), very high (90-97), and extreme (97-100). It can be extended to future conditions by introducing an unprecedented category for values above the historical 100th percentile. As it is locally normalized, its interpretation remains the same across space. 2023-04-24
9UY49M39 nitrogen growth limitation of calcareous phytoplankton "Calcareous phytoplankton" are phytoplankton that produce calcite. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Nitrogen growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of nitrogen) to the theoretical growth rate if there were no such limit on nitrogen availability. 2016-11-15
GWTPAK6W nitrogen growth limitation of diatoms Diatoms are phytoplankton with an external skeleton made of silica. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Nitrogen growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of nitrogen) to the theoretical growth rate if there were no such limit on nitrogen availability. 2016-11-15
S0J575JU nitrogen growth limitation of diazotrophic phytoplankton "Nitrogen growth limitation" means the ratio of the growth rate of a biological population in the environment (where there is a finite availability of nitrogen) to the theoretical growth rate if there were no such limit on nitrogen availability. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Diazotrophic phytoplankton are phytoplankton (predominantly from Phylum Cyanobacteria) that are able to fix molecular nitrogen (gas or solute) in addition to nitrate and ammonium. 2020-03-09
19AADTTA nitrogen growth limitation of diazotrophs DEPRECATED In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Nitrogen growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of nitrogen) to the theoretical growth rate if there were no such limit on nitrogen availability. 2020-03-09
J961T8J3 nitrogen growth limitation of miscellaneous phytoplankton Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Miscellaneous phytoplankton" are all those phytoplankton that are not diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton or other separately named components of the phytoplankton population. "Nitrogen growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of nitrogen) to the theoretical growth rate if there were no such limit on nitrogen availability. 2016-11-15
UE639GE7 nitrogen growth limitation of picophytoplankton Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Nitrogen growth limitation" means the ratio of the growth rate of a species population in the environment (where there is a finite availability of nitrogen) to the theoretical growth rate if there were no such limit on nitrogen availability. 2016-11-15
3556GE6R nitrogen mass content of forestry and agricultural products "Content" indicates a quantity per unit area. Examples of "forestry and agricultural products" are paper, cardboard, furniture, timber for construction, biofuels and food for both humans and livestock. Models that simulate land use changes have one or more pools of carbon that represent these products in order to conserve carbon and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. 2018-05-15
N1DP5O1H nitrogen mass flux into forestry and agricultural products due to anthropogenic land use or land cover change In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Examples of "forestry and agricultural products" are paper, cardboard, furniture, timber for construction, biofuels and food for both humans and livestock. Models that simulate land use changes have one or more pools of nitrogen that represent these products in order to conserve nitrogen and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. "Anthropogenic" means influenced, caused, or created by human activity. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change and the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. 2018-04-16
Q208CGIT nitrogen mass flux into litter from vegetation In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Litter" is dead plant material in or above the soil. "Vegetation" means any living plants e.g. trees, shrubs, grass. 2018-04-16
7UFCTGRK nitrogen mass flux into soil from litter In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Litter" is dead plant material in or above the soil. 2018-04-16
2KZV2XTK nitrogen mass flux into soil from vegetation excluding litter In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Vegetation" means any living plants e.g. trees, shrubs, grass. "Litter" is dead plant material in or above the soil. 2018-04-16
OOI0UHIX nitrogen mass transport in river channel The amount of total nitrogen mass transported in the river channels from land into the ocean. This quantity can be provided at a certain location within the river network and floodplain (over land) or at the river mouth (over ocean) where the river enters the ocean. "River" refers to water in the fluvial system (stream and floodplain). 2024-01-18
L3DJHB6D non tidal elevation of sea surface height "Sea surface height" is a time-varying quantity. The phrase "non_ tidal_ elevation" describes the contribution to sea surface height variability made by processes other than astronomic forcing of the ocean and shallow water resonance of tidal components. These processes include storm surge (due to a combination of meteorological forcing of the ocean and interaction between the generated surge and tides), effects of surface ocean waves, and seasonal and climatic variation in ocean density and circulation. The contribution made by each process varies according to the averaging time of the variable as described by the bounds and cell_ methods attributes of the data variable. 2018-08-06
CFSN0775 normalized difference vegetation index "Normalized_ difference_ vegetation_ index", usually abbreviated to NDVI, is an index calculated from reflectances measured in the visible and near infrared channels. It is calculated as NDVI = (NIR - R) / (NIR + R) where NIR is the reflectance in the near-infrared band and R is the reflectance in the red visible band. Reflectance is the ratio of the reflected over the incoming radiation in each spectral band. The calculated value of NDVI depends on the precise definitions of the spectral bands and these definitions may vary between different models and remote sensing instruments. 2007-02-20
F85616L1 northward air velocity relative to sea water The northward motion of air, relative to near-surface northward current; calculated as northward_ wind minus northward_ sea_ water_ velocity. A vertical coordinate variable or scalar coordinate with standard name "depth" should be used to indicate the depth of sea water velocity used in the calculation. Similarly, a vertical coordinate variable or scalar coordinate with standard name "height" should be used to indicate the height of the the wind component. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). 2021-01-18
CFSN0501 northward atmosphere dry static energy transport across unit distance 'Northward' indicates a vector component which is positive when directed northward (negative southward). Transport across_ unit_ distance means expressed per unit distance normal to the direction of transport. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0502 northward atmosphere heat transport 'Northward' indicates a vector component which is positive when directed northward (negative southward). 'Atmosphere heat transport' means total heat transport by the atmosphere by all processes. 2006-09-26
CFSN0503 northward atmosphere water transport across unit distance 'Water' means water in all phases. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Transport across_ unit_ distance means expressed per unit distance normal to the direction of transport. 2006-09-26
CFSN0504 northward atmosphere water vapor transport across unit distance 'Northward' indicates a vector component which is positive when directed northward (negative southward). Transport across_ unit_ distance means expressed per unit distance normal to the direction of transport. 2006-09-26
CFV16A25 northward derivative of eastward sea ice velocity A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Northward" indicates a vector component which is positive when directed northward (negative southward). Sea ice velocity is defined as a two-dimensional vector, with no vertical component. The phrase "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be northward, southward, eastward, westward, x or y. The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. The named quantity is a component of the strain rate tensor for sea ice. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
261FAJM5 northward derivative of eastward wind The quantity with standard name northward_ derivative_ of_ eastward_ wind is the derivative of the eastward component of the wind with respect to distance in the northward direction for a given atmospheric level. The phrase "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "upward", "downward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. A positive value indicates that X is increasing with distance along the positive direction of the axis. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). 2020-09-14
E4ONSXUU northward derivative of northward wind The quantity with standard name northward_ derivative_ of_ northward_ wind is the derivative of the northward component of wind with respect to distance in the northward direction for a given atmospheric level. The phrase "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "upward", "downward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. A positive value indicates that X is increasing with distance along the positive direction of the axis. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). 2020-09-14
Q3TAFJGP northward derivative of wind from direction The quantity with standard name northward_ derivative_ of_ wind_ from_ direction is the derivative of wind from_ direction with respect to the change in northward lateral position for a given atmospheric level. The phrase "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "upward", "downward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. A positive value indicates that X is increasing with distance along the positive direction of the axis. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. In meteorological reports, the direction of the wind vector is usually (but not always) given as the direction from which it is blowing ("wind_ from_ direction") (westerly, northerly, etc.). In other contexts, such as atmospheric modelling, it is often natural to give the direction in the usual manner of vectors as the heading or the direction to which it is blowing ("wind_ to_ direction") (eastward, southward, etc.). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). 2020-09-14
CFV8N67 northward eliassen palm flux DEPRECATED "Eliassen Palm flux" is a widely used vector in the meridional plane, and the divergence of this flux appears as a forcing in the Transformed Eulerian mean formulation of the zonal mean zonal wind equation. "Northward" indicates a vector component which is positive when directed northward (negative southward). 2008-06-10
CFV9S2 northward eliassen palm flux in air "Eliassen Palm flux" is a widely used vector in the meridional plane, and the divergence of this flux appears as a forcing in the Transformed Eulerian mean formulation of the zonal mean zonal wind equation. "Northward" indicates a vector component which is positive when directed northward (negative southward). 2008-06-10
PLN061W7 northward flood water velocity A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). Flood water is water that covers land which is normally not covered by water. 2016-05-17
8BRPSWCQ northward friction velocity in air A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). Friction velocity is a reference wind velocity derived from the relationship between air density and downward stress and is usually applied at a level close to the surface where stress is assumed to independent of height and approximately proportional to the square of mean velocity. 2021-09-20
CFV8N68 northward heat flux due to eddy advection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Northward" indicates a vector component which is positive when directed northward (negative southward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-06-10
CFV9S3 northward heat flux in air due to eddy advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Northward" indicates a vector component which is positive when directed northward (negative southward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-06-10
N52GJWHJ northward land ice velocity A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). Land ice velocity is defined as a two-dimensional vector, with no vertical component. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. 2016-03-08
CFSN0505 northward mass flux of air 'Northward' indicates a vector component which is positive when directed northward (negative southward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0506 northward momentum flux correction 'Northward' indicates a vector component which is positive when directed northward (negative southward). Momentum flux is dimensionally equivalent to stress and pressure. It is a tensor quantity. Flux correction is also called 'flux adjustment'. A positive flux correction is downward i.e. added to the ocean. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
TQEV2Y7Y northward northward derivative of geopotential A quantity with standard name Xward_ Yward_ derivative_ of_ geopotential is a second spatial derivative of geopotential, P, in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Northward" indicates a vector component which is positive when directed northward (negative southward). "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. 2016-04-05
CFSN0507 northward ocean freshwater transport 'Northward' indicates a vector component which is positive when directed northward (negative southward). Ocean transport means transport by all processes, both sea water and sea ice. 2006-09-26
CFSN0508 northward ocean freshwater transport due to bolus advection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Northward transport by bolus advection in an ocean model means the part due to a scheme representing eddy-induced effects not included in the velocity field. 2017-11-28
CFSN0509 northward ocean freshwater transport due to diffusion "Northward" indicates a vector component which is positive when directed northward (negative southward). Northward transport by diffusion means the part due to horizontal or isopyncal diffusion schemes in an ocean model, but not including the parameterized eddy velocity. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-02-12
CFSN0510 northward ocean freshwater transport due to gyre "Northward" indicates a vector component which is positive when directed northward (negative southward). Northward transport by the ocean gyre is geometrically defined as being the part due to the vertical integral of the product of deviations of velocity and tracer from their zonal means. The velocity does not include the parameterized eddy velocity. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-02-12
CFSN0482 northward ocean freshwater transport due to overturning "Northward" indicates a vector component which is positive when directed northward (negative southward). Northward transport by (meridional) overturning is geometrically defined as being the part due to the vertical integral of the product of zonal means of velocity and tracer. The velocity does not include the parameterized eddy velocity. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-02-12
5QO6NMIS northward ocean freshwater transport due to parameterized eddy advection "Northward" indicates a vector component which is positive when directed northward (negative southward). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. 2017-11-28
CFSN0483 northward ocean heat transport 'Northward' indicates a vector component which is positive when directed northward (negative southward). Ocean transport means transport by all processes, both sea water and sea ice. 2006-09-26
CFSN0484 northward ocean heat transport due to bolus advection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Northward transport by bolus advection in an ocean model means the part due to a scheme representing eddy-induced effects not included in the velocity field. 2017-11-28
CFSN0485 northward ocean heat transport due to diffusion "Northward" indicates a vector component which is positive when directed northward (negative southward). Northward transport by diffusion means the part due to horizontal or isopyncal diffusion schemes in an ocean model, but not including the parameterized eddy velocity. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-02-12
CFSN0486 northward ocean heat transport due to gyre "Northward" indicates a vector component which is positive when directed northward (negative southward). Northward transport by the ocean gyre is geometrically defined as being the part due to the vertical integral of the product of deviations of velocity and tracer from their zonal means. The velocity does not include the parameterized eddy velocity. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-02-12
CFSN0487 northward ocean heat transport due to overturning "Northward" indicates a vector component which is positive when directed northward (negative southward). Northward transport by (meridional) overturning is geometrically defined as being the part due to the vertical integral of the product of zonal means of velocity and tracer. The velocity does not include the parameterized eddy velocity. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-02-12
FD60XCCW northward ocean heat transport due to parameterized eddy advection "Northward" indicates a vector component which is positive when directed northward (negative southward). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. 2018-02-12
35FUVBI1 northward ocean heat transport due to parameterized mesoscale eddy advection "Northward" indicates a vector component which is positive when directed northward (negative southward). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized mesoscale eddy advection occurs on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddy advection is represented in ocean models using schemes such as the Gent-McWilliams scheme. There are also standard names for parameterized_ submesoscale_ eddy_ advection which, along with parameterized_ mesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. 2017-11-28
SNQK6058 northward ocean heat transport due to parameterized mesoscale eddy diffusion "Northward" indicates a vector component which is positive when directed northward (negative southward). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized mesoscale eddy diffusive processes include diffusion along neutral directions in the interior of the ocean and horizontal diffusion in the surface boundary layer. The processes occur on a spatial scale of many tens of kilometres and an evolutionary time of weeks. 2017-11-28
LPRQFF2L northward ocean heat transport due to parameterized submesoscale eddy advection "Northward" indicates a vector component which is positive when directed northward (negative southward). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized submesoscale eddy advection occurs on a spatial scale of the order of 1 km horizontally. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. There are also standard names for parameterized_ mesoscale_ eddy_ advection which, along with parameterized_ submesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. 2017-11-28
CFSN0488 northward ocean salt transport 'Northward' indicates a vector component which is positive when directed northward (negative southward). Ocean transport means transport by all processes, both sea water and sea ice. 2006-09-26
CFSN0489 northward ocean salt transport due to bolus advection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Northward transport by bolus advection in an ocean model means the part due to a scheme representing eddy-induced effects not included in the velocity field. 2017-11-28
CFSN0490 northward ocean salt transport due to diffusion "Northward" indicates a vector component which is positive when directed northward (negative southward). "Salt transport" means the mass of salt being transported. Northward transport by diffusion means the part due to horizontal or isopyncal diffusion schemes in an ocean model, but not including the parameterized eddy velocity. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-02-12
CFSN0491 northward ocean salt transport due to gyre "Northward" indicates a vector component which is positive when directed northward (negative southward). "Salt transport" means the mass of salt being transported. Northward transport by the ocean gyre is geometrically defined as being the part due to the vertical integral of the product of deviations of velocity and tracer from their zonal means. The velocity does not include the parameterized eddy velocity. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-02-12
CFSN0492 northward ocean salt transport due to overturning "Northward" indicates a vector component which is positive when directed northward (negative southward). "Salt transport" means the mass of salt being transported. Northward transport by (meridional) overturning is geometrically defined as being the part due to the vertical integral of the product of zonal means of velocity and tracer. The velocity does not include the parameterized eddy velocity. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-02-12
GER0U8ED northward ocean salt transport due to parameterized eddy advection "Northward" indicates a vector component which is positive when directed northward (negative southward). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. 2017-11-28
CFV13N30 northward sea ice displacement "Northward" indicates a vector component which is positive when directed northward (negative southward). "Displacement" means the change in geospatial position of an object that has moved over time. If possible, the time interval over which the motion took place should be specified using a bounds variable for the time coordinate variable. A displacement can be represented as a vector. Such a vector should however not be interpreted as describing a rectilinear, constant speed motion but merely as an indication that the start point of the vector is found at the tip of the vector after the time interval associated with the displacement variable. A displacement does not prescribe a trajectory. Sea ice displacement can be defined as a two-dimensional vector, with no vertical component. A northward displacement is the distance calculated from the change in a moving object's latitude between the start and end of the time interval associated with the displacement variable. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0493 northward sea ice velocity A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). Sea ice velocity is defined as a two-dimensional vector, with no vertical component. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0494 northward sea water velocity A velocity is a vector quantity. 'Northward' indicates a vector component which is positive when directed northward (negative southward). 2006-09-26
CFV13N16 northward sea water velocity assuming no tide A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 2010-03-11
92INWCZD northward sea water velocity at sea floor A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). The velocity at the sea floor is that adjacent to the ocean bottom, which would be the deepest grid cell in an ocean model and within the benthic boundary layer for measurements. 2019-12-09
3719FJJR northward sea water velocity due to ekman drift A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2023-10-16
556S8S17 northward sea water velocity due to parameterized mesoscale eddies "Northward" indicates a vector component which is positive when directed northward (negative southward). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized mesoscale eddies occur on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddies are represented in ocean models using schemes such as the Gent-McWilliams scheme. 2017-11-28
3PKZOLSP northward sea water velocity due to tides A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Due to tides" means due to all astronomical gravity changes which manifest as tides. No distinction is made between different tidal components. 2019-12-09
CFV9S4 northward transformed eulerian mean air velocity "Northward" indicates a vector component which is positive when directed northward (negative southward). The "Transformed Eulerian Mean" refers to a formulation of the mean equations which incorporates some eddy terms into the definition of the mean, described in Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. 2018-04-16
CFV8N69 northward transformed eulerian mean velocity DEPRECATED "Northward" indicates a vector component which is positive when directed northward (negative southward). 2008-06-10
BRKICBPL northward upward derivative of geopotential A quantity with standard name Xward_ Yward_ derivative_ of_ geopotential is a second spatial derivative of geopotential, P, in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Upward" indicates a vector component which is positive when directed upward (negative downward). "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. 2016-04-05
CFSN0495 northward water vapor flux DEPRECATED 'Northward' indicates a vector component which is positive when directed northward (negative southward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2010-07-26
CFV15A10 northward water vapor flux in air "Northward" indicates a vector component which is positive when directed northward (negative southward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2010-07-26
CFSN0460 northward water vapor transport across unit distance in atmosphere layer 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Transport across_ unit_ distance means expressed per unit distance normal to the direction of transport. 2006-09-26
KPKGW77Y northward westward derivative of geopotential A quantity with standard name Xward_ Yward_ derivative_ of_ geopotential is a second spatial derivative of geopotential in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Westward" indicates a vector component which is positive when directed westward (negative eastward). "Northward" indicates a vector component which is positive when directed northward (negative southward). "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. 2016-04-05
CFSN0461 northward wind 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0462 northward wind shear DEPRECATED 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) Wind shear is the derivative of wind with respect to height. 2024-01-18
Q2MSMD99 nudging increment in mass content of water in soil A "nudging increment" refers to an amount added to parts of a model system. The phrase "nudging_ increment_ in_ X" refers to an increment in quantity X over a time period which should be defined in the bounds of the time coordinate. "Content" indicates a quantity per unit area. "Water" means water in all phases. The mass content of water in soil refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. 2018-07-03
094KJB4R nudging increment in snow and ice amount on land A "nudging increment" refers to an amount added to parts of a model system. The phrase "nudging_ increment_ in_ X" refers to an increment in quantity X over a time period which should be defined in the bounds of the time coordinate. "Amount" means mass per unit area. "Snow and ice on land" means ice in glaciers, ice caps, ice sheets & shelves, river and lake ice, any other ice on a land surface, such as frozen flood water, and snow lying on such ice or on the land surface. 2018-07-03
C0FGHA8R number concentration of aerosol particles at stp in air "Number concentration" means the number of particles or other specified objects per unit volume. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "stp" means standard temperature (0 degC) and pressure (101325 Pa). The surface called "surface" means the lower boundary of the atmosphere. 2015-01-07
TEHBIMF8 number concentration of aerosol particles in air "Number concentration" means the number of particles or other specified objects per unit volume. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. 2023-02-06
CFV16A26 number concentration of ambient aerosol in air DEPRECATED "Number concentration" means the number of particles or other specified objects per unit volume. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. 2015-01-07
9GPDHML0 number concentration of ambient aerosol particles in air "Number concentration" means the number of particles or other specified objects per unit volume. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. 2015-01-07
FU8M33BF number concentration of biological taxon in sea water "Number concentration" means the number of particles or other specified objects per unit volume. "Biological taxon" is a name or other label identifying an organism or a group of organisms as belonging to a unit of classification in a hierarchical taxonomy. There must be an auxiliary coordinate variable with standard name biological_ taxon_ name to identify the taxon in human readable format and optionally an auxiliary coordinate variable with standard name biological_ taxon_ lsid to provide a machine-readable identifier. See Section 6.1.2 of the CF convention (version 1.8 or later) for information about biological taxon auxiliary coordinate variables. 2021-09-20
8296VWVP number concentration of biological taxon pollen grains in air "Number concentration" means the number of particles or other specified objects per unit volume. "Pollen grain" refers to the male gametophyte of seed plants (either angiosperms or gymnosperms). The number concentration of pollen grains refers to the number of individual pollen grains per unit volume. "Biological taxon" is a name or other label identifying an organism or a group of organisms as belonging to a unit of classification in a hierarchical taxonomy. There must be an auxiliary coordinate variable with standard name biological_ taxon_ name to identify the taxon in human readable format and optionally an auxiliary coordinate variable with standard name biological_ taxon_ identifier to provide a machine-readable identifier. See Section 6.1.2 of the CF convention (version 1.8 or later) for information about biological taxon auxiliary coordinate variables. 2023-02-06
WIQW899U number concentration of cloud condensation nuclei at stp in air The cloud condensation nuclei number concentration is the total number of aerosol particles per unit volume independent of and integrated over particle size that act as condensation nuclei for liquid-phase clouds. A coordinate variable with the standard name of relative_ humidity should be specified to indicate that the property refers to a specific supersaturation with respect to liquid water. The ability of a particle to act as a condensation nucleus is determined by its size, chemical composition, and morphology. "stp" means standard temperature (0 degC) and pressure (101325 Pa). 2015-01-07
7MOAR9ZU number concentration of cloud condensation nuclei in air "Number concentration" means the number of particles or other specified objects per unit volume. The cloud condensation nuclei number concentration is the total number of aerosol particles per unit volume independent of and integrated over particle size that act as condensation nuclei for liquid-phase clouds. A coordinate variable with the standard name of relative_ humidity should be specified to indicate that the property refers to a specific supersaturation with respect to liquid water. The ability of a particle to act as a condensation nucleus is determined by its size, chemical composition, and morphology. 2023-02-06
CFV16A27 number concentration of cloud liquid water particles in air "Number concentration" means the number of particles or other specified objects per unit volume. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CFV16A28 number concentration of cloud liquid water particles in air at liquid water cloud top "Number concentration" means the number of particles or other specified objects per unit volume. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. cloud_ top refers to the top of the highest cloud. 2020-03-09
CFV16A29 number concentration of coarse mode ambient aerosol in air DEPRECATED "Number concentration" means the number of particles or other specified objects per unit volume. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. Coarse mode aerosol is aerosol having a diameter of more than 1 micrometer. 2015-01-07
M9TNZCKV number concentration of coarse mode ambient aerosol particles in air "Number concentration" means the number of particles or other specified objects per unit volume. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. Coarse mode aerosol particles have a diameter of more than 1 micrometer. 2015-01-07
0BQS2R11 number concentration of convective cloud liquid water particle at convective liquid water cloud top DEPRECATED "Number concentration" means the number of particles or other specified objects per unit volume.The phrase "convective_ liquid_ water_ cloud_ top" refers to the top of the highest convective liquid water cloud. Convective cloud is that produced by the convection schemes in an atmosphere model. 2019-05-14
PC2GTK0J number concentration of convective cloud liquid water particles at convective liquid water cloud top "Number concentration" means the number of particles or other specified objects per unit volume. The phrase "convective_ liquid_ water_ cloud_ top" refers to the top of the highest convective liquid water cloud. Convective cloud is that produced by the convection schemes in an atmosphere model. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CFV16A30 number concentration of ice crystals in air "Number concentration" means the number of particles or other specified objects per unit volume. 2010-10-11
CFV16A31 number concentration of ice crystals in air at ice cloud top "Number concentration" means the number of particles or other specified objects per unit volume. cloud_ top refers to the top of the highest cloud. 2010-10-11
CFV16A32 number concentration of nucleation mode ambient aerosol in air DEPRECATED "Number concentration" means the number of particles or other specified objects per unit volume. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. Nucleation mode aerosol is aerosol having a diameter of less than 3 nanometers. 2015-01-07
2XJXW5QA number concentration of nucleation mode ambient aerosol particles in air "Number concentration" means the number of particles or other specified objects per unit volume. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. Nucleation mode aerosol particles have a diameter of less than 3 nanometers. 2015-01-07
798OAE3Z number concentration of ozone molecules in air "Number concentration" means the number of particles or other specified objects per unit volume. The chemical formula for ozone is O3. The IUPAC name for ozone is trioxygen. 2016-05-17
T0T033L6 number concentration of pm10 aerosol particles in air "Number concentration" means the number of particles or other specified objects per unit volume. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature". 2017-06-26
QVNFG5G6 number concentration of pm2p5 aerosol particles in air "Number concentration" means the number of particles or other specified objects per unit volume. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. To specify the relative humidity and temperature at which the particle size applies, provide scalar coordinate variables with the standard names of, respectively, "relative_ humidity" and "air_ temperature". 2017-06-26
IDWENXCE number concentration of stratiform cloud liquid water particle at stratiform liquid water cloud top DEPRECATED "Number concentration" means the number of particles or other specified objects per unit volume. The phrase "stratiform_ liquid_ water_ cloud_ top" refers to the top of the highest stratiform liquid water cloud. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-05-14
HFT351PS number concentration of stratiform cloud liquid water particles at stratiform liquid water cloud top "Number concentration" means the number of particles or other specified objects per unit volume. The phrase "stratiform_ liquid_ water_ cloud_ top" refers to the top of the highest stratiform liquid water cloud. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CFV13N11 number of days with air temperature above threshold Air temperature is the bulk temperature of the air, not the surface (skin) temperature. A variable whose standard name has the form number_ of_ days_ with_ X_ below|above_ threshold is a count of the number of days on which the condition X_ below|above_ threshold is satisfied. It must have a coordinate variable or scalar coordinate variable with the standard name of X to supply the threshold(s). It must have a climatological time variable, and a cell_ methods entry for within days which describes the processing of quantity X before the threshold is applied. A number_ of_ days is an extensive quantity in time, and the cell_ methods entry for over days should be "sum". 2021-09-20
CFV13N12 number of days with air temperature below threshold Air temperature is the bulk temperature of the air, not the surface (skin) temperature. A variable whose standard name has the form number_ of_ days_ with_ X_ below|above_ threshold is a count of the number of days on which the condition X_ below|above_ threshold is satisfied. It must have a coordinate variable or scalar coordinate variable with the standard name of X to supply the threshold(s). It must have a climatological time variable, and a cell_ methods entry for within days which describes the processing of quantity X before the threshold is applied. A number_ of_ days is an extensive quantity in time, and the cell_ methods entry for over days should be "sum". 2021-09-20
CFV13N13 number of days with lwe thickness of precipitation amount above threshold The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The abbreviation "lwe" means liquid water equivalent. A variable whose standard name has the form number_ of_ days_ with_ X_ below|above_ threshold is a count of the number of days on which the condition X_ below|above_ threshold is satisfied. It must have a coordinate variable or scalar coordinate variable with the standard name of X to supply the threshold(s). It must have a climatological time variable, and a cell_ methods entry for within days which describes the processing of quantity X before the threshold is applied. A number_ of_ days is an extensive quantity in time, and the cell_ methods entry for over days should be "sum". 2021-09-20
Z0QXDO4I number of days with surface temperature below threshold The surface temperature is the temperature at the interface, not the bulk temperature of the medium above or below. The surface called "surface" means the lower boundary of the atmosphere. A variable whose standard name has the form number_ of_ days_ with_ X_ below|above_ threshold is a count of the number of days on which the condition X_ below|above_ threshold is satisfied. It must have a coordinate variable or scalar coordinate variable with the a standard name of X to supply the threshold(s). It must have a climatological time variable, and a cell_ methods entry for within days which describes the processing of quantity X before the threshold is applied. A number_ of_ days is an extensive quantity in time, and the cell_ methods entry for over days should be "sum". 2021-09-20
CFV13N14 number of days with wind speed above threshold Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) The wind speed is the magnitude of the wind velocity. A variable whose standard name has the form number_ of_ days_ with_ X_ below|above_ threshold is a count of the number of days on which the condition X_ below|above_ threshold is satisfied. It must have a coordinate variable or scalar coordinate variable with the standard name of X to supply the threshold(s). It must have a climatological time variable, and a cell_ methods entry for within days which describes the processing of quantity X before the threshold is applied. A number_ of_ days is an extensive quantity in time, and the cell_ methods entry for over days should be "sum". 2021-09-20
BBAH2102 number of icebergs per unit area The number of icebergs per unit area. 2018-05-15
IHYPC47B number of missing observations A variable with the standard name of number_ of_ missing_ observations contains the number of discrete observations or measurements that were not available to derive the values of another data variable. The linkage between the data variable and the variable with a standard_ name of number_ of_ missing_ observations is achieved using the ancillary_ variables attribute. 2019-06-17
EPC34CZ8 number of observations A variable with the standard name of number_ of_ observations contains the number of discrete observations or measurements from which the values of another data variable have been derived. The linkage between the data variable and the variable with a standard_ name of number_ of_ observations is achieved using the ancillary_ variables attribute. 2015-07-08
175O0TDR number size distribution of aerosol particles at stp in air The aerosol particle number size distribution is the number concentration of aerosol particles as a function of particle diameter. A coordinate variable with the standard name of electrical_ mobility_ particle_ diameter, aerodynamic_ particle_ diameter, or optical_ particle_ diameter should be specified to indicate that the property applies at specific particle sizes selected by the indicated method. To specify the relative humidity at which the particle sizes were selected, provide a scalar coordinate variable with the standard name of relative_ humidity_ for_ aerosol_ particle_ size_ selection. "log10_ X" means common logarithm (i.e. base 10) of X. "stp" means standard temperature (0 degC) and pressure (101325 Pa). 2023-04-24
BD5S9CCR number size distribution of aerosol particles in air The aerosol particle number size distribution is the number concentration of aerosol particles as a function of particle diameter. A coordinate variable with the standard name of electrical_ mobility_ particle_ diameter, aerodynamic_ particle_ diameter, or optical_ particle_ diameter should be specified to indicate that the property applies at specific particle sizes selected by the indicated method. To specify the relative humidity at which the particle sizes were selected, provide a scalar coordinate variable with the standard name of relative_ humidity_ for_ aerosol_ particle_ size_ selection. 2023-04-24
A21Q8WTV number size distribution of cloud condensation nuclei at stp in air The cloud condensation nuclei number size distribution is the number concentration of aerosol particles as a function of particle diameter, where the particle acts as condensation nucleus for liquid-phase clouds. A coordinate variable with the standard name of relative_ humidity should be specified to indicate that the property refers to a specific supersaturation with respect to liquid water. A coordinate variable with the standard name of electrical_ mobility_ particle_ diameter should be specified to indicate that the property applies at specific mobility particle sizes. To specify the relative humidity at which the particle sizes were selected, provide a scalar coordinate variable with the standard name of relative_ humidity_ for_ aerosol_ particle_ size_ selection. The ability of a particle to act as a condensation nucleus is determined by its size, chemical composition, and morphology. "stp" means standard temperature (0 degC) and pressure (101325 Pa). 2023-04-24
UZARDE0R number size distribution of cloud condensation nuclei in air The cloud condensation nuclei number size distribution is the number concentration of aerosol particles as a function of particle diameter, where the particle acts as condensation nucleus for liquid-phase clouds. A coordinate variable with the standard name of relative_ humidity should be specified to indicate that the property refers to a specific supersaturation with respect to liquid water. A coordinate variable with the standard name of electrical_ mobility_ particle_ diameter should be specified to indicate that the property applies at specific mobility particle sizes. To specify the relative humidity at which the particle sizes were selected, provide a scalar coordinate variable with the standard name of relative_ humidity_ for_ aerosol_ particle_ size_ selection. The ability of a particle to act as a condensation nucleus is determined by its size, chemical composition, and morphology. 2023-04-24
CF12N539 ocean barotropic mass streamfunction The barotropic stream function with the dimensions of volume transport has the standard name ocean_ barotropic_ streamfunction. 2009-07-06
CFSN0463 ocean barotropic streamfunction 2006-09-26
90AFXCPV ocean double sigma coordinate See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
CF12N540 ocean heat x transport "x" indicates a vector component along the grid x-axis, positive with increasing x. 2013-01-11
CF12N541 ocean heat x transport due to bolus advection DEPRECATED "x" indicates a vector component along the grid x-axis, positive with increasing x. Transport by bolus advection in an ocean model means the part due to a scheme representing eddy-induced effects not included in the velocity field. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-11-28
CF12N542 ocean heat x transport due to diffusion "x" indicates a vector component along the grid x-axis, positive with increasing x. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2013-01-11
RHK1DYZX ocean heat x transport due to parameterized eddy advection "x" indicates a vector component along the grid x-axis, positive with increasing x. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. 2017-11-28
CF12N543 ocean heat y transport "y" indicates a vector component along the grid y-axis, positive with increasing y. 2013-01-11
CF12N544 ocean heat y transport due to bolus advection DEPRECATED "y" indicates a vector component along the grid y-axis, positive with increasing y. Transport by bolus advection in an ocean model means the part due to a scheme representing eddy-induced effects not included in the velocity field. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-11-28
CF12N545 ocean heat y transport due to diffusion "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2013-01-11
GVNOXTF9 ocean heat y transport due to parameterized eddy advection "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. 2017-11-28
CFSN0464 ocean integral of sea water temperature wrt depth DEPRECATED "integral_ of_ Y_ wrt_ X" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. Depth is the vertical distance below the surface. Sea water temperature is the in situ temperature of the sea water. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2017-11-28
9W3159BW ocean integral wrt depth of sea water temperature DEPRECATED The phrase "integral_ wrt_ X_ of_ Y" means int Y dX. The data variable should have an axis for X specifying the limits of the integral as bounds. "wrt" means with respect to. Depth is the vertical distance below the surface. Sea water temperature is the in situ temperature of the sea water. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2018-05-29
CFSN0465 ocean isopycnal layer thickness diffusivity 2006-09-26
CF12N546 ocean kinetic energy dissipation per unit area due to vertical friction Friction, leading to the dissipation of kinetic energy, arises in ocean models as a result of the viscosity of sea water. Generally, the lateral (xy) viscosity is given a large value to maintain the numerical stability of the model. In contrast, the vertical viscosity is usually much smaller. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2009-07-06
CF12N547 ocean kinetic energy dissipation per unit area due to xy friction Friction, leading to the dissipation of kinetic energy, arises in ocean models as a result of the viscosity of sea water. Generally, the lateral (xy) viscosity is given a large value to maintain the numerical stability of the model. In contrast, the vertical viscosity is usually much smaller. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2009-07-06
CF14N54 ocean mass content of dissolved inorganic carbon "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2019-02-04
YSTO1S7M ocean mass content of dissolved organic carbon "Content" indicates a quantity per unit area. Organic carbon describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2016-11-15
OVA1CJTZ ocean mass content of particulate organic matter expressed as carbon "Content" indicates a quantity per unit area. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2016-11-15
CF12N548 ocean mass x transport "x" indicates a vector component along the grid x-axis, positive with increasing x. 2013-01-11
CF12N549 ocean mass x transport due to advection "x" indicates a vector component along the grid x-axis, positive with increasing x. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2013-01-11
CF12N550 ocean mass x transport due to advection and bolus advection DEPRECATED "x" indicates a vector component along the grid x-axis, positive with increasing x. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Transport by bolus advection in an ocean model means the part due to a scheme representing eddy-induced effects not included in the velocity field. 2017-11-28
MMNPQSD5 ocean mass x transport due to advection and parameterized eddy advection "x" indicates a vector component along the grid x-axis, positive with increasing x. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. 2017-11-28
CF12N551 ocean mass y transport "y" indicates a vector component along the grid y-axis, positive with increasing y. 2013-01-11
CF12N552 ocean mass y transport due to advection "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2013-01-11
CF12N553 ocean mass y transport due to advection and bolus advection DEPRECATED "y" indicates a vector component along the grid y-axis, positive with increasing y. Transport by bolus advection in an ocean model means the part due to a scheme representing eddy-induced effects not included in the velocity field. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-11-28
4YW5AAAT ocean mass y transport due to advection and parameterized eddy advection "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. 2017-11-28
CF12N554 ocean meridional overturning mass streamfunction In contrast to the quantity with standard name ocean_ meridional_ overturning_ streamfunction, this quantity includes all physical processes, resolved or parameterized, that impact mass/volume transport. Thus it includes contributions from the parameterized eddy velocity. 2018-02-12
CF12N555 ocean meridional overturning mass streamfunction due to bolus advection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-11-28
TQ3WPUFD ocean meridional overturning mass streamfunction due to parameterized eddy advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. 2017-11-28
56DOPDM4 ocean meridional overturning mass streamfunction due to parameterized mesoscale eddy advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized mesoscale eddy advection occurs on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddy advection is represented in ocean models using schemes such as the Gent-McWilliams scheme. There are also standard names for parameterized_ submesoscale_ eddy_ advection which, along with parameterized_ mesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. 2017-11-28
H5M3Q0GN ocean meridional overturning mass streamfunction due to parameterized submesoscale eddy advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized submesoscale eddy advection occurs on a spatial scale of the order of 1 km horizontally. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. There are also standard names for parameterized_ mesoscale_ eddy_ advection which, along with parameterized_ submesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. 2017-11-28
CFSN0466 ocean meridional overturning streamfunction The ocean meridional overturning streamfunction should not include not include the parameterized eddy advection velocity. 2018-02-12
CFSN0467 ocean mixed layer thickness The ocean mixed layer is the upper part of the ocean, regarded as being well-mixed. Various criteria are used to define the mixed layer; this can be specified by using a standard name of ocean_ mixed_ layer_ defined_ by_ X. "Thickness" means the vertical extent of a layer. 2018-05-29
CFSN0468 ocean mixed layer thickness defined by mixing scheme The ocean mixed layer is the upper part of the ocean, regarded as being well-mixed. The base of the mixed layer defined by the mixing scheme is a diagnostic of ocean models. "Thickness" means the vertical extent of a layer. 2018-05-29
CFSN0469 ocean mixed layer thickness defined by sigma t The ocean mixed layer is the upper part of the ocean, regarded as being well-mixed. The base of the mixed layer defined by "temperature", "sigma", "sigma_ theta", "sigma_ t" or vertical diffusivity is the level at which the quantity indicated differs from its surface value by a certain amount. A coordinate variable or scalar coordinate variable with standard name sea_ water_ sigma_ t_ difference can be used to specify the sigma_ t criterion that determines the layer thickness. Sigma-t of sea water is the density of water at atmospheric pressure (i.e. the surface) having the same temperature and salinity, minus 1000 kg m-3. "Thickness" means the vertical extent of a layer. 2018-05-29
CFSN0470 ocean mixed layer thickness defined by sigma theta The ocean mixed layer is the upper part of the ocean, regarded as being well-mixed. The base of the mixed layer defined by "temperature", "sigma", "sigma_ theta", "sigma_ t" or vertical diffusivity is the level at which the quantity indicated differs from its surface value by a certain amount. A coordinate variable or scalar coordinate variable with standard name sea_ water_ sigma_ theta_ difference can be used to specify the sigma_ theta criterion that determines the layer thickness. Sigma-theta of sea water is the potential density (i.e. the density when moved adiabatically to a reference pressure) of water having the same temperature and salinity, minus 1000 kg m-3. "Thickness" means the vertical extent of a layer. 2018-05-29
CFSN0471 ocean mixed layer thickness defined by temperature The ocean mixed layer is the upper part of the ocean, regarded as being well-mixed. The base of the mixed layer defined by "temperature", "sigma", "sigma_ theta", "sigma_ t" or vertical diffusivity is the level at which the quantity indicated differs from its surface value by a certain amount. A coordinate variable or scalar coordinate variable with standard name sea_ water_ temperature_ difference can be used to specify the temperature criterion that determines the layer thickness. Sea water temperature is the in situ temperature of the sea water. "Thickness" means the vertical extent of a layer. 2018-06-11
CFV10N22 ocean mixed layer thickness defined by vertical tracer diffusivity DEPRECATED The ocean mixed layer is the upper part of the ocean, regarded as being well-mixed. The base of the mixed layer defined by temperature, sigma, sigma_ theta, or vertical diffusivity is the level at which the quantity indicated differs from its surface value by a certain amount. The amount by which the quantity differs can be specified by a scalar coordinate variable. 2017-04-24
KOUJEBSP ocean mixed layer thickness defined by vertical tracer diffusivity deficit "Thickness" means the vertical extent of a layer. The ocean mixed layer is the upper part of the ocean, regarded as being well-mixed. The base of the mixed layer defined by temperature, sigma, sigma_ theta, or vertical diffusivity is the level at which the quantity indicated differs from its surface value by a certain amount. The amount by which the quantity differs can be specified by a scalar coordinate variable. 2017-04-24
NT1WKENH ocean mixed layer thickness defined by vertical tracer diffusivity threshold "Thickness" means the vertical extent of a layer. The ocean mixed layer is the upper part of the ocean, regarded as being well-mixed. Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. The diffusivity threshold should be specified by associating a coordinate variable or scalar coordinate variable with the data variable and giving the coordinate variable a standard name of ocean_ vertical_ tracer_ diffusivity. 2017-04-24
CF12N556 ocean momentum xy biharmonic diffusivity Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. "xy diffusivity" means the lateral along_ coordinate component of diffusivity due to motion which is not resolved on the grid scale of the model. xy diffusivities are used in some ocean models to counteract the numerical instabilities inherent in certain implementations of rotated neutral diffusion. "biharmonic diffusivity" means diffusivity for use with a biharmonic diffusion operator. 2009-07-06
CF12N557 ocean momentum xy laplacian diffusivity Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. "xy diffusivity" means the lateral along_ coordinate component of diffusivity due to motion which is not resolved on the grid scale of the model. xy diffusivities are used in some ocean models to counteract the numerical instabilities inherent in certain implementations of rotated neutral diffusion. "laplacian diffusivity" means diffusivity for use with a Laplacian diffusion operator. 2009-07-06
CF12N558 ocean montgomery potential Montgomery potential is defined as M = ap + gz, where a = specific volume, p = pressure, g = gravity, and z=depth. It represents an exact streamfunction on specific volume anomaly surfaces. 2019-02-04
GQ9G6TH3 ocean obukhov length The depth in the ocean, L, that buoyant production or destruction of turbulent energy balances the turbulent kinetic energy: L = -u*3 / (kB0), where u* is the oceanic surface frictional velocity, k is the von Karman constant, and B0 is the oceanic surface buoyancy flux. If the buoyancy flux is destabilizing, L is negative. 2024-01-18
3H8T3GRY ocean relative vorticity Relative vorticity is the upward component of the relative vorticity vector i.e. the component which arises from horizontal velocity. 2016-04-05
CFV10N23 ocean rigid lid pressure "Ocean rigid lid pressure" means the pressure at the surface of an ocean model assuming that it is bounded above by a rigid lid. 2008-10-21
CFV10N24 ocean rigid lid pressure expressed as sea surface height above geoid "Ocean rigid lid pressure" means the pressure at the surface of an ocean model assuming that it is bounded above by a rigid lid. "Sea surface height" is a time-varying quantity. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean). In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. To specify which geoid or geopotential datum is being used as a reference level, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2017-07-24
CFSN0472 ocean s coordinate See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
XRN901TU ocean s coordinate g1 See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
AHGD87DI ocean s coordinate g2 See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
CF12N559 ocean salt x transport "x" indicates a vector component along the grid x-axis, positive with increasing x. Salt transport refers to the mass of salt being transported. 2013-01-11
CF12N560 ocean salt y transport "y" indicates a vector component along the grid y-axis, positive with increasing y. Salt transport refers to the mass of salt being transported. 2013-01-11
CFSN0473 ocean sigma coordinate See Appendix D of the CF convention for information about parametric vertical coordinates. Note that the ocean sigma coordinate is not the same quantity as sea water sigma (excess of density over 1000 kg m-3), for which there are various other standard names. 2019-05-14
3HWMM33G ocean sigma z coordinate See Appendix D of the CF convention for information about parametric vertical coordinates. 2019-05-14
KHM9VKP7 ocean tracer biharmonic diffusivity due to parameterized mesoscale eddy advection Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. "biharmonicdiffusivity" means diffusivity for use with a biharmonic diffusion operator. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized mesoscale eddy advection occurs on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddy advection is represented in ocean models using schemes such as the Gent-McWilliams scheme. There are also standard names for parameterized_ submesoscale_ eddy_ advection which, along with parameterized_ mesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. 2017-11-28
CF12N561 ocean tracer bolus biharmonic diffusivity DEPRECATED Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. "Bolus diffusivity" means a lateral diffusivity. "biharmonic diffusivity" means diffusivity for use with a biharmonic diffusion operator. 2017-11-28
CF12N562 ocean tracer bolus laplacian diffusivity DEPRECATED Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. "Bolus diffusivity" means a lateral diffusivity. "laplacian diffusivity" means diffusivity for use with a Laplacian diffusion operator. 2017-11-28
375L8O5D ocean tracer diffusivity due to parameterized mesoscale eddy advection Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized mesoscale eddy advection occurs on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddy advection is represented in ocean models using schemes such as the Gent-McWilliams scheme. There are also standard names for parameterized_ submesoscale_ eddy_ advection which, along with parameterized_ mesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. 2017-11-28
CF12N563 ocean tracer epineutral biharmonic diffusivity Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. "epineutral diffusivity" means a lateral diffusivity along a either a neutral or isopycnal density surface due to motion which is not resolved on the grid scale of an ocean model. The type of density surface is dependent on the model formulation. "biharmonic diffusivity" means diffusivity for use with a biharmonic diffusion operator. 2009-07-06
CF12N564 ocean tracer epineutral laplacian diffusivity Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. "epineutral diffusivity" means a lateral diffusivity along a either a neutral or isopycnal density surface due to motion which is not resolved on the grid scale of an ocean model. The type of density surface is dependent on the model formulation. "laplacian diffusivity" means diffusivity for use with a Laplacian diffusion operator. 2009-07-06
XP5PYKHS ocean tracer laplacian diffusivity due to parameterized mesoscale eddy advection Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. "laplacian diffusivity" means diffusivity for use with a Laplacian diffusion operator. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized mesoscale eddy advection occurs on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddy advection is represented in ocean models using schemes such as the Gent-McWilliams scheme. There are also standard names for parameterized_ submesoscale_ eddy_ advection which, along with parameterized_ mesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. 2017-11-28
CF12N565 ocean tracer xy biharmonic diffusivity Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. "xy diffusivity" means the lateral along_ coordinate component of diffusivity due to motion which is not resolved on the grid scale of the model. xy diffusivities are used in some ocean models to counteract the numerical instabilities inherent in certain implementations of rotated neutral diffusion. "biharmonic diffusivity" means diffusivity for use with a biharmonic diffusion operator. 2009-07-06
CF12N566 ocean tracer xy laplacian diffusivity Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. "xy diffusivity" means the lateral along_ coordinate component of diffusivity due to motion which is not resolved on the grid scale of the model. xy diffusivities are used in some ocean models to counteract the numerical instabilities inherent in certain implementations of rotated neutral diffusion. "laplacian diffusivity" means diffusivity for use with a Laplacian diffusion operator. 2009-07-06
CFV10N25 ocean vertical diffusivity "Vertical diffusivity" means the vertical component of diffusivity due to motion which is not resolved on the grid scale of the model. 2008-10-21
CFV10N26 ocean vertical heat diffusivity "Vertical heat diffusivity" means the vertical component of the diffusivity of heat due to motion which is not resolved on the grid scale of the model. 2008-10-21
CFV10N27 ocean vertical momentum diffusivity ocean_ vertical_ momentum_ diffusivity 2008-10-21
CF12N567 ocean vertical momentum diffusivity due to background Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. The construction "vertical_ X_ diffusivity" means the vertical component of the diffusivity of X due to motion which is not resolved on the grid scale of the model. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Due to background" means caused by a time invariant imposed field which may be either constant over the globe or spatially varying, depending on the ocean model used. 2019-02-04
CFV10N28 ocean vertical momentum diffusivity due to convection "Vertical momentum diffusivity" means the vertical component of the diffusivity of momentum due to motion which is not resolved on the grid scale of the model. The diffusivity may be very different in the vertical and horizontal directions. Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Convective mixing in the ocean is sometimes modelled as an enhanced diffusivity. 2019-03-04
CF12N568 ocean vertical momentum diffusivity due to form drag The construction vertical_ X_ diffusivity means the vertical component of the diffusivity of X due to motion which is not resolved on the grid scale of the model. The diffusivity may be very different in the vertical and horizontal directions. Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Due to form drag" refers to a vertical diffusivity resulting from a model scheme representing mesoscale eddy-induced form drag. 2019-03-04
CF12N569 ocean vertical momentum diffusivity due to tides The construction vertical_ X_ diffusivity means the vertical component of the diffusivity of X due to motion which is not resolved on the grid scale of the model. The diffusivity may be very different in the vertical and horizontal directions. Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Due to tides" means due to all astronomical gravity changes which manifest as tides. No distinction is made between different tidal components. 2019-03-04
CFV10N29 ocean vertical salt diffusivity "Vertical salt diffusivity" means the vertical component of the diffusivity of salt due to motion which is not resolved on the grid scale of the model. 2008-10-21
CFV10N30 ocean vertical tracer diffusivity "Vertical tracer diffusivity" means the vertical component of the diffusivity of tracers, i.e. heat and salinity, due to motion which is not resolved on the grid scale of the model. 2008-10-21
CF12N570 ocean vertical tracer diffusivity due to background Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The diffusivity may be very different in the vertical and horizontal directions. The construction "vertical_ X_ diffusivity" means the vertical component of the diffusivity of X due to motion which is not resolved on the grid scale of the model. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Due to background" means caused by a time invariant imposed field which may be either constant over the globe or spatially varying, depending on the ocean model used. 2019-02-04
CFV10N31 ocean vertical tracer diffusivity due to convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Vertical tracer diffusivity" means the vertical component of the diffusivity of tracers, i.e. heat and salinity, due to motion which is not resolved on the grid scale of the model. Convective mixing in the ocean is sometimes modelled as an enhanced diffusivity. 2008-10-21
CF12N571 ocean vertical tracer diffusivity due to tides The construction vertical_ X_ diffusivity means the vertical component of the diffusivity of X due to motion which is not resolved on the grid scale of the model. The diffusivity may be very different in the vertical and horizontal directions. Diffusivity is also sometimes known as the coefficient of diffusion. Diffusion occurs as a result of a gradient in the spatial distribution of mass concentration, temperature or momentum. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Due to tides" means due to all astronomical gravity changes which manifest as tides. No distinction is made between different tidal components. 2019-03-04
CFV10N32 ocean vertical tracer diffusivity due to wind mixing The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Vertical tracer diffusivity" means the vertical component of the diffusivity of tracers, i.e. heat and salinity, due to motion which is not resolved on the grid scale of the model. 2008-10-21
CFSN0474 ocean volume 2006-09-26
CFSN0475 ocean volume fraction "X_ volume_ fraction" means the fraction of volume occupied by X. It is evaluated as the volume of interest divided by the grid cell volume. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. A data variable with standard name ocean_ volume_ fraction is used to store the fraction of a grid cell underlying sea-water, for example, where part of the grid cell is occupied by land or to record ocean volume on a model's native grid following a regridding operation. 2019-06-17
W946809H ocean volume transport across line Transport "across_ line" means that which crosses a particular line on the Earth's surface; formally this means the integral along the line of the normal component of the transport. 2013-03-23
BSN70OFJ ocean volume x transport "x" indicates a vector component along the grid x-axis, positive with increasing x. 2013-03-23
YQUEEUJE ocean volume y transport "y" indicates a vector component along the grid y-axis, positive with increasing y. 2013-03-23
CF12N572 ocean y overturning mass streamfunction "y" indicates a vector component along the grid y-axis, positive with increasing y. In contrast to the quantity with standard name ocean_ meridional_ overturning_ streamfunction, this quantity includes all physical processes, resolved or parameterized, that impact mass/volume transport. Thus it includes contributions from the parameterized eddy velocity. 2018-02-12
CF12N573 ocean y overturning mass streamfunction due to bolus advection DEPRECATED "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-11-28
96IUCKHD ocean y overturning mass streamfunction due to parameterized eddy advection "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. 2017-11-28
VY2V1KO7 ocean y overturning mass streamfunction due to parameterized mesoscale eddy advection "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized mesoscale eddy advection occurs on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddy advection is represented in ocean models using schemes such as the Gent-McWilliams scheme. There are also standard names for parameterized_ submesoscale_ eddy_ advection which, along with parameterized_ mesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. 2017-11-28
ATSWVZM6 ocean y overturning mass streamfunction due to parameterized submesoscale eddy advection "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized submesoscale eddy advection occurs on a spatial scale of the order of 1 km horizontally. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. There are also standard names for parameterized_ mesoscale_ eddy_ advection which, along with parameterized_ submesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. 2017-11-28
CFSNA008 omega DEPRECATED 'tendency_ of_ X' means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the 'material derivative' or 'convective derivative'. The Lagrangian tendency of air pressure, often called 'omega', plays the role of the upward component of air velocity when air pressure is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of air pressure; downwards is positive. 2006-09-26
CFSN0476 omnidirectional photosynthetic spherical irradiance in sea water "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. Omnidirectional spherical irradiance is the radiation incident on unit area of a spherical (or "4-pi") collector. It is sometimes called "scalar irradiance". Radiation incident on a 2-pi collector has standard names of "spherical irradiance" which specify up/downwelling. 2015-07-08
CFSN0477 omnidirectional spectral spherical irradiance in sea water DEPRECATED 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Omnidirectional spherical irradiance is the radiation incident on unit area of a spherical (or '4-pi') collector. It is sometimes called 'scalar irradiance'. Radiation incident on a 2-pi collector has standard names of 'spherical irradiance' which specify up/downwelling. 2013-06-27
1JSOE4OU omnidirectional spherical irradiance per unit wavelength in sea water Omnidirectional spherical irradiance is the radiation incident on unit area of a spherical (or "4-pi") collector. It is sometimes called "scalar irradiance". Radiation incident on a 2-pi collector has standard names of "spherical irradiance" which specify up/downwelling. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2013-06-27
CFSN0478 optical thickness of atmosphere layer due to aerosol DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. 'Aerosol' means the suspended liquid or solid particles in air (except cloud droplets). 2010-03-11
CFV13A5 optical thickness of atmosphere layer due to ambient aerosol DEPRECATED "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
BLJKADJX optical thickness of atmosphere layer due to ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-optical_ thickness) on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
2YAPTDYX original air pressure of lifted parcel Various stability and convective potential indices are calculated by "lifting" a parcel of air: moving it dry adiabatically from a starting height (often the surface) to the Lifting Condensation Level, and then wet adiabatically from there to an ending height (often the top of the data/model/atmosphere). The quantities with standard names original_ air_ pressure_ of_ lifted_ parcel and final_ air_ pressure_ of_ lifted_ parcel are the ambient air pressure at the start and end of lifting, respectively. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
P9EI1SYR outgoing water volume transport along river channel "Water" means water in all phases. "River" refers to water in the fluvial system (stream and floodplain). 2018-07-10
JG8UUOE9 partial pressure of carbon dioxide in sea water The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. The chemical formula for carbon dioxide is CO2. 2018-12-17
T6L3SREI partial pressure of methane in sea water The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. The chemical formula for methane is CH4. 2018-10-15
6BIKDZP6 perceived temperature Perceived temperature (PT) is an equivalent air temperature of the actual thermal condition. It is the air temperature of a reference condition causing the same thermal perception in a human body considering air temperature, windspeed, humidity, solar and thermal radiation as well as clothing and activity level. It is not the perceived air temperature, that derives either from wind chill and heat index and has the standard_ name apparent_ air_ temperature. 2023-04-24
CFSN2202 permafrost active layer thickness The quantity with standard name permafrost_ active_ layer_ thickness is the thickness of the layer of the ground that is subject to annual thawing and freezing in areas underlain by permafrost. "Thickness" means the vertical extent of a layer. Permafrost is soil or rock that has remained at a temperature at or below zero degrees Celsius throughout the seasonal cycle for two or more years. 2020-06-22
CFSN2203 permafrost area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Permafrost is soil or rock that has remained at a temperature at or below zero degrees Celsius throughout the seasonal cycle for two or more years. 2020-06-22
CFV16A33 permafrost layer thickness Permafrost is soil or rock that has remained at a temperature at or below zero degrees Celsius throughout the seasonal cycle for two or more years. "Thickness" means the vertical extent of a layer. 2010-10-11
EJ5JLPG7 phase of global average sea level change Global average sea level change is due to change in volume of the water in the ocean, caused by mass and/or density change, or to change in the volume of the ocean basins, caused by tectonics etc. It is sometimes called "eustatic", which is a term that also has other definitions. It differs from the change in the global average sea surface height relative to the centre of the Earth by the global average vertical movement of the ocean floor. Zero sea level change is an arbitrary level. Phase is the initial angle of a wave modelled by a sinusoidal function. A coordinate variable of harmonic_ period should be used to specify the period of the sinusoidal wave. Because global average sea level change quantifies the change in volume of the world ocean, it is not calculated necessarily by considering local changes in mean sea level. 2017-07-24
FIXB60RZ phosphorus mass transport in river channel The amount of total phosphorus mass transported in the river channels from land into the ocean. This quantity can be provided at a certain location within the river network and floodplain (over land) or at the river mouth (over ocean) where the river enters the ocean. "River" refers to water in the fluvial system (stream and floodplain). Phosphorus means phosphorus in all chemical forms, commonly referred to as "total phosphorus". 2024-01-18
NVKB0W6N photolysis rate of molecular oxygen "Photolysis" is a chemical reaction in which a chemical compound is broken down by photons. The "reaction rate" is the rate at which the reactants of a chemical reaction form the products. The chemical formula for molecular oxygen is O2. 2018-06-11
GE91C5LF photolysis rate of nitrogen dioxide "Photolysis" is a chemical reaction in which a chemical compound is broken down by photons. The "reaction rate" is the rate at which the reactants of a chemical reaction form the products. The chemical formula for nitrogen dioxide is NO2. 2015-01-07
U5OFMC8F photolysis rate of ozone "Photolysis" is a chemical reaction in which a chemical compound is broken down by photons. The "reaction rate" is the rate at which the reactants of a chemical reaction form the products. The chemical formula for ozone is O3. The IUPAC name for ozone is trioxygen. The quantity with standard name photolysis_ rate_ of_ ozone is the rate of photolytic loss of ozone, including all possible photolysis channels to form ground state atomic oxygen (O3P ) and excited (singlet D) atomic oxygen (O1D). Photolysis to the excited state only has the standard name photolysis_ rate_ of_ ozone_ to_ 1D_ oxygen_ atom. 2018-06-11
FARGE6O1 photolysis rate of ozone to 1D oxygen atom "Photolysis" is a chemical reaction in which a chemical compound is broken down by photons. The "reaction rate" is the rate at which the reactants of a chemical reaction form the products. The chemical formula for ozone is O3. The IUPAC name for ozone is trioxygen. "1D oxygen atom" means the singlet D state, an excited state, of the oxygen atom. The combined photolysis rate of ozone to both excited and ground state oxygen atoms has the standard name photolysis_ rate_ of_ ozone. 2018-06-11
BSJMY3X7 physiological equivalent temperature Physiological equivalent temperature (PET) is an equivalent air temperature of the actual thermal condition. It is the air temperature of a reference condition without wind and solar radiation at which the heat budget of the human body is balanced with the same core and skin temperature. Note that PET here is not potential evapotranspiration. 2023-04-24
CFSN0479 planetary albedo Albedo is the ratio of outgoing to incoming shortwave irradiance, where 'shortwave irradiance' means that both the incoming and outgoing radiation are integrated across the solar spectrum. 2018-07-03
CFSN0480 plant respiration carbon flux DEPRECATED 'Respiration carbon' refers to the rate at which biomass is respired expressed as the mass of carbon which it contains. Plant respiration is the sum of respiration by parts of plants both above and below the soil. Plants which photosynthesise are autotrophs i.e. 'producers' of the biomass which they respire from inorganic precursors using sunlight for energy. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2018-04-16
IY5BYO0G platform azimuth angle Platform azimuth angle is the horizontal angle between the line of sight from the observation point to the platform and a reference direction at the observation point, which is often due north. The angle is measured clockwise positive, starting from the reference direction. A comment attribute should be added to a data variable with the standard name platform_ azimuth_ angle to specify the reference direction. A standard name also exists for sensor_ azimuth_ angle. For some viewing geometries the sensor and the platform cannot be assumed to be close enough to neglect the difference in calculated azimuth angle. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CFSN0481 platform course Course is the clockwise angle with respect to North of the nominal forward motion direction of the platform (not necessarily the same as the direction in which it is pointing, called "platform_ orientation"). A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
PBL8WDD1 platform heave Heave is a displacement along the local vertical axis. Heave is relative to the "at rest" position of the platform with respect to the axis of displacement. The "at rest" position of the platform may change over time. The standard name platform_ heave should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the heave is known, a standard name of platform_ heave_ down or platform_ heave_ up should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
X55WORQY platform heave down Heave is a displacement along the local vertical axis. Heave is relative to the "at rest" position of the platform with respect to the axis of displacement. The "at rest" position of the platform may change over time. "Down" indicates that positive values of heave represent the platform moving down as viewed by an observer on top of the platform facing forward. The standard name platform_ heave_ up should be used for data having the opposite sign convention. The standard name platform_ heave should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
2SXARADF platform heave rate "Heave rate" is the rate of displacement along the local vertical axis. Heave rate might not include changes to the "at rest" position of the platform with respect to the axis of displacement, which may change over time. The standard name platform_ heave_ rate should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the heave rate is known, a standard name of platform_ heave_ rate_ down or platform_ heave_ rate_ up should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
89PXGEHG platform heave rate down "Heave rate" is the rate of displacement along the local vertical axis. Heave rate might not include changes to the "at rest" position of the platform with respect to the axis of displacement, which may change over time. "Down" indicates that positive values of heave rate represent the platform moving down as viewed by an observer on top of the platform facing forward. The standard name platform_ heave_ rate_ up should be used for data having the opposite sign convention. The standard name platform_ heave_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
0RFBYUNI platform heave rate up "Heave rate" is the rate of displacement along the local vertical axis. Heave rate might not include changes to the "at rest" position of the platform with respect to the axis of displacement, which may change over time. "Up" indicates that positive values of heave rate represent the platform moving up as viewed by an observer on top of the platform facing forward. The standard name platform_ heave_ rate_ down should be used for data having the opposite sign convention. The standard name platform_ heave_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
SOMDN03W platform heave up Heave is a displacement along the local vertical axis. Heave is relative to the "at rest" position of the platform with respect to the axis of displacement. The "at rest" position of the platform may change over time. "Up" indicates that positive values of heave represent the platform moving up as viewed by an observer on top of the platform facing forward. The standard name platform_ heave_ down should be used for data having the opposite sign convention. The standard name platform_ heave should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
I2NHBPFG platform id A variable with the standard name of platform_ id contains strings which help to identify the platform from which an observation was made. For example, this may be a WMO station identification number. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CH3BBTYJ platform name A variable with the standard name of platform_ name contains strings which help to identify the platform from which an observation was made. For example, this may be a geographical place name such as "South Pole" or the name of a meteorological observing station. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CFSN0439 platform orientation Orientation is the clockwise angle with respect to North of the longitudinal (front-to-back) axis of the platform, which may be different to the platform course (which has the standard name platform_ course). A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
UOMSLR0H platform pitch Pitch is a rotation about an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Pitch is relative to the "at rest" rotation of the platform with respect to the axis of rotation. The "at rest" rotation of the platform may change over time. The standard name platform_ pitch should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the pitch is known, a standard name of platform_ pitch_ fore_ down or platform_ pitch_ fore_ up should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CFSN0440 platform pitch angle DEPRECATED Standard names for platform describe the motion and orientation of the vehicle from which observations are made e.g. aeroplane, ship or satellite. 2018-10-15
3ZUPIPAR platform pitch fore down Pitch is a rotation about an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Pitch is relative to the "at rest" rotation of the platform with respect to the axis of rotation. The "at rest" rotation of the platform may change over time. "Fore down" indicates that positive values of pitch represent the front of the platform falling as viewed by an observer on top of the platform facing forward. The standard name platform_ pitch_ fore_ up should be used for data having the opposite sign convention. The standard name platform_ pitch should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-11-12
M9100C5W platform pitch fore up Pitch is a rotation about an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Pitch is relative to the "at rest" rotation of the platform with respect to the axis of rotation. The "at rest" rotation of the platform may change over time. "Fore up" indicates that positive values of pitch represent the front of the platform rising as viewed by an observer on top of the platform facing forward. The standard name platform_ pitch_ fore_ down should be used for data having the opposite sign convention. The standard name platform_ pitch should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CFSN0441 platform pitch rate "Pitch rate" is the rate of rotation about an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Pitch rate might not include changes to the "at rest" rotation of the platform with respect to the axis of rotation, which may change over time. The standard name platform_ pitch_ rate should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the pitch rate is known, a standard name of platform_ pitch_ rate_ fore_ down or platform_ pitch_ rate_ fore_ up should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
H5R40ZP2 platform pitch rate fore down "Pitch rate" is the rate of rotation about an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Pitch rate might not include changes to the "at rest" rotation of the platform with respect to the axis of rotation, which may change over time. "Fore down" indicates that positive values of pitch rate represent the front of the platform falling as viewed by an observer on top of the platform facing forward. The standard name platform_ pitch_ rate_ fore_ up should be used for data having the opposite sign convention. The standard name platform_ pitch_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
V7P4FWMP platform pitch rate fore up "Pitch rate" is the rate of rotation about an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Pitch rate might not include changes to the "at rest" rotation of the platform with respect to the axis of rotation, which may change over time. "Fore up" indicates that positive values of pitch rate represent the front of the platform rising as viewed by an observer on top of the platform facing forward. The standard name platform_ pitch_ rate_ fore_ down should be used for data having the opposite sign convention. The standard name platform_ pitch_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
STKKO0AT platform roll Roll is a rotation about an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Roll is relative to the "at rest" rotation of the platform with respect to the axis of rotation. The "at rest" rotation of the platform may change over time. The standard name platform_ roll should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the roll is known, a standard name of platform_ roll_ starboard_ down or platform_ roll_ starboard_ up should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CFSN0442 platform roll angle DEPRECATED Standard names for platform describe the motion and orientation of the vehicle from which observations are made e.g. aeroplane, ship or satellite. 2018-10-15
CFSN0443 platform roll rate "Roll rate" is the rate of rotation about an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Roll rate might not include changes to the "at rest" rotation of the platform with respect to the axis of rotation, which may change over time. The standard name platform_ roll_ rate should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the roll rate is known, a standard name of platform_ roll_ rate_ starboard_ down or platform_ roll_ rate_ starboard_ up should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
RYO9CKB4 platform roll rate starboard down "Roll rate" is the rate of rotation about an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Roll rate might not include changes to the "at rest" rotation of the platform with respect to the axis of rotation, which may change over time. "Starboard down" indicates that positive values of roll rate represent the right side of the platform falling as viewed by an observer on top of the platform facing forward. The standard name platform_ roll_ rate_ starboard_ up should be used for data having the opposite sign convention. The standard name platform_ roll_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
66Y2NV63 platform roll rate starboard up "Roll rate" is the rate of rotation about an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Roll rate might not include changes to the "at rest" rotation of the platform with respect to the axis of rotation, which may change over time. "Starboard up" indicates that positive values of roll rate represent the right side of the platform rising as viewed by an observer on top of the platform facing forward. The standard name platform_ roll_ rate_ starboard_ down should be used for data having the opposite sign convention. The standard name platform_ roll_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
D7VMD2WB platform roll starboard down Roll is a rotation about an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Roll is relative to the "at rest" rotation of the platform with respect to the axis of rotation. The "at rest" rotation of the platform may change over time. "Starboard down" indicates that positive values of roll represent the right side of the platform falling as viewed by an observer on top of the platform facing forward. The standard name platform_ roll_ starboard_ up should be used for data having the opposite sign convention. The standard name platform_ roll should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
47GCKBXI platform roll starboard up Roll is a rotation about an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Roll is relative to the "at rest" rotation of the platform with respect to the axis of rotation. The "at rest" rotation of the platform may change over time. "Starboard up" indicates that positive values of roll represent the right side of the platform rising as viewed by an observer on top of the platform facing forward. The standard name platform_ roll_ starboard_ down should be used for data having the opposite sign convention. The standard name platform_ roll should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CFSN0444 platform speed wrt air Speed is the magnitude of velocity. The abbreviation "wrt" means with respect to. The platform speed with respect to air is often called the "air speed" of the platform. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CFSN0445 platform speed wrt ground Speed is the magnitude of velocity. The abbreviation "wrt" means with respect to. The platform speed with respect to ground is relative to the solid Earth beneath it, i.e. the sea floor for a ship. It is often called the "ground speed" of the platform. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CFSN0446 platform speed wrt sea water Speed is the magnitude of velocity. The abbreviation "wrt" means with respect to. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
HO9FRUY9 platform surge Surge is a displacement along an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Surge is relative to the "at rest" position of the platform with respect to the axis of displacement. The "at rest" position of the platform may change over time. The standard name platform_ surge should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the surge is known, a standard name of platform_ surge_ fore or platform_ surge_ aft should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-11-12
WWSC37PD platform surge aft Surge is a displacement along an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Surge is relative to the "at rest" position of the platform with respect to the axis of displacement. The "at rest" position of the platform may change over time. "Aft" indicates that positive values of surge represent the platform moving backward as viewed by an observer on top of the platform facing forward. The standard name platform_ surge_ fore should be used for data having the opposite sign convention. The standard name platform_ surge should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-11-12
CKV5NP29 platform surge fore Surge is a displacement along an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Surge is relative to the "at rest" position of the platform with respect to the axis of displacement. The "at rest" position of the platform may change over time. "Fore" indicates that positive values of surge represent the platform moving forward as viewed by an observer on top of the platform facing forward. The standard name platform_ surge_ aft should be used for data having the opposite sign convention. The standard name platform_ surge should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-11-12
U345IQS9 platform surge rate "Surge rate" is the rate of displacement along an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Surge rate might not include changes to the "at rest" position of the platform with respect to the axis of displacement, which may change over time. The standard name platform_ surge_ rate should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the surge rate is known, a standard name of platform_ surge_ rate_ fore or platform_ surge_ rate_ aft should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
RQYF1A62 platform surge rate aft "Surge rate" is the rate of displacement along an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Surge rate might not include changes to the "at rest" position of the platform with respect to the axis of displacement, which may change over time. "Aft" indicates that positive values of surge rate represent the platform moving backward as viewed by an observer on top of the platform facing forward. The standard name platform_ surge_ rate_ fore should be used for data having the opposite sign convention. The standard name platform_ surge_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
DAETKVKK platform surge rate fore "Surge rate" is the rate of displacement along an axis that is perpendicular to the local vertical axis and is coplanar with the nominal forward motion direction of the platform. Surge rate might not include changes to the "at rest" position of the platform with respect to the axis of displacement, which may change over time. "Fore" indicates that positive values of surge rate represent the platform moving forward as viewed by an observer on top of the platform facing forward. The standard name platform_ surge_ rate_ aft should be used for data having the opposite sign convention. The standard name platform_ surge_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
197B7AHO platform sway Sway is a displacement along an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Sway is relative to the "at rest" position of the platform with respect to the axis of displacement. The "at rest" position of the platform may change over time. The standard name platform_ sway should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the sway is known, a standard name of platform_ sway_ starboard or platform_ sway_ port should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
JAU07CMQ platform sway port Sway is a displacement along an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Sway is relative to the "at rest" position of the platform with respect to the axis of displacement. The "at rest" position of the platform may change over time. "Port" indicates that positive values of sway represent the platform moving left as viewed by an observer on top of the platform facing forward. The standard name platform_ sway_ starboard should be used for data having the opposite sign convention. The standard name platform_ sway should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
9SM29I85 platform sway rate "Sway rate" is the rate of displacement along an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Sway rate might not include changes to the "at rest" position of the platform with respect to the axis of displacement, which may change over time. The standard name platform_ sway_ rate should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the sway rate is known, a standard name of platform_ sway_ rate_ starboard or platform_ sway_ rate_ port should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-11-12
VPNUUWYW platform sway rate port "Sway rate" is the rate of displacement along an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Sway rate might not include changes to the "at rest" position of the platform with respect to the axis of displacement, which may change over time. "Port" indicates that positive values of sway rate represent the platform moving left as viewed by an observer on top of the platform facing forward. The standard name platform_ sway_ rate_ starboard should be used for data having the opposite sign convention. The standard name platform_ sway_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
H3YZBX6J platform sway rate starboard "Sway rate" is the rate of displacement along an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Sway rate might not include changes to the "at rest" position of the platform with respect to the axis of displacement, which may change over time. "Starboard" indicates that positive values of sway rate represent the platform moving right as viewed by an observer on top of the platform facing forward. The standard name platform_ sway_ rate_ port should be used for data having the opposite sign convention. The standard name platform_ sway_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
0VUML2PP platform sway starboard Sway is a displacement along an axis that is perpendicular to both the local vertical axis and the nominal forward motion direction of the platform. Sway is relative to the "at rest" position of the platform with respect to the axis of displacement. The "at rest" position of the platform may change over time. "Starboard" indicates that positive values of sway represent the platform moving right as viewed by an observer on top of the platform facing forward. The standard name platform_ sway_ port should be used for data having the opposite sign convention. The standard name platform_ sway should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
YRIJPGMH platform view angle Platform view angle is the angle between the line of sight from the platform and the direction straight vertically down. Zero view angle means looking directly beneath the platform. There is no standardized sign convention for platform_ view_ angle. A standard name also exists for sensor_ view_ angle. For some viewing geometries the sensor and the platform cannot be assumed to be close enough to neglect the difference in calculated view angle. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
62TJQD97 platform yaw Yaw is a rotation about the local vertical axis. Yaw is relative to the "at rest" rotation of the platform with respect to the axis of rotation. The "at rest" rotation of the platform may change over time. The standard name platform_ yaw should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the yaw is known, a standard name of platform_ yaw_ fore_ starboard or platform_ yaw_ fore_ port should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CFSN0447 platform yaw angle DEPRECATED Standard names for platform describe the motion and orientation of the vehicle from which observations are made e.g. aeroplane, ship or satellite. 2018-10-15
HO342VZS platform yaw fore port Yaw is a rotation about the local vertical axis. Yaw is relative to the "at rest" rotation of the platform with respect to the axis of rotation. The "at rest" rotation of the platform may change over time. "Fore port" indicates that positive values of yaw represent the front of the platform moving to the left as viewed by an observer on top of the platform facing forward. The standard name platform_ yaw_ fore_ starboard should be used for data having the opposite sign convention. The standard name platform_ yaw should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
D3TW1SQC platform yaw fore starboard Yaw is a rotation about the local vertical axis. Yaw is relative to the "at rest" rotation of the platform with respect to the axis of rotation. The "at rest" rotation of the platform may change over time. "Fore starboard" indicates that positive values of yaw represent the front of the platform moving to the right as viewed by an observer on top of the platform facing forward. The standard name platform_ yaw_ fore_ port should be used for data having the opposite sign convention. The standard name platform_ yaw should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CFSN0448 platform yaw rate "Yaw rate" is the rate of rotation about the local vertical axis. Yaw rate might not include changes to the "at rest" rotation of the platform with respect to the axis of rotation, which may change over time. The standard name platform_ yaw_ rate should be chosen only if the sign convention of the data is unknown. For cases where the sign convention of the yaw rate is known, a standard name of platform_ yaw_ rate_ fore_ starboard or platform_ yaw_ rate_ fore_ port should be chosen, as appropriate. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
G3HNH9ZX platform yaw rate fore port "Yaw rate" is the rate of rotation about the local vertical axis. Yaw rate might not include changes to the "at rest" rotation of the platform with respect to the axis of rotation, which may change over time. "Fore port" indicates that positive values of yaw rate represent the front of the platform moving to the left as viewed by an observer on top of the platform facing forward. The standard name platform_ yaw_ rate_ fore_ starboard should be used for data having the opposite sign convention. The standard name platform_ yaw_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
JQHD0LAJ platform yaw rate fore starboard "Yaw rate" is the rate of rotation about the local vertical axis. Yaw rate might not include changes to the "at rest" rotation of the platform with respect to the axis of rotation, which may change over time. "Fore starboard" indicates that positive values of yaw rate represent the front of the platform moving to the right as viewed by an observer on top of the platform facing forward. The standard name platform_ yaw_ rate_ fore_ port should be used for data having the opposite sign convention. The standard name platform_ yaw_ rate should be chosen only if the sign convention of the data is unknown. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
BBAH2117 platform zenith angle Platform zenith angle is the the angle between the line of sight to the platform and the local zenith at the observation target. This angle is measured starting from directly overhead and its range is from zero (directly overhead the observation target) to 180 degrees (directly below the observation target). Local zenith is a line perpendicular to the Earth's surface at a given location. "Observation target" means a location on the Earth defined by the sensor performing the observations. A standard name also exists for sensor_ zenith_ angle. For some viewing geometries the sensor and the platform cannot be assumed to be close enough to neglect the difference in calculated zenith angle. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
CFSN0449 potential energy content of atmosphere layer 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) 2006-09-26
CFSN0450 potential vorticity of atmosphere layer 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Atmosphere potential vorticity is the vertically averaged absolute vorticity of a layer of the atmosphere divided by the pressure difference from the bottom to the top of the layer. 2006-09-26
CFSN0451 potential vorticity of ocean layer 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Ocean potential vorticity is the vertically averaged absolute vorticity of a layer of the ocean divided by the thickness of the layer. 2006-09-26
CFSN0452 precipitation amount "Amount" means mass per unit area. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. 2018-08-06
CFSN0453 precipitation flux "Precipitation" in the earth's atmosphere means precipitation of water in all phases. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-08-06
QUW9UI9Z precipitation flux containing 17O In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The chemical formula for water is H2O. "O" means the element "oxygen" and "17O" is the stable isotope "oxygen-17". 2018-05-15
XCMTQHAC precipitation flux containing 18O In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The chemical formula for water is H2O. "O" means the element "oxygen" and "18O" is the stable isotope "oxygen-18". 2018-05-15
ZSJD1SUA precipitation flux containing single 2H In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The chemical formula for water is H2O. "H" means the element "hydrogen" and "2H" is the stable isotope "hydrogen-2", usually called "deuterium". The construction "X_ containing_ single_ Y" means the standard name refers to only that part of X composed of molecules containing a single atom of isotope Y. 2018-05-15
CFV11S6 precipitation flux onto canopy "Precipitation" in the earth's atmosphere means precipitation of water in all phases. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. Previously, the qualifier where_ type was used to specify that the quantity applies only to the part of the grid box of the named type. Names containing the where_ type qualifier are deprecated and newly created data should use the cell_ methods attribute to indicate the horizontal area to which the quantity applies. "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. 2018-07-10
CFSN0454 precipitation flux onto canopy where land DEPRECATED Unless indicated, a quantity is assumed to apply to the whole area of each horizontal grid box. The qualifier where_ type specifies instead that the quantity applies only to the part of the grid box of the named type. 'Canopy' means the plant or vegetation canopy. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2008-11-11
PLCZ2YQA predominant precipitation type at surface A variable with the standard name predominant_ precipitation_ type_ at_ surface contains strings which indicate the character of the predominant precipitating hydrometeor at a location or grid cell. These strings have not yet been standardised. Alternatively, the data variable may contain integers which can be translated to strings using flag_ values and flag_ meanings attributes. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The surface called "surface" means the lower boundary of the atmosphere. 2020-09-14
03TIMQNC pressure at effective cloud top defined by infrared radiation The "effective cloud top defined by infrared radiation" is (approximately) the geometric height above the surface that is one optical depth at infrared wavelengths (in the region of 11 micrometers) below the cloud top that would be detected by visible and lidar techniques. Reference: Minnis, P. et al 2011 CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data x2014; Part I: Algorithms IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4374-4400. doi: http://dx.doi.org/10.1109/TGRS.2011.2144601. 2016-05-17
3U841HOA probability distribution of wind from direction over time The construction "probability_ distribution_ of_ X_ over_ Z" means that the data variable is a number in the range 0.0-1.0 for each range of X, where X varies over Z. The data variable should have an axis for X. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. In meteorological reports, the direction of the wind vector is usually (but not always) given as the direction from which it is blowing ("wind_ from_ direction") (westerly, northerly, etc.). In other contexts, such as atmospheric modelling, it is often natural to give the direction in the usual manner of vectors as the heading or the direction to which it is blowing ("wind_ to_ direction") (eastward, southward, etc.). 2020-03-09
CFSN0455 product of air temperature and omega DEPRECATED 'product_ of_ X_ and_ Y' means X*Y. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 'omegaX' is used for brevity to mean 'lagrangian_ tendency_ of_ air_ pressure in standard names constructed as a combination of omega with some other quantity. 2019-06-17
CFSN0456 product of air temperature and specific humidity 'product_ of_ X_ and_ Y' means X*Y. 'specific' means per unit mass. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. Specific humidity is the mass fraction of water vapor in (moist) air. 2006-09-26
CFSN0457 product of eastward sea water velocity and salinity "product_ of_ X_ and_ Y" means X*Y. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term &amp;apos;salinity&amp;apos; is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and normally given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2012-04-27
CFSN0458 product of eastward sea water velocity and temperature 'product_ of_ X_ and_ Y' means X*Y. A velocity is a vector quantity. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). 2006-09-26
CFSN0459 product of eastward wind and air temperature 'product_ of_ X_ and_ Y' means X*Y. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0426 product of eastward wind and geopotential height 'product_ of_ X_ and_ Y' means X*Y. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. Geopotential height is the geopotential divided by the standard acceleration due to gravity. It is numerically similar to the altitude (or geometric height) and not to the quantity with standard name height, which is relative to the surface. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
2RG7DKDP product of eastward wind and lagrangian tendency of air pressure The phrase "product_ of_ X_ and_ Y" means X*Y. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) The phrase "tendency_ of_ X" means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the "material derivative" or "convective derivative". The Lagrangian tendency of air pressure, often called "omega", plays the role of the upward component of air velocity when air pressure is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of air pressure; downwards is positive. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2019-06-17
CFSN0427 product of eastward wind and northward wind 'product_ of_ X_ and_ Y' means X*Y. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0428 product of eastward wind and omega DEPRECATED 'product_ of_ X_ and_ Y' means X*Y. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 'omegaX' is used for brevity to mean 'lagrangian_ tendency_ of_ air_ pressure in standard names constructed as a combination of omega with some other quantity. 2019-06-17
CFSN0429 product of eastward wind and specific humidity 'product_ of_ X_ and_ Y' means X*Y. 'specific' means per unit mass. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Specific humidity is the mass fraction of water vapor in (moist) air. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0430 product of eastward wind and upward air velocity 'product_ of_ X_ and_ Y' means X*Y. A velocity is a vector quantity. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). 'Upward' indicates a vector component which is positive when directed upward (negative downward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) Upward air velocity is the vertical component of the 3D air velocity vector. 2006-09-26
CFSN0431 product of geopotential height and omega DEPRECATED 'product_ of_ X_ and_ Y' means X*Y. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. Geopotential height is the geopotential divided by the standard acceleration due to gravity. It is numerically similar to the altitude (or geometric height) and not to the quantity with standard name height, which is relative to the surface. 'omegaX' is used for brevity to mean 'lagrangian_ tendency_ of_ air_ pressure in standard names constructed as a combination of omega with some other quantity. 2019-06-17
0FBOP3UJ product of lagrangian tendency of air pressure and air temperature DEPRECATED The phrase "product_ of_ X_ and_ Y" means X*Y. The phrase "tendency_ of_ X" means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the "material derivative" or "convective derivative". The Lagrangian tendency of air pressure, often called "omega", plays the role of the upward component of air velocity when air pressure is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of air pressure; downwards is positive. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2019-06-17
I80MNTEI product of lagrangian tendency of air pressure and air temperature The phrase "product_ of_ X_ and_ Y" means X*Y. The phrase "tendency_ of_ X" means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the "material derivative" or "convective derivative". The Lagrangian tendency of air pressure, often called "omega", plays the role of the upward component of air velocity when air pressure is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of air pressure; downwards is positive. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2019-06-17
XYJRRYI8 product of lagrangian tendency of air pressure and geopotential height The phrase "product_ of_ X_ and_ Y" means X*Y. The phrase "tendency_ of_ X" means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the "material derivative" or "convective derivative". The Lagrangian tendency of air pressure, often called "omega", plays the role of the upward component of air velocity when air pressure is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of air pressure; downwards is positive. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. Geopotential height is the geopotential divided by the standard acceleration due to gravity. It is numerically similar to the altitude (or geometric height) and not to the quantity with standard name height, which is relative to the surface. 2019-06-17
2XPO4WGL product of lagrangian tendency of air pressure and specific humidity The phrase "product_ of_ X_ and_ Y" means X*Y. The phrase "tendency_ of_ X" means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the "material derivative" or "convective derivative". The Lagrangian tendency of air pressure, often called "omega", plays the role of the upward component of air velocity when air pressure is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of air pressure; downwards is positive. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. "Specific" means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 2019-06-17
7GJMS0CC product of lagrangian tendency of air pressure and specific humidity DEPRECATED The phrase "product_ of_ X_ and_ Y" means X*Y. The phrase "tendency_ of_ X" means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the "material derivative" or "convective derivative". The Lagrangian tendency of air pressure, often called "omega", plays the role of the upward component of air velocity when air pressure is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of air pressure; downwards is positive. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. "Specific" means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 2019-06-17
CFSN0432 product of northward sea water velocity and salinity "product_ of_ X_ and_ Y" means X*Y. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term &amp;apos;salinity&amp;apos; is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and normally given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2012-04-27
CFSN0433 product of northward sea water velocity and temperature 'product_ of_ X_ and_ Y' means X*Y. A velocity is a vector quantity. 'Northward' indicates a vector component which is positive when directed northward (negative southward). 2006-09-26
CFSN0434 product of northward wind and air temperature 'product_ of_ X_ and_ Y' means X*Y. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0435 product of northward wind and geopotential height 'product_ of_ X_ and_ Y' means X*Y. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. Geopotential height is the geopotential divided by the standard acceleration due to gravity. It is numerically similar to the altitude (or geometric height) and not to the quantity with standard name height, which is relative to the surface. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
55KUDP8X product of northward wind and lagrangian tendency of air pressure The phrase "product_ of_ X_ and_ Y" means X*Y. "Northward" indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) The phrase "tendency_ of_ X" means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the "material derivative" or "convective derivative". The Lagrangian tendency of air pressure, often called "omega", plays the role of the upward component of air velocity when air pressure is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of air pressure; downwards is positive. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2019-06-17
CFSN0436 product of northward wind and omega DEPRECATED 'product_ of_ X_ and_ Y' means X*Y. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 'omegaX' is used for brevity to mean 'lagrangian_ tendency_ of_ air_ pressure in standard names constructed as a combination of omega with some other quantity. 2019-06-17
CFSN0437 product of northward wind and specific humdity DEPRECATED 'product_ of_ X_ and_ Y' means X*Y. 'specific' means per unit mass. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2010-03-11
CFSN0438 product of northward wind and specific humidity 'product_ of_ X_ and_ Y' means X*Y. 'specific' means per unit mass. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Specific humidity is the mass fraction of water vapor in (moist) air. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0396 product of northward wind and upward air velocity 'product_ of_ X_ and_ Y' means X*Y. A velocity is a vector quantity. 'Northward' indicates a vector component which is positive when directed northward (negative southward). 'Upward' indicates a vector component which is positive when directed upward (negative downward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) Upward air velocity is the vertical component of the 3D air velocity vector. 2006-09-26
CFSN0397 product of omega and air temperature DEPRECATED 'product_ of_ X_ and_ Y' means X*Y. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 'omegaX' is used for brevity to mean 'lagrangian_ tendency_ of_ air_ pressure in standard names constructed as a combination of omega with some other quantity. 2019-06-17
CFSN0398 product of omega and specific humidity DEPRECATED 'product_ of_ X_ and_ Y' means X*Y. 'specific' means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 'omegaX' is used for brevity to mean 'lagrangian_ tendency_ of_ air_ pressure in standard names constructed as a combination of omega with some other quantity. 2019-06-17
CFSN0399 product of specific humidity and omega DEPRECATED 'product_ of_ X_ and_ Y' means X*Y. 'specific' means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 'omegaX' is used for brevity to mean 'lagrangian_ tendency_ of_ air_ pressure in standard names constructed as a combination of omega with some other quantity. 2019-06-17
CFSN0400 product of upward air velocity and air temperature 'product_ of_ X_ and_ Y' means X*Y. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. A velocity is a vector quantity. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Upward air velocity is the vertical component of the 3D air velocity vector. 2006-09-26
CFSN0401 product of upward air velocity and specific humidity 'product_ of_ X_ and_ Y' means X*Y. 'specific' means per unit mass. A velocity is a vector quantity. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Specific humidity is the mass fraction of water vapor in (moist) air. Upward air velocity is the vertical component of the 3D air velocity vector. 2006-09-26
QU34OXEG projection x angular coordinate "x" indicates a vector component along the grid x-axis, when this is not true longitude, positive with increasing x. Angular projection coordinates are angular distances in the x- and y-directions on a plane onto which the surface of the Earth has been projected according to a map projection. The relationship between the angular projection coordinates and latitude and longitude is described by the grid_ mapping. 2020-03-09
CFSN0402 projection x coordinate 'x' indicates a vector component along the grid x-axis, when this is not true longitude, positive with increasing x. Projection coordinates are distances in the x- and y-directions on a plane onto which the surface of the Earth has been projected according to a map projection. The relationship between the projection coordinates and latitude and longitude is described by the grid_ mapping. 2006-09-26
9GAS2Y0C projection y angular coordinate "y" indicates a vector component along the grid y-axis, when this is not true latitude, positive with increasing y. Angular projection coordinates are angular distances in the x- and y-directions on a plane onto which the surface of the Earth has been projected according to a map projection. The relationship between the angular projection coordinates and latitude and longitude is described by the grid_ mapping. 2020-03-09
CFSN0403 projection y coordinate 'y' indicates a vector component along the grid y-axis, when this is not true latitude, positive with increasing y. Projection coordinates are distances in the x- and y-directions on a plane onto which the surface of the Earth has been projected according to a map projection. The relationship between the projection coordinates and latitude and longitude is described by the grid_ mapping. 2006-09-26
SXAR4CDU proportion of acceptable signal returns from acoustic instrument in sea water The phrase "proportion_ of_ acceptable_ signal_ returns" means the fraction of a collection (ensemble) of returned signal transmissions that have passed a set of automatic quality control criteria. For an ADCP (acoustic doppler current profiler) the rejection criteria include low correlation, large error velocity and fish detection. The dimensionless proportion is often but not exclusively expressed as a percentage, when it is referred to as "percent good". 2020-08-03
CFSN0404 pseudo equivalent potential temperature DEPRECATED Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. 2020-03-09
CFSN0405 pseudo equivalent temperature DEPRECATED 2020-03-09
0O77RYX8 quality flag A variable with the standard name of quality_ flag contains an indication of assessed quality information of another data variable. The linkage between the data variable and the variable or variables with the standard_ name of quality_ flag is achieved using the ancillary_ variables attribute. 2019-09-17
CFV13N15 radial sea water velocity away from instrument A velocity is a vector quantity. "Radial velocity away from instrument" means the component of the velocity along the line of sight of the instrument where positive implies movement away from the instrument (i.e. outward). The "instrument" (examples are radar and lidar) is the device used to make an observation. A standard name referring to radial velocity "toward_ instrument" should be used for a data variable having the opposite sign convention. 2019-06-17
IY26BDZR radial sea water velocity toward instrument A velocity is a vector quantity. "Radial velocity toward instrument" means the component of the velocity along the line of sight of the instrument where positive implies movement toward the instrument (i.e. inward). The "instrument" (examples are radar and lidar) is the device used to make an observation. A standard name referring to radial velocity "away_ from_ instrument" should be used for a data variable having the opposite sign convention. 2019-06-17
CFSN0406 radial velocity of scatterers away from instrument A velocity is a vector quantity. "Radial velocity away from instrument" means the component of the velocity along the line of sight of the instrument where positive implies movement away from the instrument (i.e. outward). The "instrument" (examples are radar and lidar) is the device used to make the observation. The "scatterers" are what causes the transmitted signal to be returned to the instrument (examples are aerosols, hydrometeors and refractive index irregularities), of whatever kind the instrument detects. A standard name referring to radial velocity "toward_ instrument" should be used for a data variable having the opposite sign convention. 2019-06-17
MZTZO417 radial velocity of scatterers toward instrument A velocity is a vector quantity. "Radial velocity toward instrument" means the component of the velocity along the line of sight of the instrument where positive implies movement toward the instrument (i.e. inward). The "instrument" (examples are radar and lidar) is the device used to make the observation. The "scatterers" are what causes the transmitted signal to be returned to the instrument (examples are aerosols, hydrometeors and refractive index irregularities), of whatever kind the instrument detects. A standard name referring to radial velocity "away_ from_ instrument" should be used for a data variable having the opposite sign convention. 2019-06-17
CF12N574 radiation frequency Frequency is the number of oscillations of a wave per unit time. The radiation frequency can refer to any electromagnetic wave, such as light, heat radiation and radio waves. 2009-07-06
CFSN0407 radiation wavelength The radiation wavelength can refer to any electromagnetic wave, such as light, heat radiation and radio waves. 2006-09-26
8WQBU9D0 radio signal roundtrip travel time in air The quantity with standard name radio_ signal_ roundtrip_ travel_ time_ in_ air is the time taken for an electromagnetic signal to propagate from an emitting instrument such as a radar or lidar to a reflecting volume and back again. The signal returned to the instrument is the sum of all scattering from a given volume of air regardless of mechanism (examples are scattering by aerosols, hydrometeors and refractive index irregularities, or whatever else the instrument detects). 2023-02-06
ASK3XJJZ radioactivity concentration in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. 2018-02-12
VKQBRZ9G radioactivity concentration of 101Mo in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Mo" means the element "molybdenum" and "101Mo" is the isotope "molybdenum-101" with a half-life of 1.01e-02 days. 2018-02-12
8VP69HP8 radioactivity concentration of 101Tc in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "101Tc" is the isotope "technetium-101" with a half-life of 9.86e-03 days. 2018-02-12
KZSYKF2D radioactivity concentration of 102Mo in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Mo" means the element "molybdenum" and "102Mo" is the isotope "molybdenum-102" with a half-life of 7.71e-03 days. 2018-02-12
XC8UD6PX radioactivity concentration of 102Tc in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "102Tc" is the isotope "technetium-102" with a half-life of 6.12e-05 days. 2018-02-12
FSFO1AH5 radioactivity concentration of 102mTc in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "102mTc" is the metastable state of the isotope "technetium-102" with a half-life of 2.98e-03 days. 2018-02-12
QU91NLO7 radioactivity concentration of 103Ru in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ru" means the element "ruthenium" and "103Ru" is the isotope "ruthenium-103" with a half-life of 3.95e+01 days. 2018-02-12
PUHIKNHG radioactivity concentration of 103mRh in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "103mRh" is the metastable state of the isotope "rhodium-103" with a half-life of 3.89e-02 days. 2018-02-12
GGDN0D5K radioactivity concentration of 104Tc in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "104Tc" is the isotope "technetium-104" with a half-life of 1.25e-02 days. 2018-02-12
TGTGF57O radioactivity concentration of 105Rh in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "105Rh" is the isotope "rhodium-105" with a half-life of 1.48e+00 days. 2018-02-12
US6VI1ET radioactivity concentration of 105Ru in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ru" means the element "ruthenium" and "105Ru" is the isotope "ruthenium-105" with a half-life of 1.85e-01 days. 2018-02-12
4TWU1TET radioactivity concentration of 105mRh in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "105mRh" is the metastable state of the isotope "rhodium-105" with a half-life of 4.41e-04 days. 2018-02-12
JV4KKW4W radioactivity concentration of 106Rh in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "106Rh" is the isotope "rhodium-106" with a half-life of 3.46e-04 days. 2018-02-12
JTCIIH81 radioactivity concentration of 106Ru in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ru" means the element "ruthenium" and "106Ru" is the isotope "ruthenium-106" with a half-life of 3.66e+02 days. 2018-02-12
X9Y99Q3K radioactivity concentration of 106mRh in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "106mRh" is the metastable state of the isotope "rhodium-106" with a half-life of 9.09e-02 days. 2018-02-12
Z883QIA6 radioactivity concentration of 107Pd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "107Pd" is the isotope "palladium-107" with a half-life of 2.37e+09 days. 2018-02-12
VRAN801Y radioactivity concentration of 107Rh in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rh" means the element "rhodium" and "107Rh" is the isotope "rhodium-107" with a half-life of 1.51e-02 days. 2018-02-12
OHAYRBX1 radioactivity concentration of 107mPd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "107mPd" is the metastable state of the isotope "palladium-107" with a half-life of 2.47e-04 days. 2018-02-12
V3F70AAC radioactivity concentration of 109Pd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "109Pd" is the isotope "palladium-109" with a half-life of 5.61e-01 days. 2018-02-12
NLFOFQF4 radioactivity concentration of 109mAg in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "109mAg" is the metastable state of the isotope "silver-109" with a half-life of 4.58e-04 days. 2018-02-12
11HZCKVD radioactivity concentration of 110mAg in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "110mAg" is the metastable state of the isotope "silver-110" with a half-life of 2.70e+02 days. 2018-02-12
PEZG1L1O radioactivity concentration of 111Ag in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "111Ag" is the isotope "silver-111" with a half-life of 7.50e+00 days. 2018-02-12
U62QVN09 radioactivity concentration of 111Pd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "111Pd" is the isotope "palladium-111" with a half-life of 1.53e-02 days. 2018-02-12
751H85B3 radioactivity concentration of 111mAg in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "111mAg" is the metastable state of the isotope "silver-111" with a half-life of 8.56e-04 days. 2018-02-12
Z8C3JGXG radioactivity concentration of 111mCd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "111mCd" is the metastable state of the isotope "cadmium-111" with a half-life of 3.39e-02 days. 2018-02-12
MBSIZL7C radioactivity concentration of 111mPd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "111mPd" is the metastable state of the isotope "palladium-111" with a half-life of 2.29e-01 days. 2018-02-12
5O2I8TX2 radioactivity concentration of 112Ag in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "112Ag" is the isotope "silver-112" with a half-life of 1.30e-01 days. 2018-02-12
CID3G78W radioactivity concentration of 112Pd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pd" means the element "palladium" and "112Pd" is the isotope "palladium-112" with a half-life of 8.37e-01 days. 2018-02-12
RZWW169R radioactivity concentration of 113Ag in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "113Ag" is the isotope "silver-113" with a half-life of 2.21e-01 days. 2018-02-12
T64L7RG2 radioactivity concentration of 113Cd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "113Cd" is the isotope "cadmium-113" with a half-life of 3.29e+18 days. 2018-02-12
N5HDC6DX radioactivity concentration of 113mAg in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "113mAg" is the metastable state of the isotope "silver-113" with a half-life of 7.64e-04 days. 2018-02-12
KZ46G8VT radioactivity concentration of 113mCd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "113mCd" is the metastable state of the isotope "cadmium-113" with a half-life of 5.31e+03 days. 2018-02-12
FPNGM6MF radioactivity concentration of 113mIn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "113mIn" is the metastable state of the isotope "indium-113" with a half-life of 6.92e-02 days. 2018-02-12
YUR5UUHC radioactivity concentration of 115Ag in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "115Ag" is the isotope "silver-115" with a half-life of 1.46e-02 days. 2018-02-12
WUA4S6BY radioactivity concentration of 115Cd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "115Cd" is the isotope "cadmium-115" with a half-life of 2.23e+00 days. 2018-02-12
GCSZJIHA radioactivity concentration of 115In in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "115In" is the isotope "indium-115" with a half-life of 1.86e+18 days. 2018-02-12
VSVHP6C2 radioactivity concentration of 115mAg in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ag" means the element "silver" and "115mAg" is the metastable state of the isotope "silver-115" with a half-life of 1.97e-04 days. 2018-02-12
16UT4KCV radioactivity concentration of 115mCd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "115mCd" is the metastable state of the isotope "cadmium-115" with a half-life of 4.46e+01 days. 2018-02-12
S8ZSH0LN radioactivity concentration of 115mIn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "115mIn" is the metastable state of the isotope "indium-115" with a half-life of 1.87e-01 days. 2018-02-12
3PF18RSU radioactivity concentration of 116In in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "116In" is the isotope "indium-116" with a half-life of 1.64e-04 days. 2018-02-12
OU34YZR9 radioactivity concentration of 116mIn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "116mIn" is the metastable state of the isotope "indium-116" with a half-life of 3.77e-02 days. 2018-02-12
MF0NXXIX radioactivity concentration of 117Cd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "117Cd" is the isotope "cadmium-117" with a half-life of 1.08e-01 days. 2018-02-12
D0CRZHK9 radioactivity concentration of 117In in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "117In" is the isotope "indium-117" with a half-life of 3.05e-02 days. 2018-02-12
KBSZD6SB radioactivity concentration of 117mCd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "117mCd" is the metastable state of the isotope "cadmium-117" with a half-life of 1.42e-01 days. 2018-02-12
0YFCOD6R radioactivity concentration of 117mIn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "117mIn" is the metastable state of the isotope "indium-117" with a half-life of 8.08e-02 days. 2018-02-12
R2XXNW8P radioactivity concentration of 117mSn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "117mSn" is the metastable state of the isotope "tin-117" with a half-life of 1.40e+01 days. 2018-02-12
H25FZCK1 radioactivity concentration of 118Cd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cd" means the element "cadmium" and "118Cd" is the isotope "cadmium-118" with a half-life of 3.49e-02 days. 2018-02-12
717J48JP radioactivity concentration of 118In in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "118In" is the isotope "indium-118" with a half-life of 5.77e-05 days. 2018-02-12
XKX2PSHJ radioactivity concentration of 118mIn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "118mIn" is the metastable state of the isotope "indium-118" with a half-life of 3.05e-03 days. 2018-02-12
PS6G195K radioactivity concentration of 119In in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "119In" is the isotope "indium-119" with a half-life of 1.74e-03 days. 2018-02-12
A15OTTRI radioactivity concentration of 119mIn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "In" means the element "indium" and "119mIn" is the metastable state of the isotope "indium-119" with a half-life of 1.25e-02 days. 2018-02-12
RDOXULFR radioactivity concentration of 119mSn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "119mSn" is the metastable state of the isotope "tin-119" with a half-life of 2.45e+02 days. 2018-02-12
8RAJNMMQ radioactivity concentration of 11C in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "C" means the element "carbon" and "11C" is the isotope "carbon-11" with a half-life of 1.41e-02 days. 2018-02-12
52LGTG1X radioactivity concentration of 121Sn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "121Sn" is the isotope "tin-121" with a half-life of 1.12e+00 days. 2018-02-12
M0SF6BRH radioactivity concentration of 121mSn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "121mSn" is the metastable state of the isotope "tin-121" with a half-life of 1.82e+04 days. 2018-02-12
7GKQDKJM radioactivity concentration of 123Sn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "123Sn" is the isotope "tin-123" with a half-life of 1.29e+02 days. 2018-02-12
0IIDGDBG radioactivity concentration of 123mSn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "123mSn" is the metastable state of the isotope "tin-123" with a half-life of 2.78e-02 days. 2018-02-12
B2SE3FXX radioactivity concentration of 124Sb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "124Sb" is the isotope "antimony-124" with a half-life of 6.03e+01 days. 2018-02-12
0A787MSM radioactivity concentration of 124mSb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "124mSb" is the metastable state of the isotope "antimony-124" with a half-life of 1.41e-02 days. 2018-02-12
0W5S023H radioactivity concentration of 125Sb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "125Sb" is the isotope "antimony-125" with a half-life of 9.97e+02 days. 2018-02-12
GEUHS1W4 radioactivity concentration of 125Sn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "125Sn" is the isotope "tin-125" with a half-life of 9.65e+00 days. 2018-02-12
GQK3MVKN radioactivity concentration of 125mTe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "125mTe" is the metastable state of the isotope "tellurium-125" with a half-life of 5.81e+01 days. 2018-02-12
QIG0HK5L radioactivity concentration of 126Sb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "126Sb" is the isotope "antimony-126" with a half-life of 1.24e+01 days. 2018-02-12
PGFUZ9AW radioactivity concentration of 126Sn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "126Sn" is the isotope "tin-126" with a half-life of 3.65e+07 days. 2018-02-12
GHAQ6VM3 radioactivity concentration of 126mSb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "126mSb" is the metastable state of the isotope "antimony-126" with a half-life of 1.32e-02 days. 2018-02-12
X24Z4BI1 radioactivity concentration of 127Sb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "127Sb" is the isotope "antimony-127" with a half-life of 3.80e+00 days. 2018-02-12
I1A20L1S radioactivity concentration of 127Sn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "127Sn" is the isotope "tin-127" with a half-life of 8.84e-02 days. 2018-02-12
LKOOYMTP radioactivity concentration of 127Te in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "127Te" is the isotope "tellurium-127" with a half-life of 3.91e-01 days. 2018-02-12
VA74VJG5 radioactivity concentration of 127mTe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "127mTe" is the metastable state of the isotope "tellurium-127" with a half-life of 1.09e+02 days. 2018-02-12
QE21KIN6 radioactivity concentration of 128Sb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "128Sb" is the isotope "antimony-128" with a half-life of 3.75e-01 days. 2018-02-12
TSAYF33R radioactivity concentration of 128Sn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "128Sn" is the isotope "tin-128" with a half-life of 4.09e-02 days. 2018-02-12
A5P9XBT8 radioactivity concentration of 128mSb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "128mSb" is the metastable state of the isotope "antimony-128" with a half-life of 7.23e-03 days. 2018-02-12
O637RGWU radioactivity concentration of 129I in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "129I" is the isotope "iodine-129" with a half-life of 5.81e+09 days. 2018-02-12
74B5NJVV radioactivity concentration of 129Sb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "129Sb" is the isotope "antimony-129" with a half-life of 1.81e-01 days. 2018-02-12
N6VTMQ9A radioactivity concentration of 129Te in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "129Te" is the isotope "tellurium-129" with a half-life of 4.86e-02 days. 2018-02-12
AOQOKJ8R radioactivity concentration of 129mTe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "129mTe" is the metastable state of the isotope "tellurium-129" with a half-life of 3.34e+01 days. 2018-02-12
6A0Z82RM radioactivity concentration of 129mXe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "129mXe" is the metastable state of the isotope "xenon-129" with a half-life of 8.02e+00 days. 2018-02-12
7CIK0TFI radioactivity concentration of 130I in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "130I" is the isotope "iodine-130" with a half-life of 5.18e-01 days. 2018-02-12
8S4V4WHI radioactivity concentration of 130Sb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "130Sb" is the isotope "antimony-130" with a half-life of 2.57e-02 days. 2018-02-12
IZNL5VNA radioactivity concentration of 130Sn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sn" means the element "tin" and "130Sn" is the isotope "tin-130" with a half-life of 2.57e-03 days. 2018-02-12
5V9944H1 radioactivity concentration of 130mI in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "130mI" is the metastable state of the isotope "iodine-130" with a half-life of 6.17e-03 days. 2018-02-12
17YDB182 radioactivity concentration of 130mSb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "130mSb" is the metastable state of the isotope "antimony-130" with a half-life of 4.58e-03 days. 2018-02-12
F2R0BSKD radioactivity concentration of 131I in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "131I" is the isotope "iodine-131" with a half-life of 8.07e+00 days. 2018-02-12
3NV1LAFR radioactivity concentration of 131Sb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sb" means the element "antimony" and "131Sb" is the isotope "antimony-131" with a half-life of 1.60e-02 days. 2018-02-12
8N4KDJFO radioactivity concentration of 131Te in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "131Te" is the isotope "tellurium-131" with a half-life of 1.74e-02 days. 2018-02-12
CWYXLEQ0 radioactivity concentration of 131mTe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "131mTe" is the metastable state of the isotope "tellurium-131" with a half-life of 1.25e+00 days. 2018-02-12
YGE1LREE radioactivity concentration of 131mXe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "131mXe" is the metastable state of the isotope "xenon-131" with a half-life of 1.18e+01 days. 2018-02-12
KJVBTQ7N radioactivity concentration of 132I in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "132I" is the isotope "iodine-132" with a half-life of 9.60e-02 days. 2018-02-12
LXDNXW01 radioactivity concentration of 132Te in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "132Te" is the isotope "tellurium-132" with a half-life of 3.25e+00 days. 2018-02-12
AZUBYV76 radioactivity concentration of 133I in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "133I" is the isotope "iodine-133" with a half-life of 8.71e-01 days. 2018-02-12
35GZZA6A radioactivity concentration of 133Te in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "133Te" is the isotope "tellurium-133" with a half-life of 8.68e-03 days. 2018-02-12
K55W5V6H radioactivity concentration of 133Xe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "133Xe" is the isotope "xenon-133" with a half-life of 5.28e+00 days. 2018-02-12
ADPEI7N1 radioactivity concentration of 133mI in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "133mI" is the metastable state of the isotope "iodine-133" with a half-life of 1.04e-04 days. 2018-02-12
GE16VS38 radioactivity concentration of 133mTe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "133mTe" is the metastable state of the isotope "tellurium-133" with a half-life of 3.84e-02 days. 2018-02-12
WFLWEE4I radioactivity concentration of 133mXe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "133mXe" is the metastable state of the isotope "xenon-133" with a half-life of 2.26e+00 days. 2018-02-12
YSDRHEFB radioactivity concentration of 134Cs in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "134Cs" is the isotope "cesium-134" with a half-life of 7.50e+02 days. 2018-02-12
7LZQHVWW radioactivity concentration of 134I in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "134I" is the isotope "iodine-134" with a half-life of 3.61e-02 days. 2018-02-12
QX5D34UU radioactivity concentration of 134Te in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Te" means the element "tellurium" and "134Te" is the isotope "tellurium-134" with a half-life of 2.92e-02 days. 2018-02-12
AWJTWXU6 radioactivity concentration of 134mCs in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "134mCs" is the metastable state of the isotope "cesium-134" with a half-life of 1.21e-01 days. 2018-02-12
388CZE5O radioactivity concentration of 134mI in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "134mI" is the metastable state of the isotope "iodine-134" with a half-life of 2.50e-03 days. 2018-02-12
2ZH3B48P radioactivity concentration of 134mXe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "134mXe" is the metastable state of the isotope "xenon-134" with a half-life of 3.36e-06 days. 2018-02-12
HQX6P84Q radioactivity concentration of 135Cs in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "135Cs" is the isotope "cesium-135" with a half-life of 8.39e+08 days. 2018-02-12
U8UBHA8D radioactivity concentration of 135I in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "I" means the element "iodine" and "135I" is the isotope "iodine-135" with a half-life of 2.79e-01 days. 2018-02-12
JB5OHP4D radioactivity concentration of 135Xe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "135Xe" is the isotope "xenon-135" with a half-life of 3.82e-01 days. 2018-02-12
4Z6EG2NO radioactivity concentration of 135mBa in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ba" means the element "barium" and "135mBa" is the metastable state of the isotope "barium-135" with a half-life of 1.20e+00 days. 2018-02-12
LZQWGJU1 radioactivity concentration of 135mCs in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "135mCs" is the metastable state of the isotope "cesium-135" with a half-life of 3.68e-02 days. 2018-02-12
S8DX97QX radioactivity concentration of 135mXe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "135mXe" is the metastable state of the isotope "xenon-135" with a half-life of 1.08e-02 days. 2018-02-12
3SBYLSM5 radioactivity concentration of 136Cs in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "136Cs" is the isotope "cesium-136" with a half-life of 1.30e+01 days. 2018-02-12
2AUPDSFH radioactivity concentration of 137Cs in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "137Cs" is the isotope "cesium-137" with a half-life of 1.10e+04 days. 2018-02-12
BNDR0RHQ radioactivity concentration of 137Xe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "137Xe" is the isotope "xenon-137" with a half-life of 2.71e-03 days. 2018-02-12
LIQFVQYM radioactivity concentration of 137mBa in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ba" means the element "barium" and "137mBa" is the metastable state of the isotope "barium-137" with a half-life of 1.77e-03 days. 2018-02-12
532TBMZ9 radioactivity concentration of 138Cs in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cs" means the element "cesium" and "138Cs" is the isotope "cesium-138" with a half-life of 2.23e-02 days. 2018-02-12
HS7IKYDZ radioactivity concentration of 138Xe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Xe" means the element "xenon" and "138Xe" is the isotope "xenon-138" with a half-life of 9.84e-03 days. 2018-02-12
ISR7KYC8 radioactivity concentration of 139Ba in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ba" means the element "barium" and "139Ba" is the isotope "barium-139" with a half-life of 5.77e-02 days. 2018-02-12
2H815SYK radioactivity concentration of 13N in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "N" means the element "nitrogen" and "13N" is the isotope "nitrogen-13" with a half-life of 6.92e-03 days. 2018-02-12
NB19OEWL radioactivity concentration of 140Ba in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ba" means the element "barium" and "140Ba" is the isotope "barium-140" with a half-life of 1.28e+01 days. 2018-02-12
MUNV651X radioactivity concentration of 140La in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "La" means the element "lanthanum" and "140La" is the isotope "lanthanum-140" with a half-life of 1.76e+00 days. 2018-02-12
S4XJLLQD radioactivity concentration of 141Ce in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ce" means the element "cerium" and "141Ce" is the isotope "cerium-141" with a half-life of 3.30e+01 days. 2018-02-12
J1DE5RG2 radioactivity concentration of 141La in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "La" means the element "lanthanum" and "141La" is the isotope "lanthanum-141" with a half-life of 1.61e-01 days. 2018-02-12
4AHLSQSM radioactivity concentration of 142Ce in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ce" means the element "cerium" and "142Ce" is the isotope "cerium-142" with a half-life of 1.82e+19 days. 2018-02-12
VHPE4HO5 radioactivity concentration of 142La in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "La" means the element "lanthanum" and "142La" is the isotope "lanthanum-142" with a half-life of 6.42e-02 days. 2018-02-12
7VYRN0BJ radioactivity concentration of 142Pr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "142Pr" is the isotope "praseodymium-142" with a half-life of 7.94e-01 days. 2018-02-12
2PW4TNX6 radioactivity concentration of 142mPr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "142mPr" is the metastable state of the isotope "praseodymium-142" with a half-life of 1.01e-02 days. 2018-02-12
TZVGZL6S radioactivity concentration of 143Ce in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ce" means the element "cerium" and "143Ce" is the isotope "cerium-143" with a half-life of 1.37e+00 days. 2018-02-12
2EYUPG1C radioactivity concentration of 143La in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "La" means the element "lanthanum" and "143La" is the isotope "lanthanum-143" with a half-life of 9.72e-03 days. 2018-02-12
B3FH1TYA radioactivity concentration of 143Pr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "143Pr" is the isotope "praseodymium-143" with a half-life of 1.36e+01 days. 2018-02-12
TDOA5M8A radioactivity concentration of 144Ce in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ce" means the element "cerium" and "144Ce" is the isotope "cerium-144" with a half-life of 2.84e+02 days. 2018-02-12
0KELEGE9 radioactivity concentration of 144Nd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nd" means the element "neodymium" and "144Nd" is the isotope "neodymium-144" with a half-life of 7.64e+17 days. 2018-02-12
05T0D2U6 radioactivity concentration of 144Pr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "144Pr" is the isotope "praseodymium-144" with a half-life of 1.20e-02 days. 2018-02-12
7J4ONXGW radioactivity concentration of 144mPr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "144mPr" is the metastable state of the isotope "praseodymium-144" with a half-life of 4.98e-03 days. 2018-02-12
CIT63QB5 radioactivity concentration of 145Pr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "145Pr" is the isotope "praseodymium-145" with a half-life of 2.49e-01 days. 2018-02-12
PQU95E0P radioactivity concentration of 146Ce in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ce" means the element "cerium" and "146Ce" is the isotope "cerium-146" with a half-life of 9.86e-03 days. 2018-02-12
BN8WDQKN radioactivity concentration of 146Pr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "146Pr" is the isotope "praseodymium-146" with a half-life of 1.68e-02 days. 2018-02-12
QJGMII9M radioactivity concentration of 147Nd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nd" means the element "neodymium" and "147Nd" is the isotope "neodymium-147" with a half-life of 1.10e+01 days. 2018-02-12
B71GW7PK radioactivity concentration of 147Pm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "147Pm" is the isotope "promethium-147" with a half-life of 9.57e+02 days. 2018-02-12
QVP9Y1X7 radioactivity concentration of 147Pr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pr" means the element "praseodymium" and "147Pr" is the isotope "praseodymium-147" with a half-life of 8.33e-03 days. 2018-02-12
A3OH1HZ4 radioactivity concentration of 147Sm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "147Sm" is the isotope "samarium-147" with a half-life of 3.91e+13 days. 2018-02-12
2GH3EG3F radioactivity concentration of 148Pm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "148Pm" is the isotope "promethium-148" with a half-life of 5.38e+00 days. 2018-02-12
UEKAIO2G radioactivity concentration of 148Sm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "148Sm" is the isotope "samarium-148" with a half-life of 2.92e+18 days. 2018-02-12
T6UW68QE radioactivity concentration of 148mPm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "148mPm" is the metastable state of the isotope "promethium-148" with a half-life of 4.14e+01 days. 2018-02-12
4H08W26M radioactivity concentration of 149Nd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nd" means the element "neodymium" and "149Nd" is the isotope "neodymium-149" with a half-life of 7.23e-02 days. 2018-02-12
P6CXH2DE radioactivity concentration of 149Pm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "149Pm" is the isotope "promethium-149" with a half-life of 2.21e+00 days. 2018-02-12
GO7NJBSV radioactivity concentration of 149Sm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "149Sm" is the isotope "samarium-149" with a half-life of 3.65e+18 days. 2018-02-12
PTKPZ95L radioactivity concentration of 150Pm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "150Pm" is the isotope "promethium-150" with a half-life of 1.12e-01 days. 2018-02-12
2YAX42C6 radioactivity concentration of 151Nd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nd" means the element "neodymium" and "151Nd" is the isotope "neodymium-151" with a half-life of 8.61e-03 days. 2018-02-12
8QRKVDN5 radioactivity concentration of 151Pm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "151Pm" is the isotope "promethium-151" with a half-life of 1.18e+00 days. 2018-02-12
VO8C85F9 radioactivity concentration of 151Sm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "151Sm" is the isotope "samarium-151" with a half-life of 3.40e+04 days. 2018-02-12
5UF9D0I9 radioactivity concentration of 152Nd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nd" means the element "neodymium" and "152Nd" is the isotope "neodymium-152" with a half-life of 7.94e-03 days. 2018-02-12
7A8MIC4T radioactivity concentration of 152Pm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "152Pm" is the isotope "promethium-152" with a half-life of 2.84e-03 days. 2018-02-12
99X0NGKG radioactivity concentration of 152mPm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pm" means the element "promethium" and "152mPm" is the metastable state of the isotope "promethium-152" with a half-life of 1.25e-02 days. 2018-02-12
ETALD68R radioactivity concentration of 153Sm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "153Sm" is the isotope "samarium-153" with a half-life of 1.94e+00 days. 2018-02-12
1MR3S3D9 radioactivity concentration of 154Eu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "154Eu" is the isotope "europium-154" with a half-life of 3.13e+03 days. 2018-02-12
3AHMBQ1P radioactivity concentration of 155Eu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "155Eu" is the isotope "europium-155" with a half-life of 1.75e+03 days. 2018-02-12
DYDDS3SD radioactivity concentration of 155Sm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "155Sm" is the isotope "samarium-155" with a half-life of 1.54e-02 days. 2018-02-12
SHL2LO1H radioactivity concentration of 156Eu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "156Eu" is the isotope "europium-156" with a half-life of 1.52e+01 days. 2018-02-12
05HWGYCT radioactivity concentration of 156Sm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sm" means the element "samarium" and "156Sm" is the isotope "samarium-156" with a half-life of 3.91e-01 days. 2018-02-12
BYPDBX52 radioactivity concentration of 157Eu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "157Eu" is the isotope "europium-157" with a half-life of 6.32e-01 days. 2018-02-12
IEI182A2 radioactivity concentration of 158Eu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "158Eu" is the isotope "europium-158" with a half-life of 3.18e-02 days. 2018-02-12
8YLPK1XN radioactivity concentration of 159Eu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Eu" means the element "europium" and "159Eu" is the isotope "europium-159" with a half-life of 1.26e-02 days. 2018-02-12
ABLXNYGX radioactivity concentration of 159Gd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Gd" means the element "gadolinium" and "159Gd" is the isotope "gadolinium-159" with a half-life of 7.71e-01 days. 2018-02-12
XFHIHPTN radioactivity concentration of 15O in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "O" means the element "oxygen" and "15O" is the isotope "oxygen-15" with a half-life of 1.41e-03 days. 2018-02-12
NZS8XC26 radioactivity concentration of 160Tb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tb" means the element "terbium" and "160Tb" is the isotope "terbium-160" with a half-life of 7.23e+01 days. 2018-02-12
98JGWI26 radioactivity concentration of 161Tb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tb" means the element "terbium" and "161Tb" is the isotope "terbium-161" with a half-life of 6.92e+00 days. 2018-02-12
04GMJ115 radioactivity concentration of 162Gd in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Gd" means the element "gadolinium" and "162Gd" is the isotope "gadolinium-162" with a half-life of 6.92e-03 days. 2018-02-12
W2EFPNM2 radioactivity concentration of 162Tb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tb" means the element "terbium" and "162Tb" is the isotope "terbium-162" with a half-life of 5.18e-03 days. 2018-02-12
CYH3A3PE radioactivity concentration of 162mTb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tb" means the element "terbium" and "162mTb" is the metastable state of the isotope "terbium-162" with a half-life of 9.30e-02 days. 2018-02-12
KQNCUYNR radioactivity concentration of 163Tb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tb" means the element "terbium" and "163Tb" is the isotope "terbium-163" with a half-life of 1.36e-02 days. 2018-02-12
TOHB45Z6 radioactivity concentration of 165Dy in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Dy" means the element "dysprosium" and "165Dy" is the isotope "dysprosium-165" with a half-life of 9.80e-02 days. 2018-02-12
IEL1ECYH radioactivity concentration of 18F in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "F" means the element "fluorine" and "18F" is the isotope "fluorine-18" with a half-life of 6.98e-02 days. 2018-02-12
31IY1T9C radioactivity concentration of 206Hg in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Hg" means the element "mercury" and "206Hg" is the isotope "mercury-206" with a half-life of 5.57e-03 days. 2018-02-12
NH8ROBY7 radioactivity concentration of 206Tl in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tl" means the element "thallium" and "206Tl" is the isotope "thallium-206" with a half-life of 2.91e-03 days. 2018-02-12
ZY44123F radioactivity concentration of 207Tl in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tl" means the element "thallium" and "207Tl" is the isotope "thallium-207" with a half-life of 3.33e-03 days. 2018-02-12
4RELXICV radioactivity concentration of 207mPb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "207mPb" is the metastable state of the isotope "lead-207" with a half-life of 9.26e-06 days. 2018-02-12
VVGI3R37 radioactivity concentration of 208Tl in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tl" means the element "thallium" and "208Tl" is the isotope "thallium-208" with a half-life of 2.15e-03 days. 2018-02-12
RDW2L4X3 radioactivity concentration of 209Bi in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "209Bi" is the isotope "bismuth-209" with a half-life of 7.29e+20 days. 2018-02-12
AIATEZMN radioactivity concentration of 209Pb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "209Pb" is the isotope "lead-209" with a half-life of 1.38e-01 days. 2018-02-12
GLTJW0KA radioactivity concentration of 209Tl in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tl" means the element "thallium" and "209Tl" is the isotope "thallium-209" with a half-life of 1.53e-03 days. 2018-02-12
KNX5SZJW radioactivity concentration of 210Bi in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "210Bi" is the isotope "bismuth-210" with a half-life of 5.01e+00 days. 2018-02-12
MOQ3XKX1 radioactivity concentration of 210Pb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "210Pb" is the isotope "lead-210" with a half-life of 7.64e+03 days. 2018-02-12
1D2ZXEC8 radioactivity concentration of 210Po in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "210Po" is the isotope "polonium-210" with a half-life of 1.38e+02 days. 2018-02-12
T3O7YA45 radioactivity concentration of 210Tl in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tl" means the element "thallium" and "210Tl" is the isotope "thallium-210" with a half-life of 9.02e-04 days. 2018-02-12
H1TOAXKZ radioactivity concentration of 211Bi in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "211Bi" is the isotope "bismuth-211" with a half-life of 1.49e-03 days. 2018-02-12
FHWW3X6G radioactivity concentration of 211Pb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "211Pb" is the isotope "lead-211" with a half-life of 2.51e-02 days. 2018-02-12
XQJNEF80 radioactivity concentration of 211Po in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "211Po" is the isotope "polonium-211" with a half-life of 6.03e-06 days. 2018-02-12
6HV58INB radioactivity concentration of 212Bi in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "212Bi" is the isotope "bismuth-212" with a half-life of 4.20e-02 days. 2018-02-12
QCGXBAHJ radioactivity concentration of 212Pb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "212Pb" is the isotope "lead-212" with a half-life of 4.43e-01 days. 2018-02-12
DTJ8ZKKP radioactivity concentration of 212Po in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "212Po" is the isotope "polonium-212" with a half-life of 3.52e-12 days. 2018-02-12
EGMOXUXC radioactivity concentration of 213Bi in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "213Bi" is the isotope "bismuth-213" with a half-life of 3.26e-02 days. 2018-02-12
HI8WIKL2 radioactivity concentration of 213Pb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "213Pb" is the isotope "lead-213" with a half-life of 6.92e-03 days. 2018-02-12
6ZA46UTH radioactivity concentration of 213Po in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "213Po" is the isotope "polonium-213" with a half-life of 4.86e-11 days. 2018-02-12
0ZBVYBT4 radioactivity concentration of 214Bi in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "214Bi" is the isotope "bismuth-214" with a half-life of 1.37e-02 days. 2018-02-12
Q8VK3QCB radioactivity concentration of 214Pb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pb" means the element "lead" and "214Pb" is the isotope "lead-214" with a half-life of 1.86e-02 days. 2018-02-12
H6K6J0KZ radioactivity concentration of 214Po in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "214Po" is the isotope "polonium-214" with a half-life of 1.90e-09 days. 2018-02-12
DY18M0ZJ radioactivity concentration of 215At in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "At" means the element "astatine" and "215At" is the isotope "astatine-215" with a half-life of 1.16e-09 days. 2018-02-12
9ZW95HQP radioactivity concentration of 215Bi in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bi" means the element "bismuth" and "215Bi" is the isotope "bismuth-215" with a half-life of 4.86e-03 days. 2018-02-12
CC9K8U2M radioactivity concentration of 215Po in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "215Po" is the isotope "polonium-215" with a half-life of 2.06e-08 days. 2018-02-12
FO3T0ZO6 radioactivity concentration of 216At in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "At" means the element "astatine" and "216At" is the isotope "astatine-216" with a half-life of 3.47e-09 days. 2018-02-12
4Y3P361A radioactivity concentration of 216Po in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "216Po" is the isotope "polonium-216" with a half-life of 1.74e-06 days. 2018-02-12
L07PRUQ2 radioactivity concentration of 217At in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "At" means the element "astatine" and "217At" is the isotope "astatine-217" with a half-life of 3.70e-07 days. 2018-02-12
GWPLAQQ1 radioactivity concentration of 217Po in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "217Po" is the isotope "polonium-217" with a half-life of 1.16e-04 days. 2018-02-12
2ZGFQOLJ radioactivity concentration of 218At in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "At" means the element "astatine" and "218At" is the isotope "astatine-218" with a half-life of 2.31e-05 days. 2018-02-12
0L8W1WE5 radioactivity concentration of 218Po in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Po" means the element "polonium" and "218Po" is the isotope "polonium-218" with a half-life of 2.12e-03 days. 2018-02-12
XHA2F1JL radioactivity concentration of 218Rn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "218Rn" is the isotope "radon-218" with a half-life of 4.05e-07 days. 2018-02-12
EGG6Z1YM radioactivity concentration of 219At in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "At" means the element "astatine" and "219At" is the isotope "astatine-219" with a half-life of 6.27e-04 days. 2018-02-12
HV4LHVJ1 radioactivity concentration of 219Rn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "219Rn" is the isotope "radon-219" with a half-life of 4.64e-05 days. 2018-02-12
GNL1OHXY radioactivity concentration of 220Rn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "220Rn" is the isotope "radon-220" with a half-life of 6.37e-04 days. 2018-02-12
BIB19WUC radioactivity concentration of 221Fr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Fr" means the element "francium" and "221Fr" is the isotope "francium-221" with a half-life of 3.33e-03 days. 2018-02-12
JER8VB1D radioactivity concentration of 221Rn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "221Rn" is the isotope "radon-221" with a half-life of 1.74e-02 days. 2018-02-12
36HACHC8 radioactivity concentration of 222Fr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Fr" means the element "francium" and "222Fr" is the isotope "francium-222" with a half-life of 1.03e-02 days. 2018-02-12
X5XDX8DH radioactivity concentration of 222Ra in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "222Ra" is the isotope "radium-222" with a half-life of 4.41e-04 days. 2018-02-12
BPGHUBBG radioactivity concentration of 222Rn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "222Rn" is the isotope "radon-222" with a half-life of 3.82e+00 days. 2018-02-12
QTL8XU1Q radioactivity concentration of 223Fr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Fr" means the element "francium" and "223Fr" is the isotope "francium-223" with a half-life of 1.53e-02 days. 2018-02-12
KZFN1NIH radioactivity concentration of 223Ra in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "223Ra" is the isotope "radium-223" with a half-life of 1.14e+01 days. 2018-02-12
LYQ9GOF9 radioactivity concentration of 223Rn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rn" means the element "radon" and "223Rn" is the isotope "radon-223" with a half-life of 2.98e-02 days. 2018-02-12
TI8IXZUA radioactivity concentration of 224Ra in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "224Ra" is the isotope "radium-224" with a half-life of 3.65e+00 days. 2018-02-12
L593Q80N radioactivity concentration of 225Ac in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ac" means the element "actinium" and "225Ac" is the isotope "actinium-225" with a half-life of 1.00e+01 days. 2018-02-12
6PV171LU radioactivity concentration of 225Ra in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "225Ra" is the isotope "radium-225" with a half-life of 1.48e+01 days. 2018-02-12
NJ4G4T5Z radioactivity concentration of 226Ac in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ac" means the element "actinium" and "226Ac" is the isotope "actinium-226" with a half-life of 1.21e+00 days. 2018-02-12
QGUDYNG8 radioactivity concentration of 226Ra in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "226Ra" is the isotope "radium-226" with a half-life of 5.86e+05 days. 2018-02-12
H8DVDO9B radioactivity concentration of 226Th in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "226Th" is the isotope "thorium-226" with a half-life of 2.15e-02 days. 2018-02-12
0DCOAXHA radioactivity concentration of 227Ac in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ac" means the element "actinium" and "227Ac" is the isotope "actinium-227" with a half-life of 7.87e+03 days. 2018-02-12
1UZBN991 radioactivity concentration of 227Ra in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "227Ra" is the isotope "radium-227" with a half-life of 2.87e-02 days. 2018-02-12
FVLU5PXA radioactivity concentration of 227Th in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "227Th" is the isotope "thorium-227" with a half-life of 1.82e+01 days. 2018-02-12
Q3F950J9 radioactivity concentration of 228Ac in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ac" means the element "actinium" and "228Ac" is the isotope "actinium-228" with a half-life of 2.55e-01 days. 2018-02-12
KLR61QJF radioactivity concentration of 228Ra in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "228Ra" is the isotope "radium-228" with a half-life of 2.45e+03 days. 2018-02-12
G10PQADK radioactivity concentration of 228Th in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "228Th" is the isotope "thorium-228" with a half-life of 6.98e+02 days. 2018-02-12
4ON8W6GG radioactivity concentration of 229Ac in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ac" means the element "actinium" and "229Ac" is the isotope "actinium-229" with a half-life of 4.58e-02 days. 2018-02-12
8O9OBZZN radioactivity concentration of 229Ra in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ra" means the element "radium" and "229Ra" is the isotope "radium-229" with a half-life of 1.16e-17 days. 2018-02-12
R0OU753K radioactivity concentration of 229Th in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "229Th" is the isotope "thorium-229" with a half-life of 2.68e+06 days. 2018-02-12
3RV6T6K2 radioactivity concentration of 230Pa in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "230Pa" is the isotope "protactinium-230" with a half-life of 1.77e+01 days. 2018-02-12
OVSL46MP radioactivity concentration of 230Th in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "230Th" is the isotope "thorium-230" with a half-life of 2.92e+07 days. 2018-02-12
GT7CMEQ2 radioactivity concentration of 230U in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "230U" is the isotope "uranium-230" with a half-life of 2.08e+01 days. 2018-02-12
PZOEAFL1 radioactivity concentration of 231Pa in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "231Pa" is the isotope "protactinium-231" with a half-life of 1.19e+07 days. 2018-02-12
P0N7WLCT radioactivity concentration of 231Th in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "231Th" is the isotope "thorium-231" with a half-life of 1.06e+00 days. 2018-02-12
03NKJYIC radioactivity concentration of 231U in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "231U" is the isotope "uranium-231" with a half-life of 4.29e+00 days. 2018-02-12
QROA9FIR radioactivity concentration of 232Pa in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "232Pa" is the isotope "protactinium-232" with a half-life of 1.31e+00 days. 2018-02-12
5LIFWR6P radioactivity concentration of 232Th in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "232Th" is the isotope "thorium-232" with a half-life of 5.14e+12 days. 2018-02-12
ZFMF846E radioactivity concentration of 232U in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "232U" is the isotope "uranium-232" with a half-life of 2.63e+04 days. 2018-02-12
QU3EZJPQ radioactivity concentration of 233Pa in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "233Pa" is the isotope "protactinium-233" with a half-life of 2.70e+01 days. 2018-02-12
FINILU0Q radioactivity concentration of 233Th in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "233Th" is the isotope "thorium-233" with a half-life of 1.54e-02 days. 2018-02-12
7W9ONFK7 radioactivity concentration of 233U in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "233U" is the isotope "uranium-233" with a half-life of 5.90e+07 days. 2018-02-12
YRO3HBU4 radioactivity concentration of 234Pa in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "234Pa" is the isotope "protactinium-234" with a half-life of 2.81e-01 days. 2018-02-12
2L35FZAW radioactivity concentration of 234Th in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Th" means the element "thorium" and "234Th" is the isotope "thorium-234" with a half-life of 2.41e+01 days. 2018-02-12
57Z6N9NC radioactivity concentration of 234U in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "234U" is the isotope "uranium-234" with a half-life of 9.02e+07 days. 2018-02-12
XOSJUTHH radioactivity concentration of 234mPa in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pa" means the element "protactinium" and "234mPa" is the metastable state of the isotope "protactinium-234" with a half-life of 8.13e-04 days. 2018-02-12
DJT1AQYQ radioactivity concentration of 235Np in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "235Np" is the isotope "neptunium-235" with a half-life of 4.09e+02 days. 2018-02-12
IWHX77NI radioactivity concentration of 235Pu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "235Pu" is the isotope "plutonium-235" with a half-life of 1.81e-02 days. 2018-02-12
TDNHE4MK radioactivity concentration of 235U in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "235U" is the isotope "uranium-235" with a half-life of 2.60e+11 days. 2018-02-12
7RY5T9JY radioactivity concentration of 236Np in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "236Np" is the isotope "neptunium-236" with a half-life of 9.17e-01 days. 2018-02-12
EVP6UON0 radioactivity concentration of 236Pu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "236Pu" is the isotope "plutonium-236" with a half-life of 1.04e+03 days. 2018-02-12
F3JQPSP4 radioactivity concentration of 236U in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "236U" is the isotope "uranium-236" with a half-life of 8.73e+09 days. 2018-02-12
9OOZSGVJ radioactivity concentration of 236mNp in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "236mNp" is the metastable state of the isotope "neptunium-236" with a half-life of 4.72e+10 days. 2018-02-12
4H9HEFGN radioactivity concentration of 237Np in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "237Np" is the isotope "neptunium-237" with a half-life of 7.79e+08 days. 2018-02-12
UNBXSJ7U radioactivity concentration of 237Pu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "237Pu" is the isotope "plutonium-237" with a half-life of 4.56e+01 days. 2018-02-12
JQHNLRWP radioactivity concentration of 237U in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "237U" is the isotope "uranium-237" with a half-life of 6.74e+00 days. 2018-02-12
RSZAKH50 radioactivity concentration of 238Np in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "238Np" is the isotope "neptunium-238" with a half-life of 2.10e+00 days. 2018-02-12
2WDLDF1F radioactivity concentration of 238Pu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "238Pu" is the isotope "plutonium-238" with a half-life of 3.15e+04 days. 2018-02-12
SIC8W1QH radioactivity concentration of 238U in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "238U" is the isotope "uranium-238" with a half-life of 1.65e+12 days. 2018-02-12
J3AITE4G radioactivity concentration of 239Np in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "239Np" is the isotope "neptunium-239" with a half-life of 2.35e+00 days. 2018-02-12
0ONYK4X8 radioactivity concentration of 239Pu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "239Pu" is the isotope "plutonium-239" with a half-life of 8.91e+06 days. 2018-02-12
U6EEFE22 radioactivity concentration of 239U in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "239U" is the isotope "uranium-239" with a half-life of 1.63e-02 days. 2018-02-12
J7JTPIBI radioactivity concentration of 240Am in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "240Am" is the isotope "americium-240" with a half-life of 2.12e+00 days. 2018-02-12
7IOAPTCJ radioactivity concentration of 240Np in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "240Np" is the isotope "neptunium-240" with a half-life of 4.38e-02 days. 2018-02-12
2JGDCI6Z radioactivity concentration of 240Pu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "240Pu" is the isotope "plutonium-240" with a half-life of 2.40e+06 days. 2018-02-12
0580KMBR radioactivity concentration of 240U in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "U" means the element "uranium" and "240U" is the isotope "uranium-240" with a half-life of 5.99e-01 days. 2018-02-12
E7GCDPGE radioactivity concentration of 240mNp in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Np" means the element "neptunium" and "240mNp" is the metastable state of the isotope "neptunium-240" with a half-life of 5.08e-03 days. 2018-02-12
LWFJPDBL radioactivity concentration of 241Am in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "241Am" is the isotope "americium-241" with a half-life of 1.67e+05 days. 2018-02-12
EIZVVLBZ radioactivity concentration of 241Cm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "241Cm" is the isotope "curium-241" with a half-life of 3.50e+01 days. 2018-02-12
JX6F9PUV radioactivity concentration of 241Pu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "241Pu" is the isotope "plutonium-241" with a half-life of 4.83e+03 days. 2018-02-12
BHCTKI8Q radioactivity concentration of 242Am in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "242Am" is the isotope "americium-242" with a half-life of 6.69e-01 days. 2018-02-12
OXZXC9HJ radioactivity concentration of 242Cm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "242Cm" is the isotope "curium-242" with a half-life of 1.63e+02 days. 2018-02-12
CBQIGZYO radioactivity concentration of 242Pu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "242Pu" is the isotope "plutonium-242" with a half-life of 1.38e+08 days. 2018-02-12
ABKOXCPL radioactivity concentration of 242m1Am in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "242m1Am" is the metastable state of the isotope "americium-242" with a half-life of 5.53e+04 days. 2018-02-12
Q9VHSIE2 radioactivity concentration of 242m2Am in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "242m2Am" is the metastable state of the isotope "americium-242" with a half-life of 1.62e-07 days. 2018-02-12
I8I526JY radioactivity concentration of 243Am in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "243Am" is the isotope "americium-243" with a half-life of 2.91e+06 days. 2018-02-12
EWO0TTZB radioactivity concentration of 243Cm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "243Cm" is the isotope "curium-243" with a half-life of 1.17e+04 days. 2018-02-12
BM2E98QU radioactivity concentration of 243Pu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "243Pu" is the isotope "plutonium-243" with a half-life of 2.07e-01 days. 2018-02-12
PDNXKF7G radioactivity concentration of 244Am in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "244Am" is the isotope "americium-244" with a half-life of 4.20e-01 days. 2018-02-12
K4WABYG7 radioactivity concentration of 244Cm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "244Cm" is the isotope "curium-244" with a half-life of 6.42e+03 days. 2018-02-12
H21L8QYO radioactivity concentration of 244Pu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "244Pu" is the isotope "plutonium-244" with a half-life of 2.92e+10 days. 2018-02-12
Y1KIMNPY radioactivity concentration of 244mAm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "244mAm" is the metastable state of the isotope "americium-244" with a half-life of 1.81e-02 days. 2018-02-12
V05JNK9F radioactivity concentration of 245Am in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Am" means the element "americium" and "245Am" is the isotope "americium-245" with a half-life of 8.75e-02 days. 2018-02-12
HVJP174E radioactivity concentration of 245Cm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "245Cm" is the isotope "curium-245" with a half-life of 3.40e+06 days. 2018-02-12
FWITSSPI radioactivity concentration of 245Pu in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Pu" means the element "plutonium" and "245Pu" is the isotope "plutonium-245" with a half-life of 4.16e-01 days. 2018-02-12
094YNDL9 radioactivity concentration of 246Cm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "246Cm" is the isotope "curium-246" with a half-life of 2.01e+06 days. 2018-02-12
D9ZRRSMA radioactivity concentration of 247Cm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "247Cm" is the isotope "curium-247" with a half-life of 5.86e+09 days. 2018-02-12
11NJVIYJ radioactivity concentration of 248Cm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "248Cm" is the isotope "curium-248" with a half-life of 1.72e+08 days. 2018-02-12
W9CRDFEL radioactivity concentration of 249Bk in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bk" means the element "berkelium" and "249Bk" is the isotope "berkelium-249" with a half-life of 3.15e+02 days. 2018-02-12
U7QVYEYD radioactivity concentration of 249Cf in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "249Cf" is the isotope "californium-249" with a half-life of 1.32e+05 days. 2018-02-12
CZCXUVJ2 radioactivity concentration of 249Cm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "249Cm" is the isotope "curium-249" with a half-life of 4.43e-02 days. 2018-02-12
OARURFMQ radioactivity concentration of 24Na in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Na" means the element "sodium" and "24Na" is the isotope "sodium-24" with a half-life of 6.27e-01 days. 2018-02-12
W5U6HMRZ radioactivity concentration of 250Bk in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Bk" means the element "berkelium" and "250Bk" is the isotope "berkelium-250" with a half-life of 1.34e-01 days. 2018-02-12
MJ2SGH3T radioactivity concentration of 250Cf in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "250Cf" is the isotope "californium-250" with a half-life of 4.75e+03 days. 2018-02-12
MHHDT9VU radioactivity concentration of 250Cm in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cm" means the element "curium" and "250Cm" is the isotope "curium-250" with a half-life of 2.52e+06 days. 2018-02-12
2UWOLA6D radioactivity concentration of 251Cf in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "251Cf" is the isotope "californium-251" with a half-life of 2.92e+05 days. 2018-02-12
6CGO0155 radioactivity concentration of 252Cf in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "252Cf" is the isotope "californium-252" with a half-life of 9.68e+02 days. 2018-02-12
R0NVONFW radioactivity concentration of 253Cf in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "253Cf" is the isotope "californium-253" with a half-life of 1.76e+01 days. 2018-02-12
Z3BVQO7U radioactivity concentration of 253Es in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Es" means the element "einsteinium" and "253Es" is the isotope "einsteinium-253" with a half-life of 2.05e+01 days. 2018-02-12
BI93OGUE radioactivity concentration of 254Cf in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Cf" means the element "californium" and "254Cf" is the isotope "californium-254" with a half-life of 6.03e+01 days. 2018-02-12
Y6AFS9IR radioactivity concentration of 254Es in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Es" means the element "einsteinium" and "254Es" is the isotope "einsteinium-254" with a half-life of 2.76e+02 days. 2018-02-12
IK0VOVON radioactivity concentration of 254mEs in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Es" means the element "einsteinium" and "254mEs" is the metastable state of the isotope "einsteinium-254" with a half-life of 1.63e+00 days. 2018-02-12
PG1DU72W radioactivity concentration of 255Es in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Es" means the element "einsteinium" and "255Es" is the isotope "einsteinium-255" with a half-life of 3.84e+01 days. 2018-02-12
HU47W0MR radioactivity concentration of 3H in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "H" means the element "hydrogen" and "3H" is the isotope "hydrogen-3" with a half-life of 4.51e+03 days. 2018-02-12
WXY9Q1AA radioactivity concentration of 41Ar in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ar" means the element "argon" and "41Ar" is the isotope "argon-41" with a half-life of 7.64e-02 days. 2018-02-12
QKS32S0T radioactivity concentration of 54Mn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Mn" means the element "manganese" and "54Mn" is the isotope "manganese-54" with a half-life of 3.12e+02 days. 2018-02-12
YHJ6PM43 radioactivity concentration of 58Co in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Co" means the element "cobalt" and "58Co" is the isotope "cobalt-58" with a half-life of 7.10e+01 days. 2018-02-12
QXM8ZZ07 radioactivity concentration of 60Co in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Co" means the element "cobalt" and "60Co" is the isotope "cobalt-60" with a half-life of 1.93e+03 days. 2018-02-12
HWYL69EA radioactivity concentration of 72Ga in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ga" means the element "gallium" and "72Ga" is the isotope "gallium-72" with a half-life of 5.86e-01 days. 2018-02-12
TGFQYHJE radioactivity concentration of 72Zn in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Zn" means the element "zinc" and "72Zn" is the isotope "zinc-72" with a half-life of 1.94e+00 days. 2018-02-12
4ODRBT4L radioactivity concentration of 73Ga in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ga" means the element "gallium" and "73Ga" is the isotope "gallium-73" with a half-life of 2.03e-01 days. 2018-02-12
QQEL0LHP radioactivity concentration of 75Ge in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ge" means the element "germanium" and "75Ge" is the isotope "germanium-75" with a half-life of 5.73e-02 days. 2018-02-12
ZPHKVE2Y radioactivity concentration of 77As in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "As" means the element "arsenic" and "77As" is the isotope "arsenic-77" with a half-life of 1.62e+00 days. 2018-02-12
PSCKYOFP radioactivity concentration of 77Ge in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ge" means the element "germanium" and "77Ge" is the isotope "germanium-77" with a half-life of 4.72e-01 days. 2018-02-12
XAPK0BAA radioactivity concentration of 77mGe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ge" means the element "germanium" and "77mGe" is the metastable state of the isotope "germanium-77" with a half-life of 6.27e-04 days. 2018-02-12
XNAN93IC radioactivity concentration of 78As in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "As" means the element "arsenic" and "78As" is the isotope "arsenic-78" with a half-life of 6.32e-02 days. 2018-02-12
4PLWQDF6 radioactivity concentration of 78Ge in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Ge" means the element "germanium" and "78Ge" is the isotope "germanium-78" with a half-life of 6.03e-02 days. 2018-02-12
Z4JJUOOO radioactivity concentration of 79Se in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Se" means the element "selenium" and "79Se" is the isotope "selenium-79" with a half-life of 2.37e+07 days. 2018-02-12
FLOU27N7 radioactivity concentration of 81Se in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Se" means the element "selenium" and "81Se" is the isotope "selenium-81" with a half-life of 1.28e-02 days. 2018-02-12
WV5QWE7F radioactivity concentration of 81mSe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Se" means the element "selenium" and "81mSe" is the metastable state of the isotope "selenium-81" with a half-life of 3.97e-02 days. 2018-02-12
8CLI7IST radioactivity concentration of 82Br in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Br" means the element "bromine" and "82Br" is the isotope "bromine-82" with a half-life of 1.47e+00 days. 2018-02-12
1IXM3VKH radioactivity concentration of 82mBr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Br" means the element "bromine" and "82mBr" is the metastable state of the isotope "bromine-82" with a half-life of 4.24e-03 days. 2018-02-12
ENOV66J9 radioactivity concentration of 83Br in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Br" means the element "bromine" and "83Br" is the isotope "bromine-83" with a half-life of 1.00e-01 days. 2018-02-12
LY9GKSHG radioactivity concentration of 83Se in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Se" means the element "selenium" and "83Se" is the isotope "selenium-83" with a half-life of 1.56e-02 days. 2018-02-12
IACLM1AW radioactivity concentration of 83mKr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "83mKr" is the metastable state of the isotope "krypton-83" with a half-life of 7.71e-02 days. 2018-02-12
H80041EX radioactivity concentration of 83mSe in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Se" means the element "selenium" and "83mSe" is the metastable state of the isotope "selenium-83" with a half-life of 8.10e-04 days. 2018-02-12
QQI00BDI radioactivity concentration of 84Br in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Br" means the element "bromine" and "84Br" is the isotope "bromine-84" with a half-life of 2.21e-02 days. 2018-02-12
191SWENM radioactivity concentration of 84mBr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Br" means the element "bromine" and "84mBr" is the metastable state of the isotope "bromine-84" with a half-life of 4.16e-03 days. 2018-02-12
8FCCB748 radioactivity concentration of 85Kr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "85Kr" is the isotope "krypton-85" with a half-life of 3.95e+03 days. 2018-02-12
WWUMK4WB radioactivity concentration of 85mKr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "85mKr" is the metastable state of the isotope "krypton-85" with a half-life of 1.83e-01 days. 2018-02-12
YDN3LM20 radioactivity concentration of 86Rb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rb" means the element "rubidium" and "86Rb" is the isotope "rubidium-86" with a half-life of 1.87e+01 days. 2018-02-12
M7V25MUX radioactivity concentration of 86mRb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rb" means the element "rubidium" and "86mRb" is the metastable state of the isotope "rubidium-86" with a half-life of 7.04e-04 days. 2018-02-12
ODUKHL8Y radioactivity concentration of 87Kr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "87Kr" is the isotope "krypton-87" with a half-life of 5.28e-02 days. 2018-02-12
490B6UTG radioactivity concentration of 87Rb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rb" means the element "rubidium" and "87Rb" is the isotope "rubidium-87" with a half-life of 1.71e+13 days. 2018-02-12
5J2SNT8A radioactivity concentration of 88Kr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "88Kr" is the isotope "krypton-88" with a half-life of 1.17e-01 days. 2018-02-12
WHO84Y9V radioactivity concentration of 88Rb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rb" means the element "rubidium" and "88Rb" is the isotope "rubidium-88" with a half-life of 1.25e-02 days. 2018-02-12
ZD8P0PHB radioactivity concentration of 89Kr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Kr" means the element "krypton" and "89Kr" is the isotope "krypton-89" with a half-life of 2.20e-03 days. 2018-02-12
JFA82K4S radioactivity concentration of 89Rb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Rb" means the element "rubidium" and "89Rb" is the isotope "rubidium-89" with a half-life of 1.06e-02 days. 2018-02-12
QC69S3NH radioactivity concentration of 89Sr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sr" means the element "strontium" and "89Sr" is the isotope "strontium-89" with a half-life of 5.21e+01 days. 2018-02-12
9HTVL03I radioactivity concentration of 90Sr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sr" means the element "strontium" and "90Sr" is the isotope "strontium-90" with a half-life of 1.02e+04 days. 2018-02-12
5RS2C7WR radioactivity concentration of 90Y in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "90Y" is the isotope "yttrium-90" with a half-life of 2.67e+00 days. 2018-02-12
D5APQYEU radioactivity concentration of 90mY in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "90mY" is the metastable state of the isotope "yttrium-90" with a half-life of 1.33e-01 days. 2018-02-12
GD5LXUG9 radioactivity concentration of 91Sr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sr" means the element "strontium" and "91Sr" is the isotope "strontium-91" with a half-life of 3.95e-01 days. 2018-02-12
MIKARMGJ radioactivity concentration of 91Y in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "91Y" is the isotope "yttrium-91" with a half-life of 5.86e+01 days. 2018-02-12
14K31TG7 radioactivity concentration of 91mY in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "91mY" is the metastable state of the isotope "yttrium-91" with a half-life of 3.46e-02 days. 2018-02-12
PGCOL9HW radioactivity concentration of 92Sr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Sr" means the element "strontium" and "92Sr" is the isotope "strontium-92" with a half-life of 1.13e-01 days. 2018-02-12
X5RBC9KD radioactivity concentration of 92Y in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "92Y" is the isotope "yttrium-92" with a half-life of 1.47e-01 days. 2018-02-12
91PKB0Z3 radioactivity concentration of 93Y in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "93Y" is the isotope "yttrium-93" with a half-life of 4.24e-01 days. 2018-02-12
2DHX2I5G radioactivity concentration of 93Zr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Zr" means the element "zirconium" and "93Zr" is the isotope "zirconium-93" with a half-life of 3.47e+08 days. 2018-02-12
UWZBT8RK radioactivity concentration of 94Nb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "94Nb" is the isotope "niobium-94" with a half-life of 7.29e+06 days. 2018-02-12
9ZH9YBQ3 radioactivity concentration of 94Y in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "94Y" is the isotope "yttrium-94" with a half-life of 1.32e-02 days. 2018-02-12
2YEOYDOK radioactivity concentration of 94mNb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "94mNb" is the metastable state of the isotope "niobium-94" with a half-life of 4.34e-03 days. 2018-02-12
7O14UQ0Z radioactivity concentration of 95Nb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "95Nb" is the isotope "niobium-95" with a half-life of 3.52e+01 days. 2018-02-12
3RVYQTIV radioactivity concentration of 95Y in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Y" means the element "yttrium" and "95Y" is the isotope "yttrium-95" with a half-life of 7.29e-03 days. 2018-02-12
EPX1Q7R5 radioactivity concentration of 95Zr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Zr" means the element "zirconium" and "95Zr" is the isotope "zirconium-95" with a half-life of 6.52e+01 days. 2018-02-12
VPYSWHDJ radioactivity concentration of 95mNb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "95mNb" is the metastable state of the isotope "niobium-95" with a half-life of 3.61e+00 days. 2018-02-12
MXQJYXH8 radioactivity concentration of 96Nb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "96Nb" is the isotope "niobium-96" with a half-life of 9.75e-01 days. 2018-02-12
6RZFEE06 radioactivity concentration of 97Nb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "97Nb" is the isotope "niobium-97" with a half-life of 5.11e-02 days. 2018-02-12
C0SVKACE radioactivity concentration of 97Zr in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Zr" means the element "zirconium" and "97Zr" is the isotope "zirconium-97" with a half-life of 6.98e-01 days. 2018-02-12
GMDZH3GD radioactivity concentration of 97mNb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "97mNb" is the metastable state of the isotope "niobium-97" with a half-life of 6.27e-04 days. 2018-02-12
IION02JA radioactivity concentration of 98Nb in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Nb" means the element "niobium" and "98Nb" is the isotope "niobium-98" with a half-life of 3.53e-02 days. 2018-02-12
XHYU296C radioactivity concentration of 99Mo in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Mo" means the element "molybdenum" and "99Mo" is the isotope "molybdenum-99" with a half-life of 2.78e+00 days. 2018-02-12
LTGBLJ2L radioactivity concentration of 99Tc in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "99Tc" is the isotope "technetium-99" with a half-life of 7.79e+07 days. 2018-02-12
ZD9YNNZQ radioactivity concentration of 99mTc in air "Radioactivity" means the number of radioactive decays of a material per second. "Radioactivity concentration" means radioactivity per unit volume of the medium. "Tc" means the element "technetium" and "99mTc" is the metastable state of the isotope "technetium-99" with a half-life of 2.51e-01 days. 2018-02-12
RH90FQHS radius of tropical cyclone central dense overcast region The average radius of a central region of clouds in tropical cyclones lacking well-defined eye features, which is computed by averaging the great circle distance in four cardinal directions. The radius in each direction is measured from the estimated storm center position to a warm point that exceeds a threshold brightness temperature at top of atmosphere limit. The threshold applied should be recorded in a coordinate variable having the standard_ name of toa_ brightness_ temperature. A coordinate variable of radiation_ wavelength, sensor_ band_ central_ radiation_ wavelength, or radiation_ frequency may be specified to indicate that the brightness temperature applies at specific wavelengths or frequencies. 2015-07-08
1FKFI8Q2 radius of tropical cyclone eye The radius of a tropical cyclone eye is defined to be the great circle distance measured from the cyclone center to the eye wall. 2015-07-08
41V7KNT5 radius of tropical cyclone maximum sustained wind speed The great circle distance measured from the tropical cyclone center to the region of sustained 1-minute duration maximum wind speed, as defined by the standard name, tropical_ cyclone_ maximum_ sustained_ wind_ speed. 2015-07-08
CFSN0408 rainfall amount 'Amount' means mass per unit area. 2006-09-26
CFSN0409 rainfall flux In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0410 rainfall rate 2006-09-26
P2BHUZTK rate of hydroxyl radical destruction due to reaction with nmvoc DEPRECATED The "reaction rate" is the rate at which the reactants of a chemical reaction form the products. The rate of "hydroxyl radical destruction due to reaction with nmvoc" is the nmvoc reactivity with regard to reactions with OH. It is the weighted sum of the reactivity of all individual nmvoc species with OH. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The chemical formula for the hydroxyl radical is OH. In chemistry, a "radical" is a highly reactive, and therefore shortlived, species. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2016-11-15
APJWQEQV rate of change test quality flag A quality flag that reports the result of the Rate of Change test, which checks that the first order difference of a series of values is within reasonable bounds. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. There are standard names for other specific quality tests which take the form of X_ quality_ flag. Quality information that does not match any of the specific quantities should be given the more general standard name of quality_ flag. 2020-03-09
HZYUQOJU rate of hydroxyl radical destruction due to reaction with nmvoc The "reaction rate" is the rate at which the reactants of a chemical reaction form the products. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The rate of "hydroxyl radical destruction due to reaction with nmvoc" is the nmvoc reactivity with regard to reactions with OH. It is the weighted sum of the reactivity of all individual nmvoc species with OH. The chemical formula for the hydroxyl radical is OH. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. The abbreviation "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2019-03-04
9PMQJPRZ ratio of ice volume in frozen ground to pore volume in unfrozen ground The phrase "ratio_ of_ X_ to_ Y" means X/Y. "X_ volume" means the volume occupied by X within the grid cell. Pore volume is the volume of the porosity of the ground under natural, unfrozen conditions. This is often known as "ice saturation index". 2021-09-20
AD85SZNH ratio of sea water potential temperature anomaly to relaxation timescale The quantity with standard name ratio_ of_ sea_ water_ potential_ temperature_ anomaly_ to_ relaxation_ timescale is a correction term applied to modelled sea water potential temperature. The term is estimated as the deviation of model local sea water potential temperature from an observation-based climatology (e.g. World Ocean Database) weighted by a user-specified relaxation coefficient in s-1 (1/(relaxation timescale)). Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. The phrase "ratio_ of_ X_ to_ Y" means X/Y. The term "anomaly" means difference from climatology. 2017-04-24
EDSY2CTI ratio of sea water practical salinity anomaly to relaxation timescale The quantity with standard name ratio_ of_ sea_ water_ practical_ salinity_ anomaly_ to_ relaxation_ timescale is a correction term applied to modelled sea water practical salinity. The term is estimated as the deviation of model local sea water practical salinity from an observation-based climatology (e.g. World Ocean Database) weighted by a user-specified relaxation coefficient in s-1 (1/(relaxation timescale)). The phrase "ratio_ of_ X_ to_ Y" means X/Y. The term "anomaly" means difference from climatology. Practical Salinity, S_ P, is a determination of the salinity of sea water, based on its electrical conductance. The measured conductance, corrected for temperature and pressure, is compared to the conductance of a standard potassium chloride solution, producing a value on the Practical Salinity Scale of 1978 (PSS-78). This name should not be used to describe salinity observations made before 1978, or ones not based on conductance measurements. Conversion of Practical Salinity to other precisely defined salinity measures should use the appropriate formulas specified by TEOS-10. Other standard names for precisely defined salinity quantities are sea_ water_ absolute_ salinity (S_ A); sea_ water_ preformed_ salinity (S_ *), sea_ water_ reference_ salinity (S_ R); sea_ water_ cox_ salinity (S_ C), used for salinity observations between 1967 and 1977; and sea_ water_ knudsen_ salinity (S_ K), used for salinity observations between 1901 and 1966. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. Reference: www.teos-10.org; Lewis, 1980 doi:10.1109/JOE.1980.1145448. 2019-03-04
OJUDV53W ratio of volume extinction coefficient to volume backwards scattering coefficient by ranging instrument in air due to ambient aerosol particles The ratio of volume extinction coefficient to volume backwards scattering coefficient by ranging instrument in air due to ambient aerosol particles (often called "lidar ratio") is the ratio of the "volume extinction coefficient" and the "volume backwards scattering coefficient of radiative flux by ranging instrument in air due to ambient aerosol particles". The ratio is assumed to be related to the same wavelength of incident radiation. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2023-04-24
CF12N575 ratio of x derivative of ocean rigid lid pressure to sea surface density Sea surface density is the density of sea water near the surface (including the part under sea-ice, if any). "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be northward, southward, eastward, westward, x or y. The last two indicate derivatives along the axes of the grid, whether or not they are true longitude and latitude. "ratio_ of_ X_ to_ Y" means X/Y. "Ocean rigid lid pressure" means the pressure at the surface of an ocean model assuming that it is bounded above by a rigid lid. 2013-01-11
CF12N576 ratio of y derivative of ocean rigid lid pressure to sea surface density Sea surface density is the density of sea water near the surface (including the part under sea-ice, if any). "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be northward, southward, eastward, westward, x or y. The last two indicate derivatives along the axes of the grid, whether or not they are true longitude and latitude. "ratio_ of_ X_ to_ Y" means X/Y. "Ocean rigid lid pressure" means the pressure at the surface of an ocean model assuming that it is bounded above by a rigid lid. 2013-01-11
CFSN0411 realization Realization is used to label a dimension that can be thought of as a statistical sample, e.g., labelling members of a model ensemble. 2021-09-20
5OZJ21HZ received power of radio wave in air scattered by air The quantity with standard name received_ power_ of_ radio_ wave_ in_ air_ scattered_ by_ air refers to the received power of the signal at an instrument such as a radar or lidar. The signal returned to the instrument is the sum of all scattering from a given volume of air regardless of mechanism (examples are scattering by aerosols, hydrometeors and refractive index irregularities, or whatever else the instrument detects). 2023-02-06
SZU3PDKK reference air pressure for atmosphere vertical coordinate For models using a dimensionless vertical coordinate, for example, sigma, hybrid sigma-pressure or eta, the values of the vertical coordinate at the model levels are calculated relative to a reference level. "Reference air pressure" is the air pressure at the model reference level. It is a model-dependent constant. 2017-07-24
C8X8GTCF reference epoch The period of time over which a parameter has been summarised (usually by averaging) in order to provide a reference (baseline) against which data has been compared. When a coordinate, scalar coordinate, or auxiliary coordinate variable with this standard name has bounds, then the bounds specify the beginning and end of the time period over which the reference was determined. If the reference represents an instant in time, rather than a period, then bounds may be omitted. It is not the time for which the actual measurements are valid; the standard name of time should be used for that. 2020-10-13
9334Z59K reference pressure A constant pressure value, typically representative of mean sea level pressure, which can be used in defining coordinates or functions of state. 2020-02-03
CF12N577 reference sea water density for boussinesq approximation Sea water density is the in-situ density (not the potential density). For a rigid lid Boussinesq geopotential ocean model the density of the sea water is maintained at a constant reference density. In a model using the rigid lid Boussinesq approximation , the vertical grid coordinates (and hence the grid cell volumes) are time invariant. 2009-07-06
CFSN0412 region A variable with the standard_ name of region contains either strings which indicate a geographical region or flags which can be translated to strings using flag_ values and flag_ meanings attributes. These strings are standardised. Values must be taken from the CF standard region list. 2020-06-22
CFSN0413 relative humidity 2006-09-26
9E76O6TE relative humidity for aerosol particle size selection Relative humidity at which the size of a sampled aerosol particle was selected. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. 2015-01-07
HVSA2K34 relative platform azimuth angle The quantity with standard name relative_ platform_ azimuth_ angle is the difference between the viewing geometries from two different platforms over the same observation target. It is the difference between the values of two quantities with standard name platform_ azimuth_ angle. There is no standardized sign convention for relative_ platform_ azimuth_ angle. "Observation target" means a location on the Earth defined by the sensor performing the observations. A standard name also exists for relative_ sensor_ azimuth_ angle. For some viewing geometries the sensor and the platform cannot be assumed to be close enough to neglect the difference in calculated azimuth angle. A "platform" is a structure or vehicle that serves as a base for mounting sensors. Platforms include, but are not limited to, satellites, aeroplanes, ships, buoys, instruments, ground stations, and masts. 2018-10-15
SCQ1ZF5I relative sensor azimuth angle relative_ sensor_ azimuth_ angle is the difference between the viewing geometries from two different sensors over the same observation target. It is the difference between the values of two quantities with standard name sensor_ azimuth_ angle. There is no standardized sign convention for relative_ sensor_ azimuth_ angle. "Observation target" means a location on the Earth defined by the sensor performing the observations. A standard name also exists for relative_ platform_ azimuth_ angle, where "platform" refers to the vehicle from which observations are made e.g. aeroplane, ship, or satellite. For some viewing geometries the sensor and the platform cannot be assumed to be close enough to neglect the difference in calculated azimuth angle. 2013-06-27
CFV10N33 richardson number in sea water Richardson number is a measure of dynamic stability and can be used to diagnose the existence of turbulent flow. It is defined as the ratio of the buoyant suppression of turbulence (i.e. how statically stable or unstable the conditions are) to the kinetic energy available to generate turbulence in a shear flow. 2008-10-21
162XLWW7 river water volume transport into cell DEPRECATED "Cell" refers to a model grid-cell. The extent of an individual grid cell is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of "region". "Water" means water in all phases. "River" refers to water in the fluvial system (stream and floodplain). 2018-07-10
PJDNDMLV river water volume transport out of cell DEPRECATED "Cell" refers to a model grid-cell. The extent of an individual grid cell is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of "region". "Water" means water in all phases. "River" refers to water in the fluvial system (stream and floodplain). 2018-07-10
CFV16A34 root carbon content DEPRECATED "Content" indicates a quantity per unit area. 2018-04-16
CFSN0414 root depth Depth is the vertical distance below the surface. The root depth is maximum depth of soil reached by plant roots, from which they can extract moisture. 2006-09-26
UKJ8WY6A root mass content of carbon "Content" indicates a quantity per unit area. 2018-04-16
Q0PYW5XC root mass content of nitrogen "Content" indicates a quantity per unit area. 2018-04-16
CFSN0415 runoff amount 'Amount' means mass per unit area. Runoff is the liquid water which drains from land. If not specified, 'runoff' refers to the sum of surface runoff and subsurface drainage. 2006-09-26
CFSN0776 runoff amount excluding baseflow Runoff is the liquid water which drains from land. "Runoff_ excluding_ baseflow" is the sum of surface runoff and subsurface runoff excluding baseflow. Baseflow is subsurface runoff which takes place below the level of the water table. "Amount" means mass per unit area. 2007-02-20
CFSN0416 runoff flux Runoff is the liquid water which drains from land. If not specified, "runoff" refers to the sum of surface runoff and subsurface drainage. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2015-07-08
HCYHGC0V salt flux into sea water due to sea ice thermodynamics In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice thermodynamics" refers to the addition or subtraction of ice mass due to surface and basal fluxes, i.e., due to melting, sublimation and fusion. The quantity with standard name salt_ flux_ into_ sea_ water_ due_ to_ sea_ ice_ thermodynamics is negative during ice growth when salt becomes embedded into the ice and positive during ice melting when salt is released into the ocean. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CF12N578 salt flux into sea water from rivers In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "River" refers to water in the fluvial system (stream and floodplain). 2018-05-29
CFSN0417 scattering angle The scattering angle is that between the direction of the beam of incident radiation and the direction into which it is scattered. 2006-09-26
CA8V57UH scene type of dvorak tropical cyclone cloud region A variable with the standard name of scene_ type_ of_ dvorak_ tropical_ cyclone_ cloud_ region contains integers which can be translated to strings using flag_ values and flag_ meanings attributes. It indicates the Advanced Dvorak Technique tropical cyclone cloud region scene type chosen from the following list: uniform_ central_ dense_ overcast; embedded_ center; irregular_ central_ dense_ overcast; curved_ band; shear. Alternatively, the data variable may contain strings chosen from the same standardised list to indicate the scene type. Reference: Olander, T. L., & Velden, C. S., The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery (2007). American Meteorological Society Weather and Forecasting, 22, 287-298. 2019-02-04
PJ3UQFTI scene type of dvorak tropical cyclone eye region A variable with the standard name of scene_ type_ of_ dvorak_ tropical_ cyclone_ eye_ region contains integers which can be translated to strings using flag_ values and flag_ meanings attributes. It indicates the Advanced Dvorak Technique tropical cyclone eye region scene type chosen from the following list: clear_ ragged_ or_ obscured_ eye; pinhole_ eye; large_ eye; no_ eye. Alternatively, the data variable may contain strings chosen from the same standardised list to indicate the scene type. Reference: Olander, T. L., & Velden, C. S., The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery (2007). American Meteorological Society Weather and Forecasting, 22, 287-298. 2019-02-04
CFSN0418 sea area "X_ area" means the horizontal area occupied by X within the grid cell. The extent of an individual grid cell is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of "region". 2017-02-21
CFSN0419 sea area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. 2019-05-14
NK7W2T5M sea binary mask X"_ binary_ mask" has 1 where condition X is met, 0 elsewhere. 1 = sea, 0 = land. 2018-04-16
CFSNA024 sea floor depth DEPRECATED The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean.) In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. 2006-09-26
CFSN0420 sea floor depth below geoid "Depth_ below_ X" means the vertical distance below the named surface X. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean). In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. To specify which geoid or geopotential datum is being used as a reference level, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2017-07-24
TY6BSI8K sea floor depth below geopotential datum "Depth_ below_ X" means the vertical distance below the named surface X. The "geopotential datum" is any estimated surface of constant geopotential used as a datum i.e. a reference level; for the geoid as a datum, specific standard names are available. To specify which geoid or geopotential datum is being used as a reference level, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2017-07-24
G00MLQLO sea floor depth below mean sea level "Depth_ below_ X" means the vertical distance below the named surface X. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. 2017-06-26
JJ56NSBF sea floor depth below reference ellipsoid "Depth_ below_ X" means the vertical distance below the named surface X. A reference ellipsoid is a regular mathematical figure that approximates the irregular shape of the geoid. A number of reference ellipsoids are defined for use in the field of geodesy. To specify which reference ellipsoid is being used, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2017-07-24
CFSN0421 sea floor depth below sea level DEPRECATED sea_ level means mean sea level, which is close to the geoid in sea areas. 2017-06-26
CFV13N17 sea floor depth below sea surface The sea_ floor_ depth_ below_ sea_ surface is the vertical distance between the sea surface and the seabed as measured at a given point in space including the variance caused by tides and possibly waves. 2010-03-11
9ANNFYKT sea floor sediment age before 1950 "Sea floor sediment" is sediment deposited at the sea bed. "Sediment age" means the length of time elapsed since the sediment was deposited. The phrase "before_ 1950" is a transparent representation of the phrase "before_ present", often used in the geological and archaeological domains to refer to time elapsed between an event and 1950 AD. 2023-07-05
PU4I28NL sea floor sediment grain size The average size of grains (also known as particles) in a sediment sample. 2021-09-20
CFV10N34 sea ice albedo The albedo of sea ice. Albedo is the ratio of outgoing to incoming shortwave irradiance, where 'shortwave irradiance' means that both the incoming and outgoing radiation are integrated across the solar spectrum. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0422 sea ice amount "Amount" means mass per unit area. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFV16A35 sea ice and surface snow amount "Amount" means mass per unit area. Surface snow amount refers to the amount on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2021-01-18
CFSN0423 sea ice area "X_ area" means the horizontal area occupied by X within the grid cell. The extent of an individual grid cell is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of "region". "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0424 sea ice area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Sea ice area fraction is area of the sea surface occupied by sea ice. It is also called "sea ice concentration". "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2019-05-14
VNA6CUZ9 sea ice area transport across line Transport "across_ line" means that which crosses a particular line on the Earth's surface; formally this means the integral along the line of the normal component of the transport. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
EOVP797S sea ice average normal horizontal stress "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. Axial stress is the symmetric component of the tensor representing the gradient of internal forces (e.g. in ice). Horizontal stress refers to the stress in the horizontal plane. "Horizontal" refers to the local horizontal in the location of the sea ice, i.e., perpendicular to the local gravity vector. Average normal stress refers to the average of the diagonal elements of the stress tensor and represents the first invariant of stress. 2018-07-03
2GCI5QBG sea ice basal drag coefficient for momentum in sea water The quantity with standard name sea_ ice_ basal_ drag_ coefficient_ for_ momentum_ in_ sea_ water is used to calculate the oceanic momentum drag on sea ice movement. Basal drag is a resistive stress opposing ice flow at the boundary between sea ice and sea water. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
OGM8LAOH sea ice basal temperature "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The standard name sea_ ice_ basal_ temperature means the temperature of the sea ice at its lower boundary. 2018-07-03
IHCEHCDC sea ice classification A variable with the standard name of sea_ ice_ classification contains strings which indicate the character of the ice surface e.g. open_ ice, or first_ year_ ice. These strings have not yet been standardised. However, and whenever possible, they should follow the terminology defined in the WMO Standard Nomenclature for Sea Ice Classification. Alternatively, the data variable may contain integers which can be translated to strings using flag_ values and flag_ meanings attributes. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFV13N18 sea ice displacement DEPRECATED "Displacement" means the change in geospatial position of an object that has moved over time. If possible, the time interval over which the motion took place should be specified using a bounds variable for the time coordinate variable. A displacement can be represented as a vector. Such a vector should however not be interpreted as describing a rectilinear, constant speed motion but merely as an indication that the start point of the vector is found at the tip of the vector after the time interval associated with the displacement variable. A displacement does not prescribe a trajectory. Sea ice displacement can be defined as a two-dimensional vector, with no vertical component. In that case, "displacement" is also the distance across the earth's surface calculated from the change in a moving object's geospatial position between the start and end of the time interval associated with the displacement variable. 2010-07-26
CFSN0425 sea ice draft Sea ice draft is the depth of the sea-ice lower surface below the water surface. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0364 sea ice extent The term sea_ ice_ extent means the total area of all grid cells in which the sea ice area fraction equals or exceeds a threshold, often chosen to be 15 per cent. The threshold must be specified by supplying a coordinate variable or scalar coordinate variable with the standard name of sea_ ice_ area_ fraction. The horizontal domain over which sea ice extent is calculated is described by the associated coordinate variables and coordinate bounds or by a coordinate variable or scalar coordinate variable with the standard name of "region" supplied according to section 6.1.1 of the CF conventions. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
1I8JWDXM sea ice floe diameter "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. An ice floe is a flat expanse of sea ice, generally taken to be less than 10 km across. ice_ floe_ diameter corresponds to the diameter of a circle with the same area as the ice floe. 2021-09-20
CFSN0365 sea ice freeboard Sea ice freeboard is the height of the sea-ice upper surface above the water surface. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0366 sea ice mass The horizontal domain over which sea ice mass is calculated is described by the associated coordinate variables and coordinate bounds or by a coordinate variable or scalar coordinate variable with the standard name of "region" supplied according to section 6.1.1 of the CF conventions."Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
LSK38VMY sea ice mass content of salt "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. "Content" indicates a quantity per unit area. The "sea_ ice content" of a quantity refers to the vertical integral from the surface down to the bottom of the sea ice. 2018-07-03
NPFZGDL4 sea ice melt pond thickness "Thickness" means the vertical extent of a layer. Melt ponds occur on top of the existing sea ice. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFV16A36 sea ice salinity Sea ice salinity is the salt content of sea ice, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and normally given as 1e-3 or 0.001 i.e. parts per thousand. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0367 sea ice speed Speed is the magnitude of velocity. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFV16A37 sea ice surface temperature The surface temperature is the (skin) temperature at the interface, not the bulk temperature of the medium above or below. "Sea ice surface temperature" is the temperature that exists at the interface of sea ice and an overlying medium which may be air or snow. In areas of snow covered sea ice, sea_ ice_ surface_ temperature is not the same as the quantity with standard name surface_ temperature. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0368 sea ice temperature Sea ice temperature is the bulk temperature of the sea ice, not the surface (skin) temperature. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
RBBSI64N sea ice temperature expressed as heat content The quantity with standard name sea_ ice_ temperature_ expressed_ as_ heat_ content is calculated relative to the heat content of ice at zero degrees Celsius, which is assumed to have a heat content of zero Joules. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea ice multiplied by the temperature of the sea ice in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea ice the integral is assumed to be calculated over the full depth of the ice. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0369 sea ice thickness "Thickness" means the vertical extent of a layer. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0370 sea ice transport across line Transport across_ line means that which crosses a particular line on the Earth's surface; formally this means the integral along the line of the normal component of the transport. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0371 sea ice volume "X_ volume" means the volume occupied by X within the grid cell. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFV13N19 sea ice x displacement "x" indicates a vector component along the grid x-axis, positive with increasing x. "Displacement" means the change in geospatial position of an object that has moved over time. If possible, the time interval over which the motion took place should be specified using a bounds variable for the time coordinate variable. A displacement can be represented as a vector. Such a vector should however not be interpreted as describing a rectilinear, constant speed motion but merely as an indication that the start point of the vector is found at the tip of the vector after the time interval associated with the displacement variable. A displacement does not prescribe a trajectory. Sea ice displacement can be defined as a two-dimensional vector, with no vertical component. An x displacement is calculated from the difference in the moving object's grid x coordinate between the start and end of the time interval associated with the displacement variable. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
EUGZVLV3 sea ice x force per unit area due to coriolis effect "x" indicates a vector component along the grid x-axis, positive with increasing x. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In meteorology and oceanography, the Coriolis effect per unit mass arises solely from the earth's rotation and acts as a deflecting force, normal to the velocity, to the right of the motion in the Northern Hemisphere and to the left in the Southern Hemisphere. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Coriolis_ force. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
7L9HYMBD sea ice x force per unit area due to sea surface tilt "x" indicates a vector component along the grid x-axis, positive with increasing x. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Several factors contribute to differences in the ocean surface level, including uneven heating, salinity variations, and currents, especially near coastal regions or ice shelves. Differences in surface level result in sea-surface tilt, a force that influences the ice motion. Reference: National Snow and Ice Data Center https://nsidc.org/cryosphere/seaice/processes/dynamics.html. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
8CQOM1MT sea ice x internal stress "x" indicates a vector component along the grid x-axis, positive with increasing x. Internal ice stress is a measure of the compactness, or strength, of the ice. Internal ice stress usually acts as a resistance to the motion caused by the wind force. Reference: National Snow and Ice Data Center https://nsidc.org/cryosphere/seaice/processes/dynamics.html. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFV16A38 sea ice x transport "x" indicates a vector component along the grid x-axis, positive with increasing x. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0372 sea ice x velocity A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFV13N20 sea ice y displacement "y" indicates a vector component along the grid y-axis, positive with increasing y. "Displacement" means the change in geospatial position of an object that has moved over time. If possible, the time interval over which the motion took place should be specified using a bounds variable for the time coordinate variable. A displacement can be represented as a vector. Such a vector should however not be interpreted as describing a rectilinear, constant speed motion but merely as an indication that the start point of the vector is found at the tip of the vector after the time interval associated with the displacement variable. A displacement does not prescribe a trajectory. Sea ice displacement can be defined as a two-dimensional vector, with no vertical component. A y displacement is calculated from the difference in the moving object's grid y coordinate between the start and end of the time interval associated with the displacement variable. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
QZZSL9AU sea ice y force per unit area due to coriolis effect "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In meteorology and oceanography, the Coriolis effect per unit mass arises solely from the earth's rotation and acts as a deflecting force, normal to the velocity, to the right of the motion in the Northern Hemisphere and to the left in the Southern Hemisphere. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Coriolis_ force. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
YL3G576H sea ice y force per unit area due to sea surface tilt "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Several factors contribute to differences in the ocean surface level, including uneven heating, salinity variations, and currents, especially near coastal regions or ice shelves. Differences in surface level result in sea-surface tilt, a force that influences the ice motion. Reference: National Snow and Ice Data Center https://nsidc.org/cryosphere/seaice/processes/dynamics.html. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
MSG2N75O sea ice y internal stress "y" indicates a vector component along the grid y-axis, positive with increasing y. Internal ice stress is a measure of the compactness, or strength, of the ice. Internal ice stress usually acts as a resistance to the motion caused by the wind force. Reference: National Snow and Ice Data Center https://nsidc.org/cryosphere/seaice/processes/dynamics.html. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFV16A39 sea ice y transport "y" indicates a vector component along the grid y-axis, positive with increasing y. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0373 sea ice y velocity A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CF12N579 sea surface density Sea surface density is the density of sea water near the surface (including the part under sea-ice, if any). 2009-07-06
D8RHMOHX sea surface downward eastward stress due to dissipation of sea surface waves The surface called "sea surface" means the upper boundary of the ocean. "Surface stress" means the shear stress (force per unit area) exerted at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, surface stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Eastward" indicates a vector component which is positive when directed northward (negative southward). "Downward eastward" indicates the ZX component of a tensor. A downward eastward stress is a downward flux of eastward momentum, which accelerates the lower medium eastward and the upper medium westward. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The phrase "dissipation_ of_ sea_ surface_ waves" means the stress associated with sea surface waves dissipation processes such as whitecapping. 2021-09-20
YJQD4FZS sea surface downward northward stress due to dissipation of sea surface waves The surface called "sea surface" means the upper boundary of the ocean. "Surface stress" means the shear stress (force per unit area) exerted at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, surface stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Northward" indicates a vector component which is positive when directed northward (negative southward). "Downward northward" indicates the ZY component of a tensor. A downward northward stress is a downward flux of northward momentum, which accelerates the lower medium northward and the upper medium southward. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The phrase "dissipation_ of_ sea_ surface_ waves" means the stress associated with sea surface waves dissipation processes such as whitecapping. 2021-09-20
CFSNA025 sea surface elevation DEPRECATED The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean.) In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. 'Sea surface height' is a time-varying quantity. By definition of the geoid, the global average of the time-mean sea surface height (i.e. mean sea level) above the geoid must be zero. The standard name for the height of the sea surface above mean sea level is sea_ surface_ height_ above_ sea_ level. 2006-09-26
CFSNA026 sea surface elevation anomaly DEPRECATED The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean.) In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. 'Sea surface height' is a time-varying quantity. By definition of the geoid, the global average of the time-mean sea surface height (i.e. mean sea level) above the geoid must be zero. The standard name for the height of the sea surface above mean sea level is sea_ surface_ height_ above_ sea_ level. 2006-09-26
CFV9N1 sea surface foundation temperature The sea surface foundation temperature is the water temperature that is not influenced by a thermally stratified layer of diurnal temperature variability (either by daytime warming or nocturnal cooling). The foundation temperature is named to indicate that it is the temperature from which the growth of the diurnal thermocline develops each day, noting that on some occasions with a deep mixed layer there is no clear foundation temperature in the surface layer. In general, sea surface foundation temperature will be similar to a night time minimum or pre-dawn value at depths of between approximately 1 and 5 meters. In the absence of any diurnal signal, the foundation temperature is considered equivalent to the quantity with standard name sea_ surface_ subskin_ temperature. The sea surface foundation temperature defines a level in the upper water column that varies in depth, space, and time depending on the local balance between thermal stratification and turbulent energy and is expected to change slowly over the course of a day. If possible, a data variable with the standard name sea_ surface_ foundation_ temperature should be used with a scalar vertical coordinate variable to specify the depth of the foundation level. Sea surface foundation temperature is measured at the base of the diurnal thermocline or as close to the water surface as possible in the absence of thermal stratification. Only in situ contact thermometry is able to measure the sea surface foundation temperature. Analysis procedures must be used to estimate sea surface foundation temperature value from radiometric satellite measurements of the quantities with standard names sea_ surface_ skin_ temperature and sea_ surface_ subskin_ temperature. Sea surface foundation temperature provides a connection with the historical concept of a "bulk" sea surface temperature considered representative of the oceanic mixed layer temperature that is typically represented by any sea temperature measurement within the upper ocean over a depth range of 1 to approximately 20 meters. The general term, "bulk" sea surface temperature, has the standard name sea_ surface_ temperature with no associated vertical coordinate axis. Sea surface foundation temperature provides a more precise, well defined quantity than "bulk" sea surface temperature and, consequently, is more representative of the mixed layer temperature. The temperature of sea water at a particular depth (other than the foundation level) should be reported using the standard name sea_ water_ temperature and, wherever possible, supplying a vertical coordinate axis or scalar coordinate variable. 2017-07-24
CFSNA013 sea surface height DEPRECATED sea_ level means mean sea level, which is close to the geoid in sea areas. 'Sea surface height' is a time-varying quantity. The standard name for the height of the sea surface above the geoid is sea_ surface_ height_ above_ geoid. 2006-09-26
CFSN0374 sea surface height above geoid "Height_ above_ X" means the vertical distance above the named surface X. "Sea surface height" is a time-varying quantity. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean). In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. To specify which geoid or geopotential datum is being used as a reference level, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. By definition of the geoid, the global average of the time-mean sea surface height (i.e. mean sea level) above the geoid must be zero. The standard name for the height of the sea surface above mean sea level is sea_ surface_ height_ above_ mean_ sea_ level. The standard name for the height of the sea surface above the reference ellipsoid is sea_ surface_ height_ above_ reference_ ellipsoid. 2017-07-24
ZEP7E2DN sea surface height above geopotential datum "Height_ above_ X" means the vertical distance above the named surface X. "Sea surface height" is a time-varying quantity. The "geopotential datum" is any estimated surface of constant geopotential used as a datum i.e. a reference level; for the geoid as a datum, specific standard names are available. To specify which geoid or geopotential datum is being used as a reference level, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2017-07-24
GYTUBB9R sea surface height above mean sea level "Sea surface height" is a time-varying quantity. "Height_ above_ X" means the vertical distance above the named surface X. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. The standard name for the height of the sea surface above the geoid is sea_ surface_ height_ above_ geoid. The standard name for the height of the sea surface above the reference ellipsoid is sea_ surface_ height_ above_ reference_ ellipsoid. 2017-06-26
CFSN0777 sea surface height above reference ellipsoid "Height_ above_ X" means the vertical distance above the named surface X. "Sea surface height" is a time-varying quantity. A reference ellipsoid is a regular mathematical figure that approximates the irregular shape of the geoid. A number of reference ellipsoids are defined for use in the field of geodesy. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. To specify which reference ellipsoid is being used, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. The standard name for the height of the sea surface above the geoid is sea_ surface_ height_ above_ geoid. The standard name for the height of the sea surface above mean sea level is sea_ surface_ height_ above_ mean_ sea_ level. 2017-07-24
CFSN0375 sea surface height above sea level DEPRECATED sea_ level means mean sea level, which is close to the geoid in sea areas. 'Sea surface height' is a time-varying quantity. The standard name for the height of the sea surface above the geoid is sea_ surface_ height_ above_ geoid. 2017-06-26
CFV10N35 sea surface height amplitude due to earth tide The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Tides are a significant contributor to the observed sea surface height; earth tide means the solid earth tide. 2008-10-21
CFV10N36 sea surface height amplitude due to equilibrium ocean tide The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Tides are a significant contributor to the observed sea surface height; equilibrium ocean tide refers to the long period ocean tide. 2008-10-21
CFV10N37 sea surface height amplitude due to geocentric ocean tide The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Tides are a significant contributor to the observed sea surface height; geocentric ocean tide means the sum total of ocean tide and load tide. 2008-10-21
CFV10N38 sea surface height amplitude due to non equilibrium ocean tide The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Tides are a significant contributor to the observed sea surface height; non equilibrium ocean tide refers to the long period ocean tide. 2008-10-21
CFV10N39 sea surface height amplitude due to pole tide The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Tides are a significant contributor to the observed sea surface height; the pole tide occurs due to variations in the earth's rotation. 2008-10-21
CFV10N40 sea surface height bias due to sea surface roughness Altimeter pulses tend to be more strongly reflected by the troughs of sea surface waves than by the crests leading to a bias in the measured sea surface height. This quantity is commonly known as "sea state bias". "Sea surface height" is a time-varying quantity. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2019-03-04
CFV10N41 sea surface height correction due to air pressure and wind at high frequency The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Air pressure and wind at high frequency" means variations in air pressure with periods shorter than 20 days. These give rise to corresponding variations in sea surface topography. The quantity sea_ surface_ height_ correction_ due_ to_ air_ pressure_ and_ wind_ at_ high_ frequency should be applied by adding it to the quantity with standard name altimeter_ range. Additional altimeter range corrections are given by the quantities with standard names altimeter_ range_ correction_ due_ to_ wet_ troposphere, altimeter_ range_ correction_ due_ to_ dry_ troposphere, altimeter_ range_ correction_ due_ to_ ionosphere and sea_ surface_ height_ correction_ due_ to_ air_ pressure_ at_ low_ frequency. 2008-10-21
CFV10N42 sea surface height correction due to air pressure at low frequency The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Air pressure at low frequency" means variations in air pressure with periods longer than 20 days. These give rise to corresponding variations in sea surface topography. The quantity sea_ surface_ height_ correction_ due_ to_ air_ pressure_ at_ low_ frequency is commonly called the "inverted barometer effect" and the correction should be applied by adding it to the quantity with standard name altimeter_ range. Additional altimeter range corrections are given by the quantities with standard names altimeter_ range_ correction_ due_ to_ wet_ troposphere, altimeter_ range_ correction_ due_ to_ dry_ troposphere, altimeter_ range_ correction_ due_ to_ ionosphere and sea_ surface_ height_ correction_ due_ to_ air_ pressure_ and_ wind_ at_ high_ frequency. 2008-10-21
LMTQZUG9 sea surface infragravity wave significant height Significant wave height is a statistic computed from wave measurements and corresponds to the average height of the highest one third of the waves, where the height is defined as the vertical distance from a wave trough to the following wave crest. Infragravity waves are waves occurring in the frequency range 0.04 to 0.004 s^-1 (wave periods of 25 to 250 seconds). 2023-02-06
85ISLTTF sea surface mean square crosswave slope Wave slope describes an aspect of sea surface wave geometry related to sea surface roughness. Mean square slope describes a derivation over multiple waves within a sea-state, for example calculated from moments of the wave directional spectrum. The phrase "crosswave_ slope" means that slope values are derived from vector components across (normal to) the axis from which waves are travelling. The primary directional axis along which wave energy associated with the slope calculation is travelling has the standard name sea_ surface_ mean_ square_ upwave_ slope_ direction. 2018-10-15
CLERVFHJ sea surface mean square upwave slope Wave slope describes an aspect of sea surface wave geometry related to sea surface roughness. Mean square slope describes a derivation over multiple waves within a sea-state, for example calculated from moments of the wave directional spectrum. The phrase "upwave_ slope" means that slope values are derived from vector components along (parallel to) the axis from which waves are travelling. The primary directional axis along which wave energy associated with the slope calculation is travelling has the standard name sea_ surface_ mean_ square_ upwave_ slope_ direction. 2018-10-15
GQ3HGVX5 sea surface mean square upwave slope direction Wave slope describes an aspect of sea surface wave geometry related to sea surface roughness. Mean square slope describes a derivation over multiple waves within a sea-state, for example calculated from moments of the wave directional spectrum. The phrase "upwave_ slope_ direction" is used to assign a primary directional axis along which wave energy associated with the slope calculation is travelling; "upwave" is equivalent to "from_ direction" which is used in some standard names. 2018-10-15
F9MFZ76N sea surface primary swell wave directional spread The quantity with standard name sea_ surface_ primary_ swell_ wave_ directional_ spread is the directional width of the primary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The primary swell wave is the most energetic swell wave. Directional spread is the (one-sided) directional width within a given sub-domain of the wave directional spectrum, S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. For a given mean wave (beam) direction the quantity approximates half the root mean square width about the beam axis, as derived either directly from circular moments or via the Fourier components of the wave directional spectrum. 2018-08-06
M0F12FKW sea surface primary swell wave energy at variance spectral density maximum The quantity with standard name sea_ surface_ primary_ swell_ wave_ energy_ at_ variance_ spectral_ density_ maximum is the energy of the most energetic waves within the primary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The primary swell wave is the most energetic swell wave. The phrase "wave_ energy_ at_ variance_ spectral_ density_ maximum", sometimes called peak wave energy, describes the maximum value of the wave_ variance_ spectral_ density within a given sub-domain of the wave spectrum. 2018-08-06
PZU87D8A sea surface primary swell wave from direction The quantity with standard name sea_ surface_ primary_ swell_ wave_ from_ direction is the direction from which the most energetic swell waves are coming. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The primary swell wave is the most energetic swell wave. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2017-03-27
HEXD0ZQ7 sea surface primary swell wave from direction at variance spectral density maximum The quantity with standard name sea_ surface_ primary_ swell_ wave_ from_ direction_ at_ variance_ spectral_ density_ maximum is the direction from which the most energetic waves are coming in the primary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The primary swell wave is the most energetic swell wave in the low frequency portion of a bimodal wave frequency spectrum. The spectral peak is the most energetic wave in the wave spectrum partition. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. The wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. 2020-02-03
60QCHKZK sea surface primary swell wave mean period The quantity with standard name sea_ surface_ primary_ swell_ wave_ mean_ period is the mean period of the most energetic swell waves. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The primary swell wave is the most energetic swell wave. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. Wave mean period is the mean period measured over the observation duration. 2017-03-27
XNYIDNIT sea surface primary swell wave period at variance spectral density maximum The quantity with standard name sea_ surface_ primary_ swell_ wave_ period_ at_ variance_ spectral_ density_ maximum is the period of the most energetic waves within the primary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The primary swell wave is the most energetic swell wave. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. The phrase "wave_ period_ at_ variance_ spectral_ density_ maximum", sometimes called peak wave period, describes the period of the most energetic waves within a given sub-domain of the wave spectrum. 2018-08-06
62Q37UQE sea surface primary swell wave significant height Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The primary swell wave is the most energetic swell wave. Significant wave height is a statistic computed from wave measurements and corresponds to the average height of the highest one third of the waves, where the height is defined as the vertical distance from a wave trough to the following wave crest. 2016-07-19
CFSN0376 sea surface salinity Sea surface salinity is the salt content of sea water close to the sea surface, often on the Practical Salinity Scale of 1978. However, the unqualified term &amp;apos;salinity&amp;apos; is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand. Sea surface salinity is often abbreviated as "SSS". For the salinity of sea water at a particular depth or layer, a data variable of "sea_ water_ salinity" or one of the more precisely defined salinities should be used with a vertical coordinate axis. There are standard names for the precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2012-04-27
4XZV20IR sea surface secondary swell wave directional spread The quantity with standard name sea_ surface_ secondary_ swell_ wave_ directional_ spread is the directional width of the secondary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The secondary swell wave is the second most energetic wave in the low frequency portion of a bimodal wave frequency spectrum. Directional spread is the (one-sided) directional width within a given sub-domain of the wave directional spectrum, S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. For a given mean wave (beam) direction the quantity approximates half the root mean square width about the beam axis, as derived either directly from circular moments or via the Fourier components of the wave directional spectrum. 2018-08-06
HZYG4E78 sea surface secondary swell wave energy at variance spectral density maximum The quantity with standard name sea_ surface_ secondary_ swell_ wave_ energy_ at_ variance_ spectral_ density_ maximum is the energy of the most energetic waves within the secondary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The secondary swell wave is the second most energetic wave in the low frequency portion of a bimodal wave frequency spectrum. The phrase "wave_ energy_ at_ variance_ spectral_ density_ maximum", sometimes called peak wave energy, describes the maximum value of the wave_ variance_ spectral_ density within a given sub-domain of the wave spectrum. 2018-08-06
XR5G1631 sea surface secondary swell wave from direction The quantity with standard name sea_ surface_ secondary_ swell_ wave_ from_ direction is the direction from which the second most energetic swell waves are coming. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The secondary swell wave is the second most energetic wave in the low frequency portion of a bimodal wave frequency spectrum. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2017-03-27
0UJ6J2B3 sea surface secondary swell wave from direction at variance spectral density maximum The quantity with standard name sea_ surface_ secondary_ swell_ wave_ from_ direction_ at_ variance_ spectral_ density_ maximum is the direction from which the most energetic waves are coming in the secondary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The secondary swell wave is the second most energetic wave in the low frequency portion of a bimodal wave frequency spectrum. The spectral peak is the most energetic wave in the wave spectrum partition. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. The wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. 2020-02-03
3X5X86V6 sea surface secondary swell wave mean period The quantity with standard name sea_ surface_ secondary_ swell_ wave_ mean_ period is the mean period of the second most energetic swell waves. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The secondary swell wave is the second most energetic wave in the low frequency portion of a bimodal wave frequency spectrum. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. Wave mean period is the mean period measured over the observation duration. 2017-03-27
TKJ80PUK sea surface secondary swell wave period at variance spectral density maximum The quantity with standard name sea_ surface_ secondary_ swell_ wave_ period_ at_ variance_ spectral_ density_ maximum is the period of the most energetic waves within the secondary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The secondary swell wave is the second most energetic wave in the low frequency portion of a bimodal wave frequency spectrum. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. The phrase "wave_ period_ at_ variance_ spectral_ density_ maximum", sometimes called peak wave period, describes the period of the most energetic waves within a given sub-domain of the wave spectrum. 2018-08-06
WHOJ1OG4 sea surface secondary swell wave significant height Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The secondary swell wave is the second most energetic wave in the low frequency portion of a bimodal wave frequency spectrum. Significant wave height is a statistic computed from wave measurements and corresponds to the average height of the highest one third of the waves, where the height is defined as the vertical distance from a wave trough to the following wave crest. 2016-07-19
CFV9N2 sea surface skin temperature The sea surface skin temperature is the temperature measured by an infrared radiometer typically operating at wavelengths in the range 3.7 - 12 micrometers. It represents the temperature within the conductive diffusion-dominated sub-layer at a depth of approximately 10 - 20 micrometers below the air-sea interface. Measurements of this quantity are subject to a large potential diurnal cycle including cool skin layer effects (especially at night under clear skies and low wind speed conditions) and warm layer effects in the daytime. 2017-07-24
CFV9N3 sea surface subskin temperature The sea surface subskin temperature is the temperature at the base of the conductive laminar sub-layer of the ocean surface, that is, at a depth of approximately 1 - 1.5 millimeters below the air-sea interface. For practical purposes, this quantity can be well approximated to the measurement of surface temperature by a microwave radiometer operating in the 6 - 11 gigahertz frequency range, but the relationship is neither direct nor invariant to changing physical conditions or to the specific geometry of the microwave measurements. Measurements of this quantity are subject to a large potential diurnal cycle due to thermal stratification of the upper ocean layer in low wind speed high solar irradiance conditions. 2017-07-24
FVNLHC0H sea surface swell wave directional spread The quantity with standard name sea_ surface_ swell_ wave_ directional_ spread is the directional width of the swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. Directional spread is the (one-sided) directional width within a given sub-domain of the wave directional spectrum, S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. For a given mean wave (beam) direction the quantity approximates half the root mean square width about the beam axis, as derived either directly from circular moments or via the Fourier components of the wave directional spectrum. 2020-02-03
USFDMNK3 sea surface swell wave from direction Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2017-03-27
KZRZCYPD sea surface swell wave from direction at variance spectral density maximum The quantity with standard name sea_ surface_ swell_ wave_ from_ direction_ at_ variance_ spectral_ density_ maximum is the direction from which the most energetic waves are coming in the swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The spectral peak is the most energetic wave in the wave spectrum partition. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. The swell wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. 2020-02-03
8WMKETJA sea surface swell wave mean period A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. Wave mean period is the mean period measured over the observation duration. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. 2017-03-27
CFV8N70 sea surface swell wave mean period from variance spectral density first frequency moment The swell wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S can be integrated over direction to give S1= integral(S dtheta). Frequency moments, M(n) of S1 can then be calculated as follows: M(n) = integral(S1 f^n df), where f^n is f to the power of n. The first wave period, T(m1), is calculated as the ratio M(0)/M(1). 2008-04-15
CFV8N71 sea surface swell wave mean period from variance spectral density inverse frequency moment The swell wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S can be integrated over direction to give S1= integral(S dtheta). Frequency moments, M(n) of S1 can then be calculated as follows: M(n) = integral(S1 f^n df), where f^n is f to the power of n. The inverse wave period, T(m-1), is calculated as the ratio M(-1)/M(0). 2008-04-15
CFV8N72 sea surface swell wave mean period from variance spectral density second frequency moment The swell wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S can be integrated over direction to give S1= integral(S dtheta). Frequency moments, M(n) of S1 can then be calculated as follows: M(n) = integral(S1 f^n df), where f^n is f to the power of n. The second wave period, T(m2), is calculated as the square root of the ratio M(0)/M(2). 2008-04-15
CFSN0377 sea surface swell wave period A period is an interval of time, or the time-period of an oscillation. Swell waves are waves on the ocean surface. 2006-09-26
SWHZTDD9 sea surface swell wave period at variance spectral density maximum The quantity with standard name sea_ surface_ swell_ wave_ period_ at_ variance_ spectral_ density_ maximum is the period of the most energetic waves within the swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. The phrase "wave_ period_ at_ variance_ spectral_ density_ maximum", sometimes called peak wave period, describes the period of the most energetic waves within a given sub-domain of the wave spectrum. 2020-02-03
CFSN0378 sea surface swell wave significant height Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. Significant wave height is a statistic computed from wave measurements and corresponds to the average height of the highest one third of the waves, where the height is defined as the vertical distance from a wave trough to the following wave crest. 2016-07-19
CFSN0379 sea surface swell wave to direction Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The phrase "to_ direction" is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2017-03-27
CFSN0380 sea surface swell wave zero upcrossing period DEPRECATED A period is an interval of time, or the time-period of an oscillation. The zero upcrossing period is defined as the time interval between consecutive occasions on which the surface height passes upward above the mean level. Swell waves are waves on the ocean surface. 2017-03-27
CFSN0381 sea surface temperature Sea surface temperature is usually abbreviated as "SST". It is the temperature of sea water near the surface (including the part under sea-ice, if any). More specific terms, namely sea_ surface_ skin_ temperature, sea_ surface_ subskin_ temperature, and surface_ temperature are available for the skin, subskin, and interface temperature. respectively. For the temperature of sea water at a particular depth or layer, a data variable of sea_ water_ temperature with a vertical coordinate axis should be used. 2019-03-04
7MDP5HXC sea surface tertiary swell wave directional spread The quantity with standard name sea_ surface_ tertiary_ swell_ wave_ directional_ spread is the directional width of the tertiary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The tertiary swell wave is the third most energetic swell wave. Directional spread is the (one-sided) directional width within a given sub-domain of the wave directional spectrum, S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. For a given mean wave (beam) direction the quantity approximates half the root mean square width about the beam axis, as derived either directly from circular moments or via the Fourier components of the wave directional spectrum. 2018-08-06
1LT17N1B sea surface tertiary swell wave energy at variance spectral density maximum The quantity with standard name sea_ surface_ tertiary_ swell_ wave_ energy_ at_ variance_ spectral_ density_ maximum is the energy of the most energetic waves within the tertiary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The tertiary swell wave is the third most energetic swell wave. The phrase "wave_ energy_ at_ variance_ spectral_ density_ maximum", sometimes called peak wave energy, describes the maximum value of the wave_ variance_ spectral_ density within a given sub-domain of the wave spectrum. 2018-08-06
8IYTGFU4 sea surface tertiary swell wave from direction The quantity with standard name sea_ surface_ tertiary_ swell_ wave_ from_ direction is the direction from which the third most energetic swell waves are coming. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The tertiary swell wave is the third most energetic swell wave. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2018-08-06
2RVRF04V sea surface tertiary swell wave from direction at variance spectral density maximum The quantity with standard name sea_ surface_ tertiary_ swell_ wave_ from_ direction_ at_ variance_ spectral_ density_ maximum is the direction from which the most energetic waves are coming in the tertiary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The tertiary swell wave is the third most energetic swell wave in the low frequency portion of a bimodal wave frequency spectrum. The spectral peak is the most energetic wave in the wave spectrum partition. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. The wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. 2020-02-03
ADMH9217 sea surface tertiary swell wave mean period The quantity with standard name sea_ surface_ tertiary_ swell_ wave_ mean_ period is the mean period of the third most energetic swell waves. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The tertiary swell wave is the third most energetic swell wave. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. Wave mean period is the mean period measured over the observation duration. 2018-08-06
K1FILD7R sea surface tertiary swell wave period at variance spectral density maximum The quantity with standard name sea_ surface_ tertiary_ swell_ wave_ period_ at_ variance_ spectral_ density_ maximum is the period of the most energetic waves within the tertiary swell wave component of a sea. Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The tertiary swell wave is the third most energetic swell wave. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. The phrase "wave_ period_ at_ variance_ spectral_ density_ maximum", sometimes called peak wave period, describes the period of the most energetic waves within a given sub-domain of the wave spectrum. 2018-08-06
VKBFPUCH sea surface tertiary swell wave significant height Swell waves are waves on the ocean surface and are the low frequency portion of a bimodal wave frequency spectrum. The tertiary swell wave is the third most energetic swell wave. Significant wave height is a statistic computed from wave measurements and corresponds to the mean height of the highest one third of the waves, where the height is defined as the vertical distance from a wave trough to the following wave crest. 2018-08-06
P9IY6NIQ sea surface wave directional spread Directional spread is the (one-sided) directional width within a given sub-domain of the wave directional spectrum, S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. For a given mean wave (beam) direction the quantity approximates half the root mean square width about the beam axis, as derived either directly from circular moments or via the Fourier components of the wave directional spectrum. 2018-08-06
X37RPE7M sea surface wave directional spread at variance spectral density maximum The quantity with standard name sea_ surface_ wave_ directional_ spread_ at_ variance_ spectral_ density_ maximum is the directional spread of the most energetic waves. Directional spread is the (one-sided) directional width within a given sub-domain of the wave directional spectrum, S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. For a given mean wave (beam) direction the quantity approximates half the root mean square width about the beam axis, as derived either directly from circular moments or via the Fourier components of the wave directional spectrum. 2018-11-12
CFSN0382 sea surface wave directional variance spectral density Sea surface wave directional variance spectral density is the variance of the amplitude of the waves within given ranges of direction and wave frequency. 2006-09-26
5Q0EA19T sea surface wave energy at variance spectral density maximum The wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. The quantity with standard name sea_ surface_ wave_ energy_ at_ variance_ spectral_ density_ maximum, sometimes called peak wave energy, is the maximum value of the variance spectral density (max(S1)). 2017-03-27
CFSN0383 sea surface wave frequency DEPRECATED Frequency is the number of oscillations of a wave per unit time. 2008-04-15
QJVR8C23 sea surface wave frequency at variance spectral density maximum Frequency is the number of oscillations of a wave per unit time. The sea_ surface_ wave_ frequency_ at_ variance_ spectral_ density_ maximum is the frequency of the most energetic waves in the total wave spectrum at a specific location. The wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. 2023-02-06
CFSN0384 sea surface wave from direction The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2017-03-27
I8P5MQ0F sea surface wave from direction at variance spectral density maximum The quantity with standard name sea_ surface_ wave_ from_ direction_ at_ variance_ spectral_ density_ maximum is the direction from which the most energetic waves are coming. The spectral peak is the most energetic wave in the total wave spectrum. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. The wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. 2017-03-27
UFJCG1TB sea surface wave maximum crest height The crest is the highest point of a wave. Crest height is the vertical distance between the crest and the calm sea surface. Maximum crest height is the maximum value measured during the observation period. 2016-07-19
JNQS0CMX sea surface wave maximum height Wave height is defined as the vertical distance from a wave trough to the following wave crest. The maximum wave height is the greatest trough to crest distance measured during the observation period. 2016-07-19
E41IV2XW sea surface wave maximum period The maximum wave period is the longest wave period measured during the observation period. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. 2017-03-27
RJVTH20O sea surface wave maximum steepness Wave steepness is defined as the ratio of the wave height divided by the wavelength. Maximum wave steepness is the maximum value measured during the observation period. Wave height is defined as the vertical distance from a wave trough to the following wave crest. The wavelength is the horizontal distance between repeated features on the waveform such as crests, troughs or upward passes through the mean level. 2017-03-27
IWJNFWBF sea surface wave maximum trough depth The trough is the lowest point of a wave. Trough depth is the vertical distance between the trough and the calm sea surface. Maximum trough depth is the maximum value measured during the observation period. 2016-07-19
IRPTM00V sea surface wave mean height Wave height is defined as the vertical distance from a wave trough to the following wave crest. The mean wave height is the mean trough to crest distance measured during the observation period. 2016-07-19
WVROIAKU sea surface wave mean height of highest tenth Wave height is defined as the vertical distance from a wave trough to the following wave crest. The height of the highest tenth is defined as the mean of the highest ten per cent of trough to crest distances measured during the observation period. 2016-07-19
SUM7H3HM sea surface wave mean period A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. Wave mean period is the mean period measured over the observation duration. 2017-03-27
CFV8N73 sea surface wave mean period from variance spectral density first frequency moment The wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. Frequency moments, M(n) of S1 can then be calculated as follows: M(n) = integral(S1 f^n df), where f^n is f to the power of n. The first wave period, T(m1) is calculated as the ratio M(0)/M(1). 2008-04-15
CFV8N74 sea surface wave mean period from variance spectral density inverse frequency moment The wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. Frequency moments, M(n) of S1 can then be calculated as follows: M(n) = integral(S1 f^n df), where f^n is f to the power of n. The inverse wave period, T(m-1), is calculated as the ratio M(-1)/M(0). 2008-04-15
CFV8N75 sea surface wave mean period from variance spectral density second frequency moment The wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. Frequency moments, M(n) of S1 can then be calculated as follows: M(n) = integral(S1 f^n df), where f^n is f to the power of n. The second wave period, T(m2) is calculated as the square root of the ratio M(0)/M(2). 2008-04-15
N532TGCF sea surface wave mean period of highest tenth Wave mean period is the mean period measured over the observation duration. The quantity with standard name sea_ surface_ wave_ mean_ period_ of_ highest_ tenth is the mean period of the highest one-tenth of waves during the observation duration. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. 2017-03-27
Y7OPS9U4 sea surface wave mean square slope Wave slope describes an aspect of sea surface wave geometry related to sea surface roughness. Mean square slope describes a derivation over multiple waves within a sea-state, for example calculated from moments of the wave directional spectrum. 2018-10-15
RK9C1CMU sea surface wave mean square x slope Wave slope describes an aspect of sea surface wave geometry related to sea surface roughness. Mean square slope describes a derivation over multiple waves within a sea-state, for example calculated from moments of the wave directional spectrum. The phrase "x_ slope" indicates that slope values are derived from vector components along the grid x-axis. 2018-10-15
MD1VQZV3 sea surface wave mean square y slope Wave slope describes an aspect of sea surface wave geometry related to sea surface roughness. Mean square slope describes a derivation over multiple waves within a sea-state, for example calculated from moments of the wave directional spectrum. The phrase "y_ slope" indicates that slope values are derived from vector components along the grid y-axis. 2018-10-15
05YLQ0LQ sea surface wave mean wavelength from variance spectral density inverse wavenumber moment The wave directional spectrum can be written as a five dimensional function S(t,x,y,k,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), k is wavenumber and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. Wavenumber is the number of oscillations of a wave per unit distance. Wavenumber moments, M(n) of S1 can then be calculated as follows: M(n) = integral(S1 k^n dk), where k^n is k to the power of n. The inverse wave wavenumber, k(m-1), is calculated as the ratio M(-1)/M(0). The wavelength is the horizontal distance between repeated features on the waveform such as crests, troughs or upward passes through the mean level. 2023-02-06
ZDRFFML2 sea surface wave mean wavenumber from variance spectral density first wavenumber moment The wave directional spectrum can be written as a five dimensional function S(t,x,y,k,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), k is wavenumber and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. Wavenumber is the number of oscillations of a wave per unit distance. Wavenumber moments, M(n) of S1 can then be calculated as follows: M(n) = integral(S1 k^n dk), where k^n is k to the power of n. The mean wavenumber, k(1), is calculated as the ratio M(1)/M(0). 2021-09-20
CFV13N31 sea surface wave period at variance spectral density maximum A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. The sea_ surface_ wave_ period_ at_ variance_ spectral_ density_ maximum, sometimes called peak wave period, is the period of the most energetic waves in the total wave spectrum at a specific location. The wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. 2023-02-06
OCVYVB2M sea surface wave period of highest wave Wave period of the highest wave is the period determined from wave crests corresponding to the greatest vertical distance above mean level during the observation period. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. 2017-03-27
CFSN0385 sea surface wave significant height Significant wave height is a statistic computed from wave measurements and corresponds to the average height of the highest one third of the waves, where the height is defined as the vertical distance from a wave trough to the following wave crest. 2016-07-19
HEKWBIH1 sea surface wave significant period Significant wave period is a statistic computed from wave measurements and corresponds to the mean wave period of the highest one third of the waves. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. 2017-03-27
CADOXYZP sea surface wave stokes drift eastward velocity A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). The Stokes drift velocity is the average velocity when following a specific fluid parcel as it travels with the fluid flow. For instance, a particle floating at the free surface of water waves, experiences a net Stokes drift velocity in the direction of wave propagation. 2019-12-09
VSG2EG94 sea surface wave stokes drift northward velocity A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). The Stokes drift velocity is the average velocity when following a specific fluid parcel as it travels with the fluid flow. For instance, a particle floating at the free surface of water waves, experiences a net Stokes drift velocity in the direction of wave propagation. 2019-12-09
XTO8ZRGA sea surface wave stokes drift speed The Stokes drift velocity is the average velocity when following a specific fluid parcel as it travels with the fluid flow. For instance, a particle floating at the free surface of water waves, experiences a net Stokes drift velocity in the direction of wave propagation. Speed is the magnitude of velocity. 2019-12-09
YG8YRT0X sea surface wave stokes drift to direction The Stokes drift velocity is the average velocity when following a specific fluid parcel as it travels with the fluid flow. For instance, a particle floating at the free surface of water waves, experiences a net Stokes drift velocity in the direction of wave propagation. The phrase "to_ direction" is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2019-12-09
OW7KJRXV sea surface wave stokes drift x velocity A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. The Stokes drift velocity is the average velocity when following a specific fluid parcel as it travels with the fluid flow. For instance, a particle floating at the free surface of water waves, experiences a net Stokes drift velocity in the direction of wave propagation. 2015-07-08
UPGWHKDY sea surface wave stokes drift y velocity A velocity is a vector quantity. "y" indicates a vector component along the grid x-axis, positive with increasing y. The Stokes drift velocity is the average velocity when following a specific fluid parcel as it travels with the fluid flow. For instance, a particle floating at the free surface of water waves, experiences a net Stokes drift velocity in the direction of wave propagation. 2015-07-08
CFSN0386 sea surface wave to direction The phrase "to_ direction" is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2017-03-27
CFSN0387 sea surface wave variance spectral density Sea surface wave variance spectral density is the variance of wave amplitude within a range of wave frequency. 2006-09-26
83LYP56N sea surface wave xx radiation stress "Sea surface wave radiation stress" describes the excess momentum flux caused by sea surface waves. Radiation stresses behave as a second-order tensor. "xx" indicates the component of the tensor along the grid x_ axis. 2021-09-20
5O9YJ2L7 sea surface wave xy radiation stress "Sea surface wave radiation stress" describes the excess momentum flux caused by sea surface waves. Radiation stresses behave as a second-order tensor. "xy" indicates the lateral contributions to x_ and y_ components of the tensor. 2021-09-20
5ORVO6LQ sea surface wave yy radiation stress "Sea surface wave radiation stress" describes the excess momentum flux caused by sea surface waves. Radiation stresses behave as a second-order tensor. "yy" indicates the component of the tensor along the grid y_ axis. 2021-09-20
CFSN0388 sea surface wave zero upcrossing period DEPRECATED A period is an interval of time, or the time-period of an oscillation. The zero upcrossing period is defined as the time interval between consecutive occasions on which the surface height passes upward above the mean level. 2017-03-27
PRXS8T3Y sea surface wind wave directional spread The quantity with standard name sea_ surface_ wind_ wave_ directional_ spread is the directional width of the wind wave component of a sea. Wind waves are waves on the ocean surface and are the high frequency portion of a bimodal wave frequency spectrum. Directional spread is the (one-sided) directional width within a given sub-domain of the wave directional spectrum, S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. For a given mean wave (beam) direction the quantity approximates half the root mean square width about the beam axis, as derived either directly from circular moments or via the Fourier components of the wave directional spectrum. 2018-08-06
TM3AH28X sea surface wind wave energy at variance spectral density maximum The quantity with standard name sea_ surface_ wind_ wave_ energy_ at_ variance_ spectral_ density_ maximum is the energy of the most energetic waves within the wind wave component of a sea. Wind waves are waves on the ocean surface and are the high frequency portion of a bimodal wave frequency spectrum. The phrase "wave_ energy_ at_ variance_ spectral_ density_ maximum", sometimes called peak wave energy, describes the maximum value of the wave_ variance_ spectral_ density within a given sub-domain of the wave spectrum. 2018-08-06
SXTKCAH2 sea surface wind wave from direction Wind waves are waves on the ocean surface and are the high frequency portion of a bimodal wave frequency spectrum. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2017-03-27
E91KVDAN sea surface wind wave from direction at variance spectral density maximum The quantity with standard name sea_ surface_ wind_ wave_ from_ direction_ at_ variance_ spectral_ density_ maximum is the direction from which the most energetic waves are coming in the wind wave component of a sea. Wind waves are waves on the ocean surface and are the high frequency portion of a bimodal wave frequency spectrum. The spectral peak is the most energetic wave in the wave spectrum partition. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. The wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S has the standard name sea_ surface_ wave_ directional_ variance_ spectral_ density. S can be integrated over direction to give S1= integral(S dtheta) and this quantity has the standard name sea_ surface_ wave_ variance_ spectral_ density. 2020-02-03
EXD6ILFA sea surface wind wave mean period A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. Wave mean period is the mean period measured over the observation duration. Wind waves are waves on the ocean surface and are the high frequency portion of a bimodal wave frequency spectrum. 2017-03-27
CFV8N76 sea surface wind wave mean period from variance spectral density first frequency moment The wind wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S can be integrated over direction to give S1= integral(S dtheta) . Frequency moments, M(n) of S1 can then be calculated as follows: M(n) = integral(S1 f^n df), where f^n is f to the power of n. The first wave period, T(m1) is calculated as the ratio M(0)/M(1). 2008-04-15
CFV8N77 sea surface wind wave mean period from variance spectral density inverse frequency moment The wind wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S can be integrated over direction to give S1= integral(S dtheta). Frequency moments, M(n) of S1 can then be calculated as follows: M(n) = integral(S1 f^n df), where f^n is f to the power of n. The inverse wave period, T(m-1), is calculated as the ratio M(-1)/M(0). 2008-04-15
CFV8N78 sea surface wind wave mean period from variance spectral density second frequency moment The wind wave directional spectrum can be written as a five dimensional function S(t,x,y,f,theta) where t is time, x and y are horizontal coordinates (such as longitude and latitude), f is frequency and theta is direction. S can be integrated over direction, thus S1= integral(S dtheta). Frequency moments, M(n) of S1 can then be calculated as follows: M(n) = integral(S1 f^n df), where f^n is f to the power of n. The second wave period, T(m2), is calculated as the square root of the ratio M(0)/M(2). 2008-04-15
CFSN0389 sea surface wind wave period A period is an interval of time, or the time-period of an oscillation. Wind waves are waves on the ocean surface. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
T56CT7WY sea surface wind wave period at variance spectral density maximum The quantity with standard name sea_ surface_ wind_ wave_ period_ at_ variance_ spectral_ density_ maximum is the period of the most energetic waves within the wind wave component of a sea. Wind waves are waves on the ocean surface and are the high frequency portion of a bimodal wave frequency spectrum. A period is an interval of time, or the time-period of an oscillation. Wave period is the interval of time between repeated features on the waveform such as crests, troughs or upward passes through the mean level. The phrase "wave_ period_ at_ variance_ spectral_ density_ maximum", sometimes called peak wave period, describes the period of the most energetic waves within a given sub-domain of the wave spectrum. 2018-08-06
CFSN0390 sea surface wind wave significant height Wind waves are waves on the ocean surface and are the high frequency portion of a bimodal wave frequency spectrum. Significant wave height is a statistic computed from wave measurements and corresponds to the average height of the highest one third of the waves, where the height is defined as the vertical distance from a wave trough to the following wave crest. 2016-07-19
CFSN0391 sea surface wind wave to direction Wind waves are waves on the ocean surface and are the high frequency portion of a bimodal wave frequency spectrum. The phrase "to_ direction" is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2017-03-27
CFSN0392 sea surface wind wave zero upcrossing period DEPRECATED A period is an interval of time, or the time-period of an oscillation. The zero upcrossing period is defined as the time interval between consecutive occasions on which the surface height passes upward above the mean level. Wind waves are waves on the ocean surface. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2017-03-27
JIBGDIEJ sea water absolute salinity Absolute Salinity, S_ A, is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the Intergovernmental Oceanographic Commission (IOC). It is the mass fraction of dissolved material in sea water. Absolute Salinity incorporates the spatial variations in the composition of sea water. This type of Absolute Salinity is also called "Density Salinity". TEOS-10 estimates Absolute Salinity as the salinity variable that, when used with the TEOS-10 expression for density, yields the correct density of a sea water sample even when the sample is not of Reference Composition. In practice, Absolute Salinity is often calculated from Practical Salinity using a spatial lookup table of pre-defined values of the Absolute Salinity Anomaly. It is recommended that the version of (TEOS-10) software and the associated Absolute Salinity Anomaly climatology be specified within metadata by attaching a comment attribute to the data variable. Reference: www.teos-10.org; Millero et al., 2008 doi: 10.1016/j.dsr.2007.10.001. There are also standard names for the precisely defined salinity quantities sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 onwards), sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. 2012-04-27
Z66PQSKM sea water added conservative temperature The quantity with standard name sea_ water_ added_ conservative_ temperature is a passive tracer in an ocean model whose surface flux does not come from the atmosphere but is imposed externally upon the simulated climate system. The surface flux is expressed as a heat flux and converted to a passive tracer increment as if it were a heat flux being added to conservative temperature. The passive tracer is transported within the ocean as if it were conservative temperature. The passive tracer is zero in the control climate of the model. The passive tracer records added heat, as described for the CMIP6 FAFMIP experiment (doi:10.5194/gmd-9-3993-2016), following earlier ideas. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. 2018-04-16
3OOI1V0U sea water added potential temperature The quantity with standard name sea_ water_ added_ potential_ temperature is a passive tracer in an ocean model whose surface flux does not come from the atmosphere but is imposed externally upon the simulated climate system. The surface flux is expressed as a heat flux and converted to a passive tracer increment as if it were a heat flux being added to potential temperature. The passive tracer is transported within the ocean as if it were potential temperature. The passive tracer is zero in the control climate of the model. The passive tracer records added heat, as described for the CMIP6 FAFMIP experiment (doi:10.5194/gmd-9-3993-2016), following earlier ideas. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. 2018-04-16
CF12N580 sea water age since surface contact "Sea water age since surface contact" means the length of time elapsed since the sea water in a grid cell was last in the surface level of an ocean model. 2009-07-06
CF14N55 sea water alkalinity expressed as mole equivalent 'sea_ water_ alkalinity_ expressed_ as_ mole_ equivalent' is the total alkalinity equivalent concentration (including carbonate, nitrogen, silicate, and borate components). 2010-05-12
USKA27YQ sea water alkalinity natural analogue expressed as mole equivalent sea_ water_ alkalinity_ expressed_ as_ mole_ equivalent is the total alkalinity equivalent concentration (including carbonate, nitrogen, silicate, and borate components). In ocean biogeochemistry models, a "natural analogue" is used to simulate the effect on a modelled variable of imposing preindustrial atmospheric carbon dioxide concentrations, even when the model as a whole may be subjected to varying forcings. 2017-04-24
TZPEWAT3 sea water alkalinity per unit mass expressed as mole equivalent The standard name sea_ water_ alkalinity_ per_ unit_ mass_ expressed_ as_ mole_ equivalent is the total alkalinity equivalent concentration (including carbonate, nitrogen, silicate, and borate components) expressed as the number of moles of alkalinity per unit mass of seawater. The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The equivalent term in the NERC P01 Parameter Usage Vocabulary may be found at http://vocab.nerc.ac.uk/collection/P01/current/MDMAP014/1/. 2023-10-16
IFEDAFIE sea water conservative temperature Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. 2013-11-08
BBIEFFEA sea water cox salinity Cox Salinity, S_ C, is defined unitless as a mass fraction per mil (0/00) or "parts per thousand". S_ C was the standard salinity measure from 1967 until Practical Salinity, S_ P, was established with PSS-78 (1978). Chlorinity, Cl, is calculated from the conductivity of a sea water sample and since the work of the Joint Panel for Oceanographic Tables and Standards (JPOTS; 1966) is converted into Cox Salinity using S_ C = 1.80655Cl. This type of salinity was called simply "salinity" from 1967 to 1978. Cox Salinity was replaced by Practical Salinity in 1978. Cox Salinity is converted to Practical Salinity following S_ P = S_ C, however the accuracy of this is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of the Practical Salinity Scale 1978 (PSS-78). Reference: Cox et al., 1967 doi: 10.1016/0011-7471(67)90006-X; Lyman, 1969 doi: 10.4319/lo.1969.14.6.0928; Wooster et al., 1969 doi: 10.4319/lo.1969.14.3.0437. There are standard names for the precisely defined salinity quantities sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ practical_ salinity, S_ P, sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ * and sea_ water_ reference_ salinity. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. 2012-04-27
CFSN0393 sea water density Sea water density is the in-situ density (not the potential density). If 1000 kg m-3 is subtracted, the standard name sea_ water_ sigma_ t should be chosen instead. 2006-09-26
CFSN0394 sea water electrical conductivity 2006-09-26
MF725BHN sea water electrical conductivity at reference temperature The electrical conductivity of sea water in a sample measured at a defined reference temperature. The reference temperature should be recorded in a scalar coordinate variable, or a coordinate variable with a single dimension of size one, and the standard name of temperature_ of_ analysis_ of_ sea_ water. This quantity is sometimes called 'specific conductivity' when the reference temperature 25 degrees Celsius. 2023-04-24
JMOHVLLR sea water from direction DEPRECATED The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2019-12-09
FFJIAFIA sea water knudsen salinity Knudsen Salinity, S_ K, is defined unitless as a mass fraction per mil (0/00) or "parts per thousand", and was calculated from the titration of inorganic salts from a sample of sea water after a commission to study the problem of determining salinity and density was initiated by the International Council for the Exploration of the Sea (ICES) in 1899. S_ K was the standard salinity measure until S_ C (Cox Salinity) was established in 1967. Since the work of Knudsen (1901), chlorinity is converted into Knudsen Salinity using S_ K = 0.030 + 1.805 Cl. This type of salinity was called simply "salinity" from 1901 to 1966. From the 1960s on, electrical conductivity began to be used to estimate the Knudsen Salinity, rather than chemical titration. Knudsen Salinity was replaced by Cox Salinity in 1967 which was in turn replaced by Practical Salinity, S_ P, in 1978. Conversion of Knudsen Salinity to Practical Salinity follows S_ P = (S_ K - 0.03) * (1.80655 / 1.805). Reference: Knudsen, 1901; Thomas et al., 1934 doi: 10.1093/icesjms/9.1.28; Lyman, 1969 doi: 10.4319/lo.1969.14.6.0928; Wooster et al., 1969 doi: 10.4319/lo.1969.14.3.0437; Lewis, 1980 doi: 10.1109/JOE.1980.1145448; Millero et al., 2008 doi: 10.1016/j.dsr.2007.10.001. There are standard names for the precisely defined salinity quantities sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P, sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ * and sea_ water_ reference_ salinity. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. 2012-04-27
CF12N581 sea water mass The quantity with standard name "sea_ water_ mass" is the total mass of liquid seawater in the global oceans, including enclosed seas. 2009-07-06
CF12N582 sea water mass per unit area Sea_ water_ mass_ per_ unit_ area is the mass per unit area of the sea water contained within each grid cell. 2009-07-06
UR379UIX sea water mass per unit area expressed as thickness "Thickness" means the vertical extent of a layer. The quantity with standard name sea_ water_ mass_ per_ unit_ area_ expressed_ as_ thickness is the thickness of the water column from sea floor to surface, minus any contribution to column thickness from steric changes. The sea water density used to convert mass to thickness is assumed to be the density of water of standard temperature zero degrees Celsius and practical salinity S=35.0 unless an auxiliary scalar coordinate variable with standard name sea_ water_ density is used to specify an alternative value. The sum of the quantities with standard names sea_ water_ mass_ per_ unit_ area_ expressed_ as_ thickness and steric_ change_ in_ sea_ surface_ height is the total thickness of the sea water column. Sea_ water_ mass_ per_ unit_ area is the mass per unit area of the sea water contained within each grid cell. The extent of an individual grid cell is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of "region". 2017-07-24
BBAH2105 sea water neutral density "Neutral density" is a variable designed so that a surface of constant neutral density everywhere has a local slope that is close to the local slope of the neutral tangent plane. At the sea surface in the equatorial Pacific neutral density is very close to the potential density anomaly. At other locations, this is not the case. For example, along a neutral density surface there is a difference of up to 0.14 kg/m^3 in the potential density anomaly at the outcrops in the Southern and Northern hemispheres. Refer to Jackett &amp; McDougall (1997; Journal of Physical Oceanography, Vol 27, doi: 10.1175/1520-0485(1997)027&lt;0237:ANDVFT&gt;2.0.CO;2) for more information. 2011-07-21
ZJ6XEK2Y sea water ph abiotic analogue reported on total scale sea_ water_ pH_ reported_ on_ total_ scale is the measure of acidity of sea water, defined as the negative logarithm of the concentration of dissolved hydrogen ions plus bisulfate ions in a sea water medium; it can be measured or calculated; when measured the scale is defined according to a series of buffers prepared in artificial seawater containing bisulfate. The quantity may be written as pH(total) = -log([H+](free) + [HSO4-]). In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. 2017-04-24
7NJ6MEE6 sea water ph natural analogue reported on total scale sea_ water_ pH_ reported_ on_ total_ scale is the measure of acidity of sea water, defined as the negative logarithm of the concentration of dissolved hydrogen ions plus bisulfate ions in a sea water medium; it can be measured or calculated; when measured the scale is defined according to a series of buffers prepared in artificial seawater containing bisulfate. The quantity may be written as pH(total) = -log([H+](free) + [HSO4-]). In ocean biogeochemistry models, a "natural analogue" is used to simulate the effect on a modelled variable of imposing preindustrial atmospheric carbon dioxide concentrations, even when the model as a whole may be subjected to varying forcings. 2017-04-24
CF14N56 sea water ph reported on total scale 'sea_ water_ pH_ reported_ on_ total_ scale' is the measure of acidity of seawater, defined as the negative logarithm of the concentration of dissolved hydrogen ions plus bisulfate ions in a sea water medium; it can be measured or calculated; when measured the scale is defined according to a series of buffers prepared in artificial seawater containing bisulfate. The quantity may be written as pH(total) = -log([H+](free) + [HSO4-]). 2017-05-22
CFSN0395 sea water potential density Sea water potential density is the density a parcel of sea water would have if moved adiabatically to a reference pressure, by default assumed to be sea level pressure. To specify the reference pressure to which the quantity applies, provide a scalar coordinate variable with standard name reference_ pressure. The density of a substance is its mass per unit volume. For sea water potential density, if 1000 kg m-3 is subtracted, the standard name sea_ water_ sigma_ theta should be chosen instead. 2020-02-03
CFSN0329 sea water potential temperature Sea water potential temperature is the temperature a parcel of sea water would have if moved adiabatically to sea level pressure. 2020-02-03
ISIW059G sea water potential temperature at sea floor Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. The potential temperature at the sea floor is that adjacent to the ocean bottom, which would be the deepest grid cell in an ocean model and within the benthic boundary layer for measurements. 2019-12-09
169IEA5N sea water potential temperature expressed as heat content The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the potential temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. 2018-07-03
IADIHDIJ sea water practical salinity Practical Salinity, S_ P, is a determination of the salinity of sea water, based on its electrical conductance. The measured conductance, corrected for temperature and pressure, is compared to the conductance of a standard potassium chloride solution, producing a value on the Practical Salinity Scale of 1978 (PSS-78). This name should not be used to describe salinity observations made before 1978, or ones not based on conductance measurements. Conversion of Practical Salinity to other precisely defined salinity measures should use the appropriate formulas specified by TEOS-10. Other standard names for precisely defined salinity quantities are sea_ water_ absolute_ salinity (S_ A); sea_ water_ preformed_ salinity (S_ *), sea_ water_ reference_ salinity (S_ R); sea_ water_ cox_ salinity (S_ C), used for salinity observations between 1967 and 1977; and sea_ water_ knudsen_ salinity (S_ K), used for salinity observations between 1901 and 1966. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. Reference: www.teos-10.org; Lewis, 1980 doi:10.1109/JOE.1980.1145448. 2019-03-04
Z13QZFMP sea water practical salinity at sea floor The practical salinity at the sea floor is that adjacent to the ocean bottom, which would be the deepest grid cell in an ocean model and within the benthic boundary layer for measurements. Practical Salinity, S_ P, is a determination of the salinity of sea water, based on its electrical conductance. The measured conductance, corrected for temperature and pressure, is compared to the conductance of a standard potassium chloride solution, producing a value on the Practical Salinity Scale of 1978 (PSS-78). This name should not be used to describe salinity observations made before 1978, or ones not based on conductance measurements. Conversion of Practical Salinity to other precisely defined salinity measures should use the appropriate formulas specified by TEOS-10. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity_ at_ sea_ floor. Reference: www.teos-10.org; Lewis, 1980 doi:10.1109/JOE.1980.1145448. 2019-12-09
EHEBBEHE sea water preformed salinity Preformed Salinity, S*, is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the Intergovernmental Oceanographic Commission (IOC). Preformed Salinity is a salinity variable that is designed to be as conservative as possible, by removing the estimated biogeochemical influences on the sea water composition. Preformed Salinity is Absolute Salinity, S_ A (which has the standard name sea_ water_ absolute_ salinity), minus all contributions to sea water composition from biogeochemical processes. Preformed Salinity is the mass fraction of dissolved material in sea water. Reference: www.teos-10.org; Pawlowicz et al., 2011 doi: 10.5194/os-7-363-2011; Wright et al., 2011 doi: 10.5194/os-7-1-2011. There are also standard names for the precisely defined salinity quantities sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 onwards), and sea_ water_ reference_ salinity. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. 2012-04-27
CFSN0330 sea water pressure "Sea water pressure" is the pressure that exists in the medium of sea water. It includes the pressure due to overlying sea water, sea ice, air and any other medium that may be present. For sea water pressure excluding the pressure due to overlying media other than sea water, the standard name sea_ water_ pressure_ due_ to_ sea_ water should be used. 2013-03-23
CF12N583 sea water pressure at sea floor "Sea water pressure" is the pressure that exists in the medium of sea water. It includes the pressure due to overlying sea water, sea ice, air and any other medium that may be present. 2009-07-06
CF12N584 sea water pressure at sea water surface The phrase "sea water surface" means the upper boundary of the liquid portion of an ocean or sea, including the boundary to floating ice if present. "Sea water pressure" is the pressure that exists in the medium of sea water. It includes the pressure due to overlying sea water, sea ice, air and any other medium that may be present. 2019-06-17
CIEIIDJF sea water pressure due to sea water The pressure that exists in the medium of sea water due to overlying sea water. Excludes the pressure due to sea ice, air and any other medium that may be present. For sea water pressure including the pressure due to overlying media other than sea water, the standard name sea_ water_ pressure should be used. 2013-02-12
3707OQB4 sea water redistributed conservative temperature The quantity with standard name sea_ water_ redistributed_ conservative_ temperature is a passive tracer in an ocean model which is subject to an externally imposed perturbative surface heat flux. The passive tracer is initialised to the conservative temperature in the control climate before the perturbation is imposed. Its surface flux is the heat flux from the atmosphere, not including the imposed perturbation, and is converted to a passive tracer increment as if it were being added to conservative temperature. The passive tracer is transported within the ocean as if it were conservative temperature. The passive tracer records redistributed heat, as described for the CMIP6 FAFMIP experiment (doi:10.5194/gmd-9-3993-2016), following earlier ideas. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. 2018-04-16
3V2STZEX sea water redistributed potential temperature The quantity with standard name sea_ water_ redistributed_ potential_ temperature is a passive tracer in an ocean model which is subject to an externally imposed perturbative surface heat flux. The passive tracer is initialised to the potential temperature in the control climate before the perturbation is imposed. Its surface flux is the heat flux from the atmosphere, not including the imposed perturbation, and is converted to a passive tracer increment as if it were being added to potential temperature. The passive tracer is transported within the ocean as if it were potential temperature. The passive tracer records redistributed heat, as described for the CMIP6 FAFMIP experiment (doi:10.5194/gmd-9-3993-2016), following earlier ideas. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. 2018-04-16
DAFJHFJH sea water reference salinity If a sea water sample has the Reference Composition (defined in Millero et al., 2008), then its Reference Salinity is the best available estimate of its Absolute Salinity. For general purposes, Reference Salinity is (35.16504 g kg-1)/35 times Practical Salinity. Reference: www.teos-10.org; Millero et al., 2008 doi: 10.1016/j.dsr.2007.10.001. There are also standard names for the precisely defined salinity quantities sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity (used for salinity observations from 1978 onwards), sea_ water_ absolute_ salinity, S_ A, and sea_ water_ preformed_ salinity, S_ *. Salinity quantities that do not match any of the precise definitions should be given the more general standard name of sea_ water_ salinity. 2012-04-27
CFSN0331 sea water salinity Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term &amp;apos;salinity&amp;apos; is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2012-04-27
KFHXV8N9 sea water salinity at sea floor The salinity at the sea floor is that adjacent to the ocean bottom, which would be the deepest grid cell in an ocean model and within the benthic boundary layer for measurements. Sea water salinity is the salt concentration of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. Practical salinity units are dimensionless. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2019-12-09
CFSN0332 sea water sigma t Sigma-t of sea water is the density of water at atmospheric pressure (i.e. the surface) having the same temperature and salinity, minus 1000 kg m-3. Note that sea water sigma is not the same quantity as the dimensionless ocean sigma coordinate (see Appendix D of the CF convention), for which there is another standard name. 2019-05-14
SJQWKTEB sea water sigma t difference Sigma-t of sea water is the density of water at atmospheric pressure (i.e. the surface) having the same temperature and salinity, minus 1000 kg m-3. 2018-05-15
CFSN0333 sea water sigma theta Sigma-theta of sea water is the potential density (i.e. the density when moved adiabatically to a reference pressure) of water having the same temperature and salinity, minus 1000 kg m-3. Note that sea water sigma is not the same quantity as the dimensionless ocean sigma coordinate (see Appendix D of the CF convention), for which there is another standard name. To specify the reference pressure to which the quantity applies, provide a scalar coordinate variable with standard name reference_ pressure. 2020-02-03
SFH61GJJ sea water sigma theta difference Sigma-theta of sea water is the potential density (i.e. the density when moved adiabatically to a reference pressure) of water having the same temperature and salinity, minus 1000 kg m-3. 2018-05-15
EEEIAIEB sea water specific potential enthalpy The potential enthalpy of a sea water parcel is the specific enthalpy after an adiabatic and isohaline change in pressure from its in situ pressure to the sea pressure p = 0 dbar. "specific" means per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033&lt;0945:PEACOV&gt;2.0.CO;2. 2012-04-27
CFSN0334 sea water speed Speed is the magnitude of velocity. 2006-09-26
FYGM484D sea water speed at sea floor Speed is the magnitude of velocity. The speed at the sea floor is that adjacent to the ocean bottom, which would be the deepest grid cell in an ocean model and within the benthic boundary layer for measurements. 2019-12-09
93K16JTG sea water speed due to tides Speed is the magnitude of velocity. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Due to tides" means due to all astronomical gravity changes which manifest as tides. No distinction is made between different tidal components. 2019-12-09
6E9SGKVA sea water speed shear Speed is the magnitude of velocity. Sea water speed shear is the derivative of sea water speed with respect to depth. 2023-07-05
CFSN0335 sea water temperature Sea water temperature is the in situ temperature of the sea water. To specify the depth at which the temperature applies use a vertical coordinate variable or scalar coordinate variable. There are standard names for sea_ surface_ temperature, sea_ surface_ skin_ temperature, sea_ surface_ subskin_ temperature and sea_ surface_ foundation_ temperature which can be used to describe data located at the specified surfaces. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2012-04-27
5G0VSG9S sea water temperature anomaly The term "anomaly" means difference from climatology. Sea water temperature is the in situ temperature of the sea water. To specify the depth at which the temperature anomaly applies, use a vertical coordinate variable or scalar coordinate variable. 2018-12-17
VMYQRHB9 sea water temperature at sea floor Sea water temperature is the in situ temperature of the sea water. The temperature at the sea floor is that adjacent to the ocean bottom, which would be the deepest grid cell in an ocean model and within the benthic boundary layer for measurements. 2019-12-09
YYIMFEC5 sea water temperature difference Sea water temperature is the in situ temperature of the sea water. 2018-05-15
9IWLLFXP sea water to direction DEPRECATED The phrase "to_ direction" is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2019-12-09
CFV16A40 sea water transport across line Transport across_ line means that which crosses a particular line on the Earth's surface; formally this means the integral along the line of the normal component of the transport. 2010-10-11
7B3X6L2J sea water turbidity Turbidity is a dimensionless quantity which is expressed in NTU (Nephelometric Turbidity Units). Turbidity expressed in NTU is the proportion of white light scattered back to a transceiver by the particulate load in a body of water, represented on an arbitrary scale referenced against measurements made in the laboratory on aqueous suspensions of formazine beads. Sea water turbidity may also be measured by the quantity with standard name secchi_ depth_ of_ sea_ water. 2013-03-23
1VAJ834X sea water velocity from direction A velocity is a vector quantity. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2019-12-09
5D4D7YMF sea water velocity to direction A velocity is a vector quantity. The phrase "to_ direction" is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2019-12-09
F5E7F225 sea water velocity to direction at sea floor A velocity is a vector quantity. The phrase "to_ direction" is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. The direction at the sea floor is that adjacent to the ocean bottom, which would be the deepest grid cell in an ocean model and within the benthic boundary layer for measurements. 2019-12-09
DJQO2YPM sea water velocity to direction due to tides A velocity is a vector quantity. The phrase "to_ direction" is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Due to tides" means due to all astronomical gravity changes which manifest as tides. No distinction is made between different tidal components. 2019-12-09
CF12N585 sea water volume The quantity with standard name "sea_ water_ volume" is the total volume of liquid seawater in the global oceans, including enclosed seas. 2009-07-06
CFSN0336 sea water x velocity A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. 2013-01-11
EISQFY55 sea water x velocity due to parameterized mesoscale eddies A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized mesoscale eddies occur on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddies are represented in ocean models using schemes such as the Gent-McWilliams scheme. sea_ water_ x_ velocity_ due_ to_ parameterized_ mesoscale_ eddies is used in some parameterisations of lateral diffusion in the ocean. 2017-11-28
CFSN0337 sea water y velocity A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. 2013-01-11
J0OEZBJ5 sea water y velocity due to parameterized mesoscale eddies A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized mesoscale eddies occur on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddies are represented in ocean models using schemes such as the Gent-McWilliams scheme. sea_ water_ y_ velocity_ due_ to_ parameterized_ mesoscale_ eddies is used in some parameterisations of lateral diffusion in the ocean. 2017-11-28
CFV13N21 secchi depth of sea water Depth is the vertical distance below the surface. A Secchi disk is a patterned disk that is used to measure water transparency, also called turbidity, in oceans and lakes. The disk is lowered into the water and the depth at which the pattern is no longer visible is the called the secchi depth. Sea water turbidity may also be measured by the quantity with standard name sea_ water_ turbidity. 2013-03-23
Q4Y6WIGN sensor azimuth angle sensor_ azimuth_ angle is the horizontal angle between the line of sight from the observation point to the sensor and a reference direction at the observation point, which is often due north. The angle is measured clockwise positive, starting from the reference direction. A comment attribute should be added to a data variable with this standard name to specify the reference direction. A standard name also exists for platform_ azimuth_ angle, where "platform" refers to the vehicle from which observations are made e.g. aeroplane, ship, or satellite. For some viewing geometries the sensor and the platform cannot be assumed to be close enough to neglect the difference in calculated azimuth angle. 2013-06-27
W7942BWD sensor band central radiation frequency sensor_ band_ central_ radiation_ frequency is the central frequency of a sensor's band, calculated as the first moment of the band's normalized spectral response function. 2013-06-27
AXD7L34X sensor band central radiation wavelength sensor_ band_ central_ radiation_ wavelength is the central wavelength of a sensor's band, calculated as the first moment of the band's normalized spectral response function. 2013-06-27
RWFBZU0P sensor band central radiation wavenumber sensor_ band_ central_ radiation_ wavenumber is the central wavenumber of a sensor's band, calculated as the first moment of the band's normalized spectral response function. 2013-06-27
E3DCGKO4 sensor band identifier A variable with the standard name of sensor_ band_ identifier contains strings which give the alphanumeric identifier of a sensor band. These strings have not yet been standardised. 2013-06-27
3I0QJ6NL sensor view angle Sensor view angle is the angle between the line of sight from the sensor and the direction straight vertically down. Zero view angle means looking directly beneath the sensor. There is no standardized sign convention for sensor_ view_ angle. A standard name also exists for platform_ view_ angle, where "platform" refers to the vehicle from which observations are made e.g. aeroplane, ship, or satellite. For some viewing geometries the sensor and the platform cannot be assumed to be close enough to neglect the difference in calculated view angle. 2013-06-27
L0VDN0EO sensor zenith angle sensor_ zenith_ angle is the angle between the line of sight to the sensor and the local zenith at the observation target. This angle is measured starting from directly overhead and its range is from zero (directly overhead the observation target) to 180 degrees (directly below the observation target). Local zenith is a line perpendicular to the Earth's surface at a given location. "Observation target" means a location on the Earth defined by the sensor performing the observations. A standard name also exists for platform_ zenith_ angle, where "platform" refers to the vehicle from which observations are made e.g. aeroplane, ship, or satellite. For some viewing geometries the sensor and the platform cannot be assumed to be close enough to neglect the difference in calculated zenith angle. 2013-06-27
CFV16A41 shallow convection time fraction "Time fraction" means a fraction of a time interval. The interval in question must be specified by the values or bounds of the time coordinate variable associated with the data. "X_ time_ fraction" means the fraction of the time interval during which X occurs. 2010-10-11
RUYKFXTZ shallow convective cloud base altitude The phrase "cloud_ base" refers to the base of the lowest cloud. Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. Shallow convective cloud is nonprecipitating cumulus cloud with a cloud top below 3000m above the surface produced by the convection schemes in an atmosphere model. Some atmosphere models differentiate between shallow and deep convection. 2021-01-18
F14QV9UH shallow convective cloud top altitude The phrase "cloud_ top" refers to the top of the highest cloud. Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. Shallow convective cloud is nonprecipitating cumulus cloud with a cloud top below 3000m above the surface produced by the convection schemes in an atmosphere model. Some atmosphere models differentiate between shallow and deep convection. 2021-01-18
R0PBU19R shallow convective precipitation flux Convective precipitation is that produced by the convection schemes in an atmosphere model. Some atmosphere models differentiate between shallow and deep convection. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-08-06
1SLC8V4I shear strength of frozen soil Shear strength is the amount of force applied to a normal plane required to bring a frozen soil to failure along a tangential plane. Shear strength depends on the angle of friction and cohesion of the soil. 2023-04-24
LLJZQQZR shear strength of soil Shear strength is the amount of force applied to a normal plane required to bring the soil to failure along a tangential plane. Shear strength depends on the angle of friction and cohesion of the soil. 2023-04-24
CFSNA006 shortwave radiance DEPRECATED 'shortwave' means shortwave radiation. Radiance is the radiative flux in a particular direction, per unit of solid angle. If radiation is isotropic, the radiance is independent of direction, so the direction should not be specified. If the radiation is directionally dependent, a standard name of upwelling or downwelling radiance should be chosen instead. 2006-09-26
U3HLI1KX signal intensity from multibeam acoustic doppler velocity sensor in sea water The magnitude of an acoustic signal emitted by the instrument toward a reflecting surface and received again by the instrument. 2020-09-14
CFSNA014 significant height of swell waves DEPRECATED Height is the vertical distance above the surface. Swell waves are waves on the ocean surface. 2006-09-26
CFSNA015 significant height of wind and swell waves DEPRECATED Height is the vertical distance above the surface. 2006-09-26
CFSNA030 significant height of wind waves DEPRECATED Height is the vertical distance above the surface. Wind waves are waves on the ocean surface. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
N3GAS3T7 silicate mass transport in river channel The amount of silicate mass transported in the river channels from land into the ocean. This quantity can be provided at a certain location within the river network and floodplain (over land) or at the river mouth (over ocean) where the river enters the ocean. "River" refers to water in the fluvial system (stream and floodplain). 2024-01-18
I3YXAZMK single scattering albedo in air due to ambient aerosol particles "Single scattering albedo" is the fraction of radiation in an incident light beam scattered by the particles of an aerosol reference volume for a given wavelength. It is the ratio of the scattering and the extinction coefficients of the aerosol particles in the reference volume. A coordinate variable with a standard name of radiation_ wavelength or radiation_ frequency should be included to specify either the wavelength or frequency. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2016-03-08
NLC8RC9D sinking mass flux of particulate biogenic silica in sea water In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sinking" is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. Particulate means suspended solids of all sizes. Biogenic silica is a hydrated form of silica (silicon dioxide) with the chemical formula SiO2.nH2O sometimes referred to as opaline silica or opal. It is created by biological processes and in sea water it is predominantly the skeletal material of diatoms. 2023-02-06
DTWH7S08 sinking mass flux of particulate carbon in sea water In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. Particulate means suspended solids of all sizes. 2023-02-06
371JBG85 sinking mass flux of particulate inorganic carbon in sea water In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sinking" is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. Particulate means suspended solids of all sizes. Particulate inorganic carbon is carbon bound in molecules ionically that may be liberated from the particles as carbon dioxide by acidification. 2023-02-06
K9SH6P4Z sinking mass flux of particulate matter in sea water In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sinking" is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. 2023-02-06
NBIPXJHT sinking mass flux of particulate nitrogen in sea water In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sinking" is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. Particulate means suspended solids of all sizes. 2023-02-06
P96OYQAT sinking mass flux of particulate phosphorus in sea water In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. Particulate means suspended solids of all sizes. 2023-02-06
CF14N57 sinking mole flux of aragonite expressed as carbon in sea water The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. Standard names also exist for calcite, another polymorph of calcium carbonate. 2010-07-26
CF14N58 sinking mole flux of calcite expressed as carbon in sea water The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. 2010-07-26
CF14N59 sinking mole flux of particulate iron in sea water In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. 2010-07-26
CF14N60 sinking mole flux of particulate organic matter expressed as carbon in sea water The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. 2010-07-26
CF14N61 sinking mole flux of particulate organic nitrogen in sea water In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sinking" is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. "Particulate organic nitrogen" means the sum of all organic nitrogen compounds, which are solid or which are bound to solid particles. "Organic nitrogen", when measured, always refers to all nitrogen incorporated in carbon compounds in the sample. Models may use the term to refer to nitrogen contained in specific groups of organic compounds in which case the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2018-12-17
CF14N62 sinking mole flux of particulate organic phosphorus in sea water In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. 2010-07-26
CF14N63 sinking mole flux of particulate silicon in sea water In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 'Sinking' is the gravitational settling of particulate matter suspended in a liquid. A sinking flux is positive downwards and is calculated relative to the movement of the surrounding fluid. 2010-07-26
CFV16A42 slow soil pool carbon content DEPRECATED "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. "Soil carbon" is the organic matter present in soil quantified by the mass of carbon it contains. Soil carbon is returned to the atmosphere as the organic matter decays. The decay process takes varying amounts of time depending on the composition of the organic matter, the temperature and the availability of moisture. A carbon "soil pool" means the carbon contained in organic matter which has a characteristic period over which it decays and releases carbon into the atmosphere. "Slow soil pool" refers to the decay of organic matter in soil with a characteristic period of more than a hundred years under reference climate conditions of a temperature of 20 degrees Celsius and no water limitations. 2018-04-16
I5DGQM0D slow soil pool mass content of carbon "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. Soil carbon is returned to the atmosphere as the organic matter decays. The decay process takes varying amounts of time depending on the composition of the organic matter, the temperature and the availability of moisture. A carbon "soil pool" means the carbon contained in organic matter which has a characteristic period over which it decays and releases carbon into the atmosphere. "Slow soil pool" refers to the decay of organic matter in soil with a characteristic period of more than a hundred years under reference climate conditions of a temperature of 20 degrees Celsius and no water limitations. 2018-04-16
77KW4GRD snow area fraction viewable from above "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Snow "viewable from above" refers to the snow on objects or the ground as viewed from above, which excludes, for example, falling snow flakes and snow obscured by a canopy, vegetative cover, or other features resting on the surface. 2021-09-20
CFSN0338 snow density DEPRECATED 2021-01-18
CFSN0339 snow grain size 2006-09-26
CFSN0340 snow soot content DEPRECATED 'Content' indicates a quantity per unit area. 2010-07-26
CFSN0341 snow temperature DEPRECATED Snow temperature is the bulk temperature of the snow, not the surface (skin) temperature. 2010-07-26
CFSN0342 snow thermal energy content DEPRECATED 'Content' indicates a quantity per unit area. Thermal energy is the total vibrational energy, kinetic and potential, of all the molecules and atoms in a substance. 2010-07-26
W1SG8ALB snow transport across line due to sea ice dynamics Transport "across_ line" means that which crosses a particular line on the Earth's surface; formally this means the integral along the line of the normal component of the transport. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice dynamics" refers to advection of sea ice. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0343 snowfall amount 'Amount' means mass per unit area. 2006-09-26
CFSN0344 snowfall flux In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0345 soil albedo Soil albedo is the albedo of the soil surface assuming no snow. Albedo is the ratio of outgoing to incoming shortwave irradiance, where 'shortwave irradiance' means that both the incoming and outgoing radiation are integrated across the solar spectrum. 2018-07-03
CFSN0346 soil carbon content DEPRECATED 'Content' indicates a quantity per unit area. The 'soil content' of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. 2018-04-16
R081FSL7 soil density The density of the soil in its natural condition. Also known as bulk density. The density of a substance is its mass per unit volume. 2023-04-24
CFSN0347 soil frozen water content 'frozen_ water' means ice. 'Content' indicates a quantity per unit area. The 'soil content' of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. 2006-09-26
CFSN0348 soil hydraulic conductivity at saturation Hydraulic conductivity is the constant k in Darcy's Law q=-k grad h for fluid flow q (volume transport per unit area i.e. velocity) through a porous medium, where h is the hydraulic head (pressure expressed as an equivalent depth of water). 2006-09-26
KWEEWGY6 soil liquid water content "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. 2024-01-18
T149W016 soil mass content of 13C "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. "C" means the element carbon and "13C" is the stable isotope "carbon-13", having six protons and seven neutrons. 2018-03-13
BUFYQE5C soil mass content of 14C "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. 2018-03-13
QKPDOSQJ soil mass content of carbon "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. 2018-04-16
0BQOFLV8 soil mass content of inorganic ammonium expressed as nitrogen "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for the ammonium cation is NH4+. The quantity with standard name soil_ mass_ content_ of_ inorganic_ nitrogen_ expressed_ as_ nitrogen is the sum of the quantities with standard names soil_ mass_ content_ of_ inorganic_ ammonium_ expressed_ as_ nitrogen and soil_ mass_ content_ of_ inorganic_ nitrate_ expressed_ as_ nitrogen. 2018-03-13
6VER43BY soil mass content of inorganic nitrate expressed as nitrogen "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. The chemical formula for the nitrate anion is NO3-. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The quantity with standard name soil_ mass_ content_ of_ inorganic_ nitrogen_ expressed_ as_ nitrogen is the sum of the quantities with standard names soil_ mass_ content_ of_ inorganic_ ammonium_ expressed_ as_ nitrogen and soil_ mass_ content_ of_ inorganic_ nitrate_ expressed_ as_ nitrogen. 2018-03-13
W1LJC4B0 soil mass content of inorganic nitrogen expressed as nitrogen "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Inorganic nitrogen" describes a family of chemical species which, in soil, usually consists of nitrate and ammonium which act as nitrogen nutrients. The quantity with standard name soil_ mass_ content_ of_ inorganic_ nitrogen_ expressed_ as_ nitrogen is the sum of the quantities with standard names soil_ mass_ content_ of_ inorganic_ ammonium_ expressed_ as_ nitrogen and soil_ mass_ content_ of_ inorganic_ nitrate_ expressed_ as_ nitrogen. 2018-03-13
98PAWYYW soil mass content of nitrogen "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. 2018-05-15
CFSN0349 soil moisture content DEPRECATED 'moisture' means water in all phases contained in soil. 'Content' indicates a quantity per unit area. The 'soil content' of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. 2018-02-12
CFSN0350 soil moisture content at field capacity 'moisture' means water in all phases contained in soil. 'Content' indicates a quantity per unit area. The 'soil content' of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including content_ of_ soil_ layer are used. The field capacity of soil is the maximum content of water it can retain against gravitational drainage. 2006-09-26
MELTCMTU soil pool A variable with the standard name of soil_ pool contains strings which indicate the character of the soil pool classified according to the decay rate of the organic carbon material it contains. These strings have not yet been standardised. 2018-05-15
SX7WWXXE soil pool carbon decay rate "Soil carbon" is the organic matter present in soil quantified by the mass of carbon it contains. Soil carbon is returned to the atmosphere as the organic matter decays. Each modelled soil carbon pool has a characteristic turnover time, which is modified by environmental conditions such as temperature and moisture so that the turnover time varies in space and time. The quantity with standard name soil_ pool_ carbon_ decay_ rate is defined as 1/(turnover time). The data variable should be accompanied by a string valued coordinate variable or scalar coordinate variable with standard name soil_ pool. 2018-04-16
CFSN0351 soil porosity The soil porosity is the proportion of its total volume not occupied by soil solids. 2006-09-26
CFSN0352 soil respiration carbon flux DEPRECATED 'Respiration carbon' refers to the rate at which biomass is respired expressed as the mass of carbon which it contains. Soil respiration is the sum of respiration in the soil by animals and decomposers of litter (heterotrophs or 'consumers'), which have not produced the biomass they respire, and respiration by the roots of plants (autotrophs or 'producers'), which have themselves produced the biomass they respire. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2018-04-16
CFSN0353 soil suction at saturation Soil suction is the tensile stress on water in soil due to molecular forces acting at the water-soil particle boundary. The forces may cause water to be drawn into the spaces within the soil matrix or cause it to be held in the soil without draining. Soil suction occurs in soil above the water table. 2006-09-26
CFSN0354 soil temperature Soil temperature is the bulk temperature of the soil, not the surface (skin) temperature. "Soil" means the near-surface layer where plants sink their roots. For subsurface temperatures that extend beneath the soil layer or in areas where there is no surface soil layer, the standard name temperature_ in_ ground should be used. 2021-09-20
CFSN0355 soil thermal capacity Thermal capacity, or heat capacity, is the amount of heat energy required to increase the temperature of 1 kg of material by 1 K. It is a property of the material. 2006-09-26
CFSN0356 soil thermal conductivity Thermal conductivity is the constant k in the formula q = -k grad T where q is the heat transfer per unit time per unit area of a surface normal to the direction of transfer and grad T is the temperature gradient. Thermal conductivity is a property of the material. 2006-09-26
CFSN0357 soil type A variable with the standard name of soil_ type contains strings which indicate the character of the soil e.g. clay. These strings have not yet been standardised. Alternatively, the data variable may contain integers which can be translated to strings using flag_ values and flag_ meanings attributes. 2006-09-26
GAGPRVHP soil water ph soil_ water_ ph is the measure of acidity of soil moisture, defined as the negative logarithm of the concentration of dissolved hydrogen ions in soil water. 2021-09-20
WO8GKMFX soil water salinity soil_ water_ salinity is the salt content of soil water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and normally given as 1e-3 or 0.001 i.e. parts per thousand. 2023-04-24
CFSN0358 solar azimuth angle Solar azimuth angle is the horizontal angle between the line of sight to the sun and a reference direction which is often due north. The angle is measured clockwise. 2006-09-26
CFSN0359 solar elevation angle Solar elevation angle is the angle between the line of sight to the sun and the local horizontal. 2006-09-26
WC485N1Y solar irradiance The quantity with standard name solar_ irradiance, often called Total Solar Irradiance (TSI), is the radiation from the sun integrated over the whole electromagnetic spectrum and over the entire solar disk. The quantity applies outside the atmosphere, by default at a distance of one astronomical unit from the sun, but a coordinate or scalar coordinate variable of distance_ from_ sun can be used to specify a value other than the default. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. 2015-07-08
QDH286E9 solar irradiance per unit wavelength The quantity with standard name solar_ irradiance_ per_ unit_ wavelength, often called Solar Spectral Irradiance (SSI), is the radiation from the sun as a function of wavelength integrated over the entire solar disk. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. The quantity applies outside the atmosphere, by default at a distance of one astronomical unit from the sun, but a coordinate or scalar coordinate variable of distance_ from_ sun can be used to specify a value other than the default. "Irradiance" means the power per unit area (called radiative flux in other standard names), the area being normal to the direction of flow of the radiant energy. 2015-07-08
CFSN0360 solar zenith angle Solar zenith angle is the the angle between the line of sight to the sun and the local vertical. 2006-09-26
CFSN2201 solid earth subsurface temperature DEPRECATED The quantity with standard name solid_ earth_ subsurface_ temperature is the temperature at any depth (or in a layer) of the "solid" earth, excluding surficial snow and ice (but not permafrost or soil). For temperatures in surface lying snow and ice, the more specific standard names temperature_ in_ surface_ snow and land_ ice_ temperature should be used. For temperatures measured or modelled specifically in the soil layer (the near-surface layer where plants sink their roots) the standard name soil_ temperature should be used. 2021-09-20
FK458IR2 solid precipitation flux In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Solid precipitation refers to the precipitation of water in the solid phase. Water in the atmosphere exists in one of three phases: solid, liquid or vapor. The solid phase can exist as snow, hail, graupel, cloud ice, or as a component of aerosol. 2018-05-15
JNEUI65M solid precipitation flux containing 17O In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Solid precipitation refers to the precipitation of water in the solid phase. Water in the atmosphere exists in one of three phases: solid, liquid or vapor. The solid phase can exist as snow, hail, graupel, cloud ice, or as a component of aerosol. "O" means the element "oxygen" and "17O" is the stable isotope "oxygen-17". 2018-05-15
BQVHT3E1 solid precipitation flux containing 18O In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Solid precipitation refers to the precipitation of water in the solid phase. Water in the atmosphere exists in one of three phases: solid, liquid or vapor. The solid phase can exist as snow, hail, graupel, cloud ice, or as a component of aerosol. The chemical formula for water is H2O. "O" means the element "oxygen" and "18O" is the stable isotope "oxygen-18". 2018-05-15
WIMDBQSD solid precipitation flux containing single 2H In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Solid precipitation refers to the precipitation of water in the solid phase. Water in the atmosphere exists in one of three phases: solid, liquid or vapor. The solid phase can exist as snow, hail, graupel, cloud ice, or as a component of aerosol. The chemical formula for water is H2O. "H" means the element "hydrogen" and "2H" is the stable isotope "hydrogen-2", usually called "deuterium". The construction "X_ containing_ single_ Y" means the standard name refers to only that part of X composed of molecules containing a single atom of isotope Y. 2018-05-15
CFV15A11 soot content of surface snow "Content" indicates a quantity per unit area. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
CFSN0361 sound frequency Frequency is the number of oscillations of a wave per unit time. 2006-09-26
CFSN0362 sound intensity in air Sound intensity is the sound energy per unit time per unit area. 2006-09-26
CFSN0363 sound intensity in water Sound intensity is the sound energy per unit time per unit area. 2006-09-26
CFSN0305 sound intensity level in air Sound intensity is the sound energy per unit time per unit area. Sound intensity level in air is expressed on a logarithmic scale with reference to a sound intensity of 1e-12 W m-2. LI = 10 log10(I/I0) where LI is sound intensity level, I is sound intensity and I0 is the reference sound intensity. 2006-09-26
CFSN0306 sound intensity level in water Sound intensity is the sound energy per unit time per unit area. Sound intensity level in water is expressed on a logarithmic scale with reference to a sound intensity of 6.7e-19 W m-2. LI = 10 log10(I/I0) where LI is sound intensity level, I is sound intensity and I0 is the reference sound intensity. 2006-09-26
CFSN0307 sound pressure in air Sound pressure is the difference from the local ambient pressure caused by a sound wave at a particular location and time. 2006-09-26
CFSN0308 sound pressure in water Sound pressure is the difference from the local ambient pressure caused by a sound wave at a particular location and time. 2006-09-26
CFSN0309 sound pressure level in air Sound pressure is the difference from the local ambient pressure caused by a sound wave at a particular location and time. Sound pressure level in air is expressed on a logarithmic scale with reference to a sound pressure of 2e-5 Pa. Lp = 20 log10(p/p0) where Lp is the sound pressure level, p is the rms sound pressure and p0 is the reference sound pressure. 2006-09-26
CFSN0310 sound pressure level in water Sound pressure is the difference from the local ambient pressure caused by a sound wave at a particular location and time. Sound pressure level in water is expressed on a logarithmic scale with reference to a sound pressure of 1e-6 Pa. Lp = 20 log10(p/p0) where Lp is the sound pressure level, p is the rms sound pressure and p0 is the reference sound pressure. 2006-09-26
TO330BQW source An auxiliary coordinate variable with a standard name of source contains string values which describe the method of production of the original data with which the coordinate variable is associated. If the data were model-generated, source should name the model and its version, as specifically as could be useful. If the data are observational, source should characterize them (e.g., "surface observation", "radiosonde"). The use of source as the standard name for an auxiliary coordinate variable permits the aggregation of data from multiple sources within a single data file. 2015-12-03
CFSNA001 specific convective available potential energy DEPRECATED 'specific' means per unit mass. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) Convective(ly) available potential energy is often abbreviated as 'CAPE'. 2006-09-26
CFSN0311 specific dry energy of air 'specific' means per unit mass. Dry energy is the sum of dry static energy and kinetic energy. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
G0WQ5UB7 specific enthalpy of air The specific_ enthalpy_ of_ air is the enthalpy of air per unit mass, which can be computed for an air sample as the sum of the enthalpy of the dry air and the enthalpy of the water vapor in that air, divided by the mass of dry air. 2023-07-05
CFSN0312 specific gravitational potential energy 'specific' means per unit mass. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) 2006-09-26
Z5X836ZU specific heat capacity of frozen ground Thermal capacity, or heat capacity, is the amount of heat energy required to increase the temperature of 1 kg of material by 1 K. It is a property of the material. 2021-09-20
N0XT6JHS specific heat capacity of sea water The specific heat capacity of sea water, Cp(ocean), is used in ocean models to convert between model prognostic temperature (potential or conservative temperature) and model heat content. 2017-05-22
CFSN0313 specific humidity 'specific' means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 2006-09-26
CFSN0314 specific kinetic energy of air 'specific' means per unit mass. 2006-09-26
CFV8N79 specific kinetic energy of sea water "specific" means per unit mass. 2008-04-15
CFSNA033 specific potential energy DEPRECATED 'specific' means per unit mass. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) 2006-09-26
PPSY3FZJ specific turbulent kinetic energy dissipation in sea water "Specific" means per unit mass. "Turbulent kinetic energy" is the kinetic energy of chaotic fluctuations of the fluid flow. The dissipation of kinetic energy arises in ocean models as a result of the viscosity of sea water. 2016-06-13
H4NYWUZ1 specific turbulent kinetic energy of air Specific means per unit mass. "Turbulent kinetic energy" is the kinetic energy of all eddy-induced motion that is not resolved on the grid scale of the model. 2023-07-05
MA6ZA2GF specific turbulent kinetic energy of sea water "Specific" means per unit mass. "Turbulent kinetic energy" is the kinetic energy of chaotic fluctuations of the fluid flow. 2016-06-13
CFSNA007 spectral radiance DEPRECATED 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. If radiation is isotropic, the radiance is independent of direction, so the direction should not be specified. If the radiation is directionally dependent, a standard name of upwelling or downwelling radiance should be chosen instead. 2006-09-26
E8UB0T2A spectral width of radio wave in air scattered by air The quantity with standard name spectral_ width_ of_ radio_ wave_ in_ air_ scattered_ by_ air is the frequency width of the signal received by an instrument such as a radar or lidar. The signal returned to the instrument is the sum of all scattering from a given volume of air regardless of mechanism (examples are scattering by aerosols, hydrometeors and refractive index irregularities, or whatever else the instrument detects). 2023-02-06
CFSN0315 speed of sound in air Speed is the magnitude of velocity. 2006-09-26
CFSN0316 speed of sound in sea water Speed is the magnitude of velocity. 2006-09-26
CFV13N22 spell length of days with air temperature above threshold Air temperature is the bulk temperature of the air, not the surface (skin) temperature. A spell is the number of consecutive days on which the condition X_ below|above_ threshold is satisfied. A variable whose standard name has the form spell_ length_ of_ days_ with_ X_ below|above_ threshold must have a coordinate variable or scalar coordinate variable with the standard name of X to supply the threshold(s). It must have a climatological time variable, and a cell_ method entry for within days which describes the processing of quantity X before the threshold is applied. A spell_ length_ of_ days is an intensive quantity in time, and the cell_ methods entry for over days can be any of the methods listed in Appendix E appropriate for intensive quantities e.g. "maximum", "minimum" or "mean". 2021-09-20
CFV13N23 spell length of days with air temperature below threshold Air temperature is the bulk temperature of the air, not the surface (skin) temperature. A spell is the number of consecutive days on which the condition X_ below|above_ threshold is satisfied. A variable whose standard name has the form spell_ length_ of_ days_ with_ X_ below|above_ threshold must have a coordinate variable or scalar coordinate variable with the standard name of X to supply the threshold(s). It must have a climatological time variable, and a cell_ method entry for within days which describes the processing of quantity X before the threshold is applied. A spell_ length_ of_ days is an intensive quantity in time, and the cell_ methods entry for over days can be any of the methods listed in Appendix E appropriate for intensive quantities e.g. "maximum", "minimum" or "mean". 2021-09-20
CFV13N24 spell length of days with lwe thickness of precipitation amount above threshold "Amount" means mass per unit area. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. The abbreviation "lwe" means liquid water equivalent. A spell is the number of consecutive days on which the condition X_ below|above_ threshold is satisfied. A variable whose standard name has the form spell_ length_ of_ days_ with_ X_ below|above_ threshold must have a coordinate variable or scalar coordinate variable with the standard name of X to supply the threshold(s). It must have a climatological time variable, and a cell_ method entry for within days which describes the processing of quantity X before the threshold is applied. A spell_ length_ of_ days is an intensive quantity in time, and the cell_ methods entry for over days can be any of the methods listed in Appendix E appropriate for intensive quantities e.g. "maximum", "minimum" or "mean". 2021-09-20
CFV13N25 spell length of days with lwe thickness of precipitation amount below threshold "Amount" means mass per unit area. "Precipitation" in the earth's atmosphere means precipitation of water in all phases.The construction lwe_ thickness_ of_ X_ amount or _ content means the vertical extent of a layer of liquid water having the same mass per unit area. The abbreviation "lwe" means liquid water equivalent. A spell is the number of consecutive days on which the condition X_ below|above_ threshold is satisfied. A variable whose standard name has the form spell_ length_ of_ days_ with_ X_ below|above_ threshold must have a coordinate variable or scalar coordinate variable with the standard name of X to supply the threshold(s). It must have a climatological time variable, and a cell_ method entry for within days which describes the processing of quantity X before the threshold is applied. A spell_ length_ of_ days is an intensive quantity in time, and the cell_ methods entry for over days can be any of the methods listed in Appendix E appropriate for intensive quantities e.g. "maximum", "minimum" or "mean". 2021-09-20
G0DMEMEL spike test quality flag A quality flag that reports the result of the Spike test, which checks that the difference between two points in a series of values is within reasonable bounds. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. There are standard names for other specific quality tests which take the form of X_ quality_ flag. Quality information that does not match any of the specific quantities should be given the more general standard name of quality_ flag. 2020-03-09
CFSN0317 square of air temperature 'square_ of_ X' means X*X. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0318 square of brunt vaisala frequency in air The phrase "square_ of_ X" means X*X. Frequency is the number of oscillations of a wave per unit time. Brunt-Vaisala frequency is also sometimes called "buoyancy frequency" and is a measure of the vertical stratification of the medium. 2017-05-22
1V0G0U9J square of brunt vaisala frequency in sea water The phrase "square_ of_ X" means X*X. Frequency is the number of oscillations of a wave per unit time. Brunt-Vaisala frequency is also sometimes called "buoyancy frequency" and is a measure of the vertical stratification of the medium. 2017-06-26
CFSN0319 square of eastward wind 'square_ of_ X' means X*X. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0320 square of geopotential height 'square_ of_ X' means X*X. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. Geopotential height is the geopotential divided by the standard acceleration due to gravity. It is numerically similar to the altitude (or geometric height) and not to the quantity with standard name height, which is relative to the surface. 2006-09-26
CFSN0321 square of lagrangian tendency of air pressure The phrase "square_ of_ X" means X*X. "tendency_ of_ X" means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the "material derivative" or "convective derivative". The Lagrangian tendency of air pressure, often called "omega", plays the role of the upward component of air velocity when air pressure is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of air pressure; downwards is positive. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFSN0322 square of northward wind 'square_ of_ X' means X*X. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CF12N586 square of ocean mixed layer thickness defined by sigma t The phrase "square_ of_ X" means X*X. The ocean mixed layer is the upper part of the ocean, regarded as being well-mixed. The base of the mixed layer defined by "temperature", "sigma", "sigma_ theta", "sigma_ t" or vertical diffusivity is the level at which the quantity indicated differs from its surface value by a certain amount. A coordinate variable or scalar coordinate variable with standard name sea_ water_ sigma_ t_ difference can be used to specify the sigma_ t criterion that determines the layer thickness. Sigma-t of sea water is the density of water at atmospheric pressure (i.e. the surface) having the same temperature and salinity, minus 1000 kg m-3. "Thickness" means the vertical extent of a layer. 2018-05-29
CF12N587 square of sea surface height above geoid The phrase "square_ of_ X" means X*X. "Height_ above_ X" means the vertical distance above the named surface X. "Sea surface height" is a time-varying quantity. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean). In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. To specify which geoid or geopotential datum is being used as a reference level, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. By definition of the geoid, the global average of the time-mean sea surface height (i.e. mean sea level) above the geoid must be zero. 2017-07-24
BKHRL40U square of sea surface salinity The phrase "square_ of_ X" means X*X. Sea surface salinity is the salt concentration of sea water close to the sea surface, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand. Sea surface salinity is often abbreviated as "SSS". For the salinity of sea water at a particular depth or layer, a data variable of "sea_ water_ salinity" or one of the more precisely defined salinities should be used with a vertical coordinate axis. There are standard names for the precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2018-04-16
CF12N588 square of sea surface temperature Sea surface temperature is usually abbreviated as "SST". It is the temperature of sea water near the surface (including the part under sea-ice, if any), and not the skin temperature, whose standard name is surface_ temperature. For the temperature of sea water at a particular depth or layer, a data variable of sea_ water_ temperature with a vertical coordinate axis should be used. "square_ of_ X" means X*X. 2009-07-06
CFSN0323 square of upward air velocity 'square_ of_ X' means X*X. A velocity is a vector quantity. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Upward air velocity is the vertical component of the 3D air velocity vector. 2006-09-26
CF12N589 square of upward ocean mass transport "Upward" indicates a vector component which is positive when directed upward (negative downward). Ocean transport means transport by all processes, both sea water and sea ice. "square_ of_ X" means X*X. 2009-07-06
0Y4ZQ0H1 stagnation temperature in air In thermodynamics and fluid mechanics, stagnation temperature is the temperature at a stagnation point in a fluid flow. At a stagnation point the speed of the fluid is zero and all of the kinetic energy has been converted to internal energy and is added to the local static enthalpy. In both compressible and incompressible fluid flow, the stagnation temperature is equal to the total temperature at all points on the streamline leading to the stagnation point. In aviation, stagnation temperature is known as total air temperature and is measured by a temperature probe mounted on the surface of the aircraft. The probe is designed to bring the air to rest relative to the aircraft. As the air is brought to rest, kinetic energy is converted to internal energy. The air is compressed and experiences an adiabatic increase in temperature. Therefore, total air temperature is higher than the static (or ambient) air temperature. Total air temperature is an essential input to an air data computer in order to enable computation of static air temperature and hence true airspeed. 2023-02-06
G5URGJYJ station description DEPRECATED A variable with the standard name of station_ description contains strings which help to identify the platform from which an observation was made. For example, this may be a geographical place name such as "South Pole" or the name of a meteorological observing station. 2013-07-05
RF2NF77P station wmo id DEPRECATED A variable with the standard name of station_ wmo_ id contains strings which help to identify the platform from which an observation was made. For example, this may be a WMO station identification number. 2013-07-05
NH835ZLS status flag A variable with the standard name of status_ flag contains an indication of quality or other status of another data variable. This may include the status of the instrument producing the data as well as data quality information. The linkage between the data variable and the variable with the standard_ name of status_ flag is achieved using the ancillary_ variables attribute. A variable which contains purely quality information may use the standard name of quality_ flag to provide an assessed quality of the corresponding data. 2019-09-17
QHQLM3BE stem mass content of carbon "Content" indicates a quantity per unit area. The stem of a plant is the axis that bears buds and shoots with leaves and, at its basal end, roots. Its function is to carry water and nutrients. Examples include the stalk of a plant or the main trunk of a tree. 2018-04-16
PB6R50XR stem mass content of nitrogen "Content" indicates a quantity per unit area. The stem of a plant is the axis that bears buds and shoots with leaves and, at its basal end, roots. Its function is to carry water and nutrients. Examples include the stalk of a plant or the main trunk of a tree. 2018-04-16
J63A1HOU steric change in mean sea level Steric sea level change is caused by changes in sea water density due to changes in temperature (thermosteric) and salinity (halosteric). "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. Zero mean sea level change is an arbitrary level. The sum of the quantities with standard names thermosteric_ change_ in_ mean_ sea_ level and halosteric_ change_ in_ mean_ sea_ level has the standard name steric_ change_ in_ mean_ sea_ level. 2017-06-26
P3XFHO4W steric change in sea surface height "Sea surface height" is a time-varying quantity. The steric change in sea surface height is the change in height that a water column of standard temperature zero degrees Celsius and practical salinity S=35.0 would undergo when its temperature and salinity are changed to the observed values. The sum of the quantities with standard names thermosteric_ change_ in_ sea_ surface_ height and halosteric_ change_ in_ sea_ surface_ height is the total steric change in the water column height, which has the standard name of steric_ change_ in_ sea_ surface_ height. The sum of the quantities with standard names sea_ water_ mass_ per_ unit_ area_ expressed_ as_ thickness and steric_ change_ in_ sea_ surface_ height is the total thickness of the sea water column. 2017-07-24
4FD2J2GJ storm motion speed Storm motion speed is defined as a two dimensional velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) It is defined as the average speed of a supercell, and the direction the storm will move from. It is not dependent on the orientation of the ground-relative winds. Storm motion speed generally follows the methodology outlined in Bunkers et al. (2000). 2021-09-20
CFV15A12 stratiform cloud area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The cloud area fraction is for the whole atmosphere column, as seen from the surface or the top of the atmosphere. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
CFSN0324 stratiform cloud area fraction in atmosphere layer "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Standard names also exist for high, medium and low cloud types. Standard names referring only to "cloud_ area_ fraction" should be used for quantities for the whole atmosphere column. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). Cloud area fraction is also called "cloud amount" and "cloud cover". 2019-05-14
CF12N590 stratiform cloud longwave emissivity Emissivity is the ratio of the power emitted by an object to the power that would be emitted by a perfect black body having the same temperature as the object. The emissivity is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength or radiation_ frequency is included to specify either the wavelength or frequency. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "longwave" means longwave radiation. 2009-07-06
O01JGUWZ stratiform graupel fall amount Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. Graupel consists of heavily rimed snow particles, often called snow pellets; often indistinguishable from very small soft hail except when the size convention that hail must have a diameter greater than 5 mm is adopted. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Graupel. There are also separate standard names for hail. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. "Amount" means mass per unit area. 2021-01-18
CFV15A13 stratiform graupel flux In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. Graupel consists of heavily rimed snow particles, often called snow pellets; often indistinguishable from very small soft hail except when the size convention that hail must have a diameter greater than 5 mm is adopted. Reference: American Meteorological Society Glossary http://glossary.ametsoc.org/wiki/Graupel. There are also separate standard names for hail. Standard names for "graupel_ and_ hail" should be used to describe data produced by models that do not distinguish between hail and graupel. 2018-06-11
CFV15A14 stratiform precipitation amount "Precipitation" in the earth's atmosphere means precipitation of water in all phases. Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. "Amount" means mass per unit area. 2018-08-06
CFV15A15 stratiform precipitation flux Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. "Precipitation" in the earth's atmosphere means precipitation of water in all phases. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-08-06
CFV15A16 stratiform rainfall amount Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. "Amount" means mass per unit area. 2010-07-26
CFV15A17 stratiform rainfall flux In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. 2010-07-26
CFV15A18 stratiform rainfall rate Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. 2010-07-26
CFV15A19 stratiform snowfall amount Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. "Amount" means mass per unit area. 2010-07-26
CFV15A20 stratiform snowfall flux In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. 2010-07-26
95FD7XQJ stratosphere mole content of nitrogen dioxide "Content" indicates a quantity per unit area. The "stratosphere content" of a quantity refers to the vertical integral from the tropopause to the stratopause. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for nitrogen_ dioxide is NO2. 2013-03-23
2781WEYZ stratosphere optical thickness due to ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-"optical_ thickness") on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. The stratosphere optical thickness applies to radiation passing through the atmosphere layer between the tropopause and stratopause. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2018-05-15
HKGQA2QF stratosphere optical thickness due to sulfate ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-"optical_ thickness") on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. The stratosphere optical thickness applies to radiation passing through the atmosphere layer between the tropopause and stratopause. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2018-05-15
3YBJPWG7 stratosphere optical thickness due to volcanic ambient aerosol particles The optical thickness is the integral along the path of radiation of a volume scattering/absorption/attenuation coefficient. The radiative flux is reduced by a factor exp(-"optical_ thickness") on traversing the path. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the optical thickness applies at specific wavelengths or frequencies. The stratosphere optical thickness applies to radiation passing through the atmosphere layer between the tropopause and stratopause. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". Volcanic aerosols include both volcanic ash and secondary products such as sulphate aerosols formed from gaseous emissions of volcanic eruptions. 2018-05-15
CFV16A43 subsurface litter carbon content DEPRECATED "Content" indicates a quantity per unit area. "Litter carbon" is dead plant material in or above the soil quantified as the mass of carbon which it contains. The surface called "surface" means the lower boundary of the atmosphere. 2018-04-16
WBEUZ46B subsurface litter mass content of carbon "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. "Subsurface litter" means the part of the litter mixed within the soil below the surface. "Content" indicates a quantity per unit area. The sum of the quantities with standard names surface_ litter_ mass_ content_ of_ carbon and subsurface_ litter_ mass_ content_ of_ carbon has the standard name litter_ mass_ content_ of_ carbon. 2018-04-16
U7YYXJ2T subsurface litter mass content of nitrogen "Content" indicates a quantity per unit area. "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. "Subsurface litter" means the part of the litter mixed within the soil below the surface. The sum of the quantities with standard names wood_ debris_ mass_ content_ of_ nitrogen, surface_ litter_ mass_ content_ of_ nitrogen and subsurface_ litter_ mass_ content_ of_ nitrogen is the total nitrogen mass content of dead plant material. 2018-04-16
CFSN0325 subsurface runoff amount 'Amount' means mass per unit area. Runoff is the liquid water which drains from land. If not specified, 'runoff' refers to the sum of surface runoff and subsurface drainage. 2006-09-26
CFSN0326 subsurface runoff flux Runoff is the liquid water which drains from land. If not specified, 'runoff' refers to the sum of surface runoff and subsurface drainage. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
BAD6PGHA sunglint angle The angle between an incident beam of solar radiation and the outgoing beam specularly reflected at a sea surface. 2015-07-08
CF12N591 sunlit binary mask X_ binary_ mask has 1 where condition X is met, 0 elsewhere. 2009-07-06
CFSN0327 surface air pressure The surface called "surface" means the lower boundary of the atmosphere. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFSN0328 surface albedo The surface called "surface" means the lower boundary of the atmosphere. Albedo is the ratio of outgoing to incoming shortwave irradiance, where 'shortwave irradiance' means that both the incoming and outgoing radiation are integrated across the solar spectrum. To specify the nature of the surface a cell_ methods attribute should be supplied as described in Chapter 7.3.3 of the CF Conventions. 2018-07-03
CFSN0289 surface albedo assuming deep snow The surface called "surface" means the lower boundary of the atmosphere. Albedo is the ratio of outgoing to incoming shortwave irradiance, where 'shortwave irradiance' means that both the incoming and outgoing radiation are integrated across the solar spectrum. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 2018-07-03
CFSN0290 surface albedo assuming no snow The surface called "surface" means the lower boundary of the atmosphere. Albedo is the ratio of outgoing to incoming shortwave irradiance, where 'shortwave irradiance' means that both the incoming and outgoing radiation are integrated across the solar spectrum. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 2018-07-03
CFSN0291 surface altitude The surface called 'surface' means the lower boundary of the atmosphere. Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 2006-09-26
CFV10N43 surface backwards scattering coefficient of radar wave The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength is included to specify the wavelength. Scattering of radiation is its deflection from its incident path without loss of energy. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeding pi/2 radians. A scattering_ angle should not be specified with this quantity. 2008-10-21
BBAEEEBE surface bidirectional reflectance The surface called "surface" means the lower boundary of the atmosphere. "Bidirectional_ reflectance" depends on the angles of incident and measured radiation. Reflectance is the ratio of the energy of the reflected to the incident radiation. A coordinate variable of radiation_ wavelength or radiation_ frequency can be used to specify the wavelength or frequency, respectively, of the radiation. 2013-01-11
CFSN0822 surface brightness temperature The surface called "surface" means the lower boundary of the atmosphere.The brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area. 2007-05-15
EAIFT8T3 surface buoyancy flux into air A variable quantifying net density gains or losses in air parcel buoyancy based on turbulent heat and moisture fluxes, represented by virtual temperature flux, at the air-sea interface. Positive values indicate a buoyancy flux out of the ocean (into the air) that will destabilize the atmosphere. 2024-01-18
466BSTUH surface buoyancy flux into sea water A variable quantifying net density gains or losses in water parcel buoyancy based on thermal (net surface heat flux) and haline (precipitation minus evaporation) forcings at the air-sea interface. A positive value indicates a buoyancy flux into the ocean that will stabilize (i.e., stratify) the surface ocean layer. 2024-01-18
JHUWODE6 surface carbon dioxide abiotic analogue partial pressure difference between sea water and air The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. The partial pressure difference between sea water and air is positive when the partial pressure of the dissolved gas in sea water is greater than the partial pressure in air. 2018-12-17
CFSN0292 surface carbon dioxide mole flux DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2010-07-26
JLPMBXHZ surface carbon dioxide natural analogue partial pressure difference between sea water and air The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. In ocean biogeochemistry models, a "natural analogue" is used to simulate the effect on a modelled variable of imposing preindustrial atmospheric carbon dioxide concentrations, even when the model as a whole may be subjected to varying forcings. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. The partial pressure difference between sea water and air is positive when the partial pressure of the dissolved gas in sea water is greater than the partial pressure in air. 2018-12-17
CFSN0293 surface carbon dioxide partial pressure difference between air and sea water The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. The partial pressure difference between air and sea water is positive when the partial pressure in air is greater than the partial pressure of the dissolved gas in sea water. 2018-10-15
CF14N64 surface carbon dioxide partial pressure difference between sea water and air The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. The partial pressure difference between sea water and air is positive when the partial pressure of the dissolved gas in sea water is greater than the partial pressure in air. 2018-10-15
CFSN0294 surface cover DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. A variable with the standard name of surface_ cover contains strings which indicate the nature of the surface e.g. urban, forest, vegetation, land, sea_ ice, open_ sea. These strings have not yet been standardised. This standard name is a generalisation of land_ cover. 2008-11-11
CFSN0295 surface diffuse downwelling photosynthetic radiative flux in air The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. "Diffuse" radiation is radiation that has been scattered by gas molecules in the atmosphere and by particles such as cloud droplets and aerosols. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFV16A44 surface diffuse downwelling shortwave flux in air The surface called "surface" means the lower boundary of the atmosphere. The term "shortwave" means shortwave radiation. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Diffuse" radiation is radiation that has been scattered by gas molecules in the atmosphere and by particles such as cloud droplets and aerosols. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
BBAD2109 surface diffuse downwelling shortwave flux in air assuming clear sky The surface called "surface" means the lower boundary of the atmosphere. "Diffuse" radiation is radiation that has been scattered by gas molecules in the atmosphere and by particles such as cloud droplets and aerosols. The term "shortwave" means shortwave radiation. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
IC5SICQL surface diffuse shortwave hemispherical reflectance The surface called "surface" means the lower boundary of the atmosphere. "Diffuse" radiation is radiation that has been scattered by gas molecules in the atmosphere and by particles such as cloud droplets and aerosols. The term "shortwave" means shortwave radiation. Hemispherical reflectance is the ratio of the energy of the reflected to the incident radiation. This term gives the fraction of the surface_ diffuse_ downwelling_ shortwave_ flux_ in_ air which is reflected. If the diffuse radiation is isotropic, this term is equivalent to the integral of surface_ bidirectional_ reflectance over all incident angles and over all outgoing angles in the hemisphere above the surface. A coordinate variable of radiation_ wavelength or radiation_ frequency can be used to specify the wavelength or frequency, respectively, of the radiation. Shortwave hemispherical reflectance is related to albedo, but albedo is defined in terms of the fraction of the full spectrum of incident solar radiation which is reflected. It is related to the hemispherical reflectance averaged over all wavelengths using a weighting proportional to the incident radiative flux. 2018-07-03
DVE22M5G surface direct along beam shortwave flux in air The surface called "surface" means the lower boundary of the atmosphere. "Direct" (also known as "beam") radiation is radiation that has followed a direct path from the sun and is alternatively known as "direct insolation". The phrase "along_ beam" refers to direct radiation on a plane perpendicular to the direction of the sun. This is in contrast to standard names such as direct_ downwelling_ shortwave_ flux_ in_ air, where the radiation falls on a horizontal plane at the earth surface. The term "shortwave" means shortwave radiation. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The quantity with standard name surface_ direct_ along_ beam_ shortwave_ flux_ in_ air is also called Direct Normal Irradiance (DNI) in the solar energy industry. 2020-02-03
D6W2P30Q surface direct downwelling shortwave flux in air The surface called "surface" means the lower boundary of the atmosphere. "Direct" (also known as "beam") radiation is radiation that has followed a direct path from the sun and is alternatively known as "direct insolation". Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
IFVYXD3A surface direct shortwave hemispherical reflectance The surface called "surface" means the lower boundary of the atmosphere. "Direct" (also known as "beam") radiation is radiation that has followed a direct path from the sun and is alternatively known as "direct insolation". The term "shortwave" means shortwave radiation. Hemispherical reflectance is the ratio of the energy of the reflected to the incident radiation. This term gives the fraction of the surface_ direct_ downwelling_ shortwave_ flux_ in_ air which is reflected. It is equivalent to the surface_ bidirectional_ reflectance at the incident angle of the incoming solar radiation and integrated over all outgoing angles in the hemisphere above the surface. A coordinate variable of radiation_ wavelength or radiation_ frequency can be used to specify the wavelength or frequency, respectively, of the radiation. Shortwave hemispherical reflectance is related to albedo, but albedo is defined in terms of the fraction of the full spectrum of incident solar radiation which is reflected. It is related to the hemispherical reflectance averaged over all wavelengths using a weighting proportional to the incident radiation flux. 2018-07-03
CFSN0296 surface downward eastward stress The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Downward eastward" indicates the ZX component of a tensor. A downward eastward stress is a downward flux of eastward momentum, which accelerates the lower medium eastward and the upper medium westward. 2021-01-18
IY8BCT2K surface downward eastward stress due to boundary layer mixing The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Downward eastward" indicates the ZX component of a tensor. A downward eastward stress is a downward flux of eastward momentum, which accelerates the lower medium eastward and the upper medium westward. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Boundary layer mixing" means turbulent motions that transport heat, water, momentum and chemical constituents within the atmospheric boundary layer and affect exchanges between the surface and the atmosphere. The atmospheric boundary layer is typically characterised by a well-mixed sub-cloud layer of order 500 metres, and by a more extended conditionally unstable layer with boundary-layer clouds up to 2 km. (Reference: IPCC Third Assessment Report, Working Group 1: The Scientific Basis, 7.2.2.3, https://archive.ipcc.ch/ipccreports/tar/wg1/273.htm). 2021-01-18
0ODKH54S surface downward eastward stress due to ocean viscous dissipation The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Eastward" indicates a vector component which is positive when directed northward (negative southward). "Downward eastward" indicates the ZX component of a tensor. A downward eastward stress is a downward flux of eastward momentum, which accelerates the lower medium eastward and the upper medium westward. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Viscosity" means the stress associated with viscous effects at the sea surface and is equivalent to the turbulent stress just outside the viscous sublayer. 2021-09-20
J02GB5JM surface downward eastward stress due to sea surface waves The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Eastward" indicates a vector component which is positive when directed northward (negative southward). "Downward eastward" indicates the ZX component of a tensor. A downward eastward stress is a downward flux of eastward momentum, which accelerates the lower medium eastward and the upper medium westward. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea surface waves" means the stress associated with form drag over sea surface waves. 2021-09-20
CFSN0297 surface downward heat flux in air The surface called 'surface' means the lower boundary of the atmosphere. 'Downward' indicates a vector component which is positive when directed downward (negative upward). The vertical heat flux in air is the sum of all heat fluxes i.e. radiative, latent and sensible. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
RROTIXV6 surface downward heat flux in sea ice "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0298 surface downward heat flux in sea water The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. 'Downward' indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFV16A45 surface downward heat flux in snow "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. 2010-10-11
CFSN0299 surface downward latent heat flux The surface called 'surface' means the lower boundary of the atmosphere. 'Downward' indicates a vector component which is positive when directed downward (negative upward). The surface latent heat flux is the exchange of heat between the surface and the air on account of evaporation (including sublimation). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
19EPEI15 surface downward mass flux of 13C dioxide abiotic analogue expressed as 13C The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "C" means the element carbon and "13C" is the stable isotope "carbon-13", having six protons and seven neutrons. 2018-04-16
KXO1F55H surface downward mass flux of 14C dioxide abiotic analogue expressed as carbon The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. 2018-04-16
OUM98YOS surface downward mass flux of ammonia "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for ammonia is NH3. 2015-01-07
FHMB0C0Z surface downward mass flux of carbon13 dioxide abiotic analogue expressed as carbon13 DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Carbon13 is a stable isotope of carbon having six protons and seven neutrons. 2018-04-16
EV1FU5HF surface downward mass flux of carbon14 dioxide abiotic analogue expressed as carbon DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. Carbon14 is a radioactive isotope of carbon having six protons and eight neutrons, used in radiocarbon dating. 2018-04-16
B8UJPX8C surface downward mass flux of carbon dioxide abiotic analogue expressed as carbon The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. 2017-03-27
CF14N65 surface downward mass flux of carbon dioxide expressed as carbon "Downward" indicates a vector component which is positive when directed downward (negative upward). The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. 2010-05-12
LRU471DO surface downward mass flux of carbon dioxide natural analogue expressed as carbon The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. In ocean biogeochemistry models, a "natural analogue" is used to simulate the effect on a modelled variable of imposing preindustrial atmospheric carbon dioxide concentrations, even when the model as a whole may be subjected to varying forcings. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. 2017-03-27
Y04WKCLC surface downward mass flux of methane due to non wetland soil biological consumption The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for methane is CH4. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Non-wetland soils are all soils except for wetlands. Wetlands are areas where water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year, including during the growing season. The precise conditions under which non-wetland soils produce and consume methane can vary between models. 2023-04-24
RQ5JLQTX surface downward mass flux of methane due to wetland biological consumption The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for methane is CH4. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Wetlands are areas where water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year, including during the growing season. The precise conditions under which wetlands produce and consume methane can vary between models. 2018-03-13
VBEY1M1X surface downward mass flux of water due to irrigation "Downward" indicates a vector component which is positive when directed downward (negative upward). The surface called "surface" means the lower boundary of the atmosphere. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Irrigation" includes water used to sustain crops, trees, pastures and urban lawns. 2016-12-13
CFV15A21 surface downward mole flux of carbon dioxide "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. The standard name surface_ upward_ mole_ flux_ of_ carbon_ dioxide should be used to label data in which the flux is positive when directed upward. The standard name "surface_ carbon_ dioxide_ mole_ flux" is deprecated because it does not specify in which direction the flux is positive. Any data having the standard name "surface_ carbon_ dioxide_ mole_ flux" should be examined carefully to determine which sign convention was used. 2010-07-26
PSJE7HM9 surface downward mole flux of cfc11 The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro(fluoro)methane. 2019-05-14
7E0WRMJ2 surface downward mole flux of cfc12 The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro(difluoro)methane. 2019-05-14
CF14N66 surface downward mole flux of molecular oxygen "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. 2010-05-12
PC1T5W86 surface downward mole flux of sulfur hexafluoride The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula of sulfur hexafluoride is SF6. 2016-11-15
CFSN0300 surface downward northward stress The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Northward" indicates a vector component which is positive when directed northward (negative southward). "Downward northward" indicates the ZY component of a tensor. A downward northward stress is a downward flux of northward momentum, which accelerates the lower medium northward and the upper medium southward. 2021-01-18
XY0Q9IH4 surface downward northward stress due to boundary layer mixing The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Northward" indicates a vector component which is positive when directed northward (negative southward). "Downward northward" indicates the ZY component of a tensor. A downward northward stress is a downward flux of northward momentum, which accelerates the lower medium northward and the upper medium southward. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Boundary layer mixing" means turbulent motions that transport heat, water, momentum and chemical constituents within the atmospheric boundary layer and affect exchanges between the surface and the atmosphere. The atmospheric boundary layer is typically characterised by a well-mixed sub-cloud layer of order 500 metres, and by a more extended conditionally unstable layer with boundary-layer clouds up to 2 km. (Reference: IPCC Third Assessment Report, Working Group 1: The Scientific Basis, 7.2.2.3, https://archive.ipcc.ch/ipccreports/tar/wg1/273.htm). 2021-01-18
SICFF2VO surface downward northward stress due to ocean viscous dissipation The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Northward" indicates a vector component which is positive when directed northward (negative southward). "Downward northward" indicates the ZY component of a tensor. A downward northward stress is a downward flux of northward momentum, which accelerates the lower medium northward and the upper medium southward. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Viscosity" means the stress associated with viscous effects at the sea surface and is equivalent to the turbulent stress just outside the viscous sublayer. 2021-09-20
XI1UYZIK surface downward northward stress due to sea surface waves The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Northward" indicates a vector component which is positive when directed northward (negative southward). "Downward northward" indicates the ZY component of a tensor. A downward northward stress is a downward flux of northward momentum, which accelerates the lower medium northward and the upper medium southward. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea surface waves" means the stress associated with form drag over sea surface waves. 2021-09-20
CFSN0301 surface downward sensible heat flux The surface called 'surface' means the lower boundary of the atmosphere. 'Downward' indicates a vector component which is positive when directed downward (negative upward). The surface sensible heat flux, also called 'turbulent' heat flux, is the exchange of heat between the surface and the air by motion of air. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0302 surface downward water flux The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. 'Downward' indicates a vector component which is positive when directed downward (negative upward). The surface water flux is the result of precipitation and evaporation. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0303 surface downward x stress The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "x" indicates a vector component along the grid x-axis, positive with increasing x. "Downward x" indicates the ZX component of a tensor. A downward x stress is a downward flux of momentum, which accelerates the lower medium in the direction of increasing x and and the upper medium in the direction of decreasing x. 2021-01-18
CF12N592 surface downward x stress correction The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "x" indicates a vector component along the grid x-axis, positive with increasing x. "Downward x" indicates the ZX component of a tensor. A downward x stress is a downward flux of momentum, which accelerates the lower medium in the direction of increasing x and and the upper medium in the direction of decreasing x. A positive correction is downward i.e. added to the ocean. 2021-01-18
CFSN0304 surface downward y stress The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "y" indicates a vector component along the grid y-axis, positive with increasing y. "Downward y" indicates the ZY component of a tensor. A downward y stress is a downward flux of momentum, which accelerates the lower medium in the direction of increasing y and and the upper medium in the direction of decreasing y. 2021-01-18
CF12N593 surface downward y stress correction The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. "Downward" indicates a vector component which is positive when directed downward (negative upward). "y" indicates a vector component along the grid y-axis, positive with increasing y. "Downward y" indicates the ZY component of a tensor. A downward y stress is a downward flux of momentum, which accelerates the lower medium in the direction of increasing y and and the upper medium in the direction of decreasing y. A positive correction is downward i.e. added to the ocean. 2021-01-18
CFSNA041 surface downwelling longwave flux DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'longwave' means longwave radiation. Downwelling radiation is radiation from above. It does not mean 'net downward'. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0279 surface downwelling longwave flux in air The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "longwave" means longwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFSN0280 surface downwelling longwave flux in air assuming clear sky The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "longwave" means longwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
W8RZ0WM8 surface downwelling longwave flux in air due to volcanic ambient aerosol particles The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "longwave" means longwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". Volcanic aerosols include both volcanic ash and secondary products such as sulphate aerosols formed from gaseous emissions of volcanic eruptions. 2018-07-03
CFSN0281 surface downwelling photon flux in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. A photon flux is specified in terms of numbers of photons expressed in moles. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
QASZPOPC surface downwelling photon flux per unit wavelength in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. A photon flux is specified in terms of numbers of photons expressed in moles. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
CFSN0282 surface downwelling photon radiance in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Photon radiance is the photon flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A photon flux is specified in terms of numbers of photons expressed in moles. 2018-07-03
92V2UOF6 surface downwelling photon radiance per unit wavelength in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Photon radiance is the photon flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A photon flux is specified in terms of numbers of photons expressed in moles. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
CFSN0283 surface downwelling photon spherical irradiance in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Photon spherical irradiance is the photon flux incident on unit area of a hemispherical (or "2-pi") collector. The direction ("up/downwelling") is specified. Radiation incident on a 4-pi collector has a standard name referring to "omnidirectional spherical irradiance". A photon flux is specified in terms of numbers of photons expressed in moles. 2018-07-03
JFTGSY33 surface downwelling photon spherical irradiance per unit wavelength in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. Photon spherical irradiance is the photon flux incident on unit area of a hemispherical (or "2-pi") collector. The direction ("up/downwelling") is specified. Radiation incident on a 4-pi collector has a standard name referring to "omnidirectional spherical irradiance". A photon flux is specified in terms of numbers of photons expressed in moles. 2018-07-03
CFSN0284 surface downwelling photosynthetic photon flux in air The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. A photon flux is specified in terms of numbers of photons expressed in moles. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFSN0285 surface downwelling photosynthetic photon flux in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. A photon flux is specified in terms of numbers of photons expressed in moles. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFSN0286 surface downwelling photosynthetic photon radiance in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Photon radiance is the photon flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. A photon flux is specified in terms of numbers of photons expressed in moles. 2018-07-03
CFSN0287 surface downwelling photosynthetic photon spherical irradiance in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. Photon spherical irradiance is the photon flux incident on unit area of a hemispherical (or "2-pi") collector. The direction ("up/downwelling") is specified. Radiation incident on a 4-pi collector has standard names of "omnidirectional spherical irradiance". A photon flux is specified in terms of numbers of photons expressed in moles. 2018-07-03
CFSN0288 surface downwelling photosynthetic radiance in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFSN0270 surface downwelling photosynthetic radiative flux in air The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFSN0271 surface downwelling photosynthetic radiative flux in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFSN0272 surface downwelling photosynthetic spherical irradiance in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. Spherical irradiance is the radiation incident on unit area of a hemispherical (or "2-pi") collector. It is sometimes called "scalar irradiance". The direction (up/downwelling) is specified. Radiation incident on a 4-pi collector has standard names of "omnidirectional spherical irradiance". 2018-07-03
CFSN0273 surface downwelling radiance in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
VXOB20W3 surface downwelling radiance per unit wavelength in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
CFSN0274 surface downwelling radiative flux in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiative flux is the sum of shortwave and longwave radiative fluxes. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
PE6BY1SE surface downwelling radiative flux per unit wavelength in air The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
JATNYVYW surface downwelling radiative flux per unit wavelength in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
CFSNA034 surface downwelling shortwave flux DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'shortwave' means shortwave radiation. Downwelling radiation is radiation from above. It does not mean 'net downward'. Surface downwelling shortwave is the sum of direct and diffuse solar radiation incident on the surface, and is sometimes called 'global radiation'. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSNA035 surface downwelling shortwave flux assuming clear sky DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'shortwave' means shortwave radiation. Downwelling radiation is radiation from above. It does not mean 'net downward'. Surface downwelling shortwave is the sum of direct and diffuse solar radiation incident on the surface, and is sometimes called 'global radiation'. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0275 surface downwelling shortwave flux in air The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. Surface downwelling shortwave is the sum of direct and diffuse solar radiation incident on the surface, and is sometimes called "global radiation". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
BWGKPWGN surface downwelling shortwave flux in air assuming clean clear sky DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The term "shortwave" means shortwave radiation. Surface downwelling shortwave is the sum of direct and diffuse solar radiation incident on the surface, and is sometimes called "global radiation". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clean sky" means in the absence of atmospheric aerosol. "Clear sky" means in the absence of clouds. 2018-05-30
CFSN0276 surface downwelling shortwave flux in air assuming clear sky The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. Surface downwelling shortwave is the sum of direct and diffuse solar radiation incident on the surface, and is sometimes called "global radiation". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
QFAN0RQ1 surface downwelling shortwave flux in air assuming clear sky and no aerosol The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. Surface downwelling shortwave is the sum of direct and diffuse solar radiation incident on the surface, and is sometimes called "global radiation". When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
KVVHQL9X surface downwelling shortwave flux in air due to volcanic ambient aerosol particles The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". Volcanic aerosols include both volcanic ash and secondary products such as sulphate aerosols formed from gaseous emissions of volcanic eruptions. 2018-07-03
CFSN0277 surface downwelling spectral photon flux in sea water DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. Downwelling radiation is radiation from above. It does not mean 'net downward'. A photon flux is specified in terms of numbers of photons expressed in moles. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2013-06-27
CFSN0278 surface downwelling spectral photon radiance in sea water DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. Downwelling radiation is radiation from above. It does not mean 'net downward'. Photon radiance is the photon flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A photon flux is specified in terms of numbers of photons expressed in moles. 2013-06-27
CFSN0257 surface downwelling spectral photon spherical irradiance in sea water DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. Downwelling radiation is radiation from above. It does not mean 'net downward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Photon spherical irradiance is the photon flux incident on unit area of a hemispherical (or '2-pi') collector. A photon flux is specified in terms of numbers of photons expressed in moles. 2013-06-27
CFSN0258 surface downwelling spectral radiance in sea water DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. Downwelling radiation is radiation from above. It does not mean 'net downward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction from which it is coming must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2013-06-27
CFSN0259 surface downwelling spectral radiative flux in air DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean 'net downward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2013-06-27
CFSN0260 surface downwelling spectral radiative flux in sea water DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. Downwelling radiation is radiation from above. It does not mean 'net downward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2013-06-27
CFSN0261 surface downwelling spectral spherical irradiance in sea water DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. Downwelling radiation is radiation from above. It does not mean 'net downward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Spherical irradiance is the radiation incident on unit area of a hemispherical (or '2-pi') collector. It is sometimes called 'scalar irradiance'. The direction (up/downwelling) is specified. Radiation incident on a 4-pi collector has standard names of 'omnidirectional spherical irradiance'. 2013-06-27
CFSN0262 surface downwelling spherical irradiance in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Spherical irradiance is the radiation incident on unit area of a hemispherical (or "2-pi") collector. It is sometimes called "scalar irradiance". The direction (up/downwelling) is specified. Radiation incident on a 4-pi collector has standard names of "omnidirectional spherical irradiance". 2018-07-03
BAJFI492 surface downwelling spherical irradiance per unit wavelength in sea water The surface called "surface" means the lower boundary of the atmosphere. Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Spherical irradiance is the radiation incident on unit area of a hemispherical (or "2-pi") collector. It is sometimes called "scalar irradiance". The direction (up/downwelling) is specified. Radiation incident on a 4-pi collector has standard names of "omnidirectional spherical irradiance". A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
CFSN0263 surface drag coefficient for heat in air The surface called 'surface' means the lower boundary of the atmosphere. 2006-09-26
CFSN0264 surface drag coefficient for momentum in air The surface called 'surface' means the lower boundary of the atmosphere. 2006-09-26
CFSN0265 surface drag coefficient in air The surface called 'surface' means the lower boundary of the atmosphere. 2006-09-26
CFSN0778 surface eastward geostrophic sea water velocity DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. surface_ eastward_ sea_ water_ geostrophic_ velocity is the sum of a variable part, surface_ eastward_ sea_ water_ geostrophic_ velocity_ assuming_ sea_ level_ for_ geoid, and a constant part due to the stationary component of ocean circulation. 2008-04-15
CFSN0779 surface eastward geostrophic sea water velocity assuming sea level for geoid DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. "sea_ level" means mean sea level. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. surface_ eastward_ sea_ water_ geostrophic_ velocity_ assuming_ sea_ level_ for_ geoid is the variable part of surface_ eastward_ sea_ water_ geostrophic_ velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. 2008-04-15
CFSN0266 surface eastward sea water velocity The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). 2017-09-18
BBAH2113 surface frozen carbon dioxide amount "Amount" means mass per unit area. The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. Frozen carbon dioxide is found on the surface of Mars. 2011-07-21
CFSN0267 surface geopotential The surface called 'surface' means the lower boundary of the atmosphere. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. 2006-09-26
CFV8NS2 surface geostrophic eastward sea water velocity The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. The quantity with standard name surface_ geostrophic_ eastward_ sea_ water_ velocity is the sum of a variable part, surface_ geostrophic_ eastward_ sea_ water_ velocity_ assuming_ mean_ sea_ level_ for_ geoid, and a constant part due to the stationary component of ocean circulation. 2017-06-26
TGQWOPTH surface geostrophic eastward sea water velocity assuming mean sea level for geoid The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean.) In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. The quantity with standard name surface_ geostrophic_ eastward_ sea_ water_ velocity_ assuming_ mean_ sea_ level_ for_ geoid is the variable part of surface_ geostrophic_ eastward_ sea_ water_ velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. 2017-06-26
CFV8NS3 surface geostrophic eastward sea water velocity assuming sea level for geoid DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. "sea_ level" means mean sea level. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean.) In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. surface_ geostrophic_ eastward_ sea_ water_ velocity_ assuming_ sea_ level_ for_ geoid is the variable part of surface_ geostrophic_ eastward_ sea_ water_ velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. 2017-06-26
CFV8NS4 surface geostrophic northward sea water velocity The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. The quantity with standard name surface_ geostrophic_ northward_ sea_ water_ velocity is the sum of a variable part, surface_ geostrophic_ northward_ sea_ water_ velocity_ assuming_ mean_ sea_ level_ for_ geoid, and a constant part due to the stationary component of ocean circulation. 2017-06-26
UNPRYO3X surface geostrophic northward sea water velocity assuming mean sea level for geoid The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean.) In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. The quantity with standard name surface_ geostrophic_ northward_ sea_ water_ velocity_ assuming_ mean_ sea_ level_ for_ geoid is the variable part of surface_ geostrophic_ northward_ sea_ water_ velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. 2017-06-26
CFV8NS5 surface geostrophic northward sea water velocity assuming sea level for geoid DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. "sea_ level" means mean sea level. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean.) In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. surface_ geostrophic_ northward_ sea_ water_ velocity_ assuming_ sea_ level_ for_ geoid is the variable part of surface_ geostrophic_ northward_ sea_ water_ velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. 2017-06-26
CFSN0836 surface geostrophic sea water x velocity The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. The quantity with standard name surface_ geostrophic_ sea_ water_ x_ velocity is the sum of a variable part, surface_ geostrophic_ sea_ water_ x_ velocity_ assuming_ mean_ sea_ level_ for_ geoid, and a constant part due to the stationary component of ocean circulation. 2017-06-26
R33VVM5P surface geostrophic sea water x velocity assuming mean sea level for geoid The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean.) In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. The quantity with standard name surface_ geostrophic_ sea_ water_ x_ velocity_ assuming_ mean_ sea_ level_ for_ geoid is the variable part of surface_ geostrophic_ sea_ water_ x_ velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. 2017-06-26
CFSN0827 surface geostrophic sea water x velocity assuming sea level for geoid DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. "sea_ level" means mean sea level. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean.) In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. surface_ geostrophic_ sea_ water_ x_ velocity_ assuming_ sea_ level_ for_ geoid is the variable part of surface_ geostrophic_ sea_ water_ x_ velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. 2017-06-26
CFSN0828 surface geostrophic sea water y velocity The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. The quantity with standard name surface_ geostrophic_ sea_ water_ y_ velocity is the sum of a variable part, surface_ geostrophic_ sea_ water_ y_ velocity_ assuming_ mean_ sea_ level_ for_ geoid, and a constant part due to the stationary component of ocean circulation. 2017-06-26
7QLFZGQ2 surface geostrophic sea water y velocity assuming mean sea level for geoid The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. (The volume enclosed between the geoid and the sea floor equals the mean volume of water in the ocean). In an ocean GCM the geoid is the surface of zero depth, or the rigid lid if the model uses that approximation. The quantity with standard name surface_ geostrophic_ sea_ water_ y_ velocity_ assuming_ mean_ sea_ level_ for_ geoid is the variable part of surface_ geostrophic_ sea_ water_ y_ velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. 2017-06-26
CFSN0829 surface geostrophic sea water y velocity assuming sea level for geoid DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. "Geostrophic" indicates that geostrophic balance is assumed, i.e. that the pressure gradient force and the Coriolis force are balanced and the large scale fluid flow is parallel to the isobars. "sea_ level" means mean sea level. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. surface_ geostrophic_ sea_ water_ y_ velocity_ assuming_ sea_ level_ for_ geoid is the variable part of surface_ geostrophic_ sea_ water_ y_ velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. 2017-06-26
HDLR6IEX surface height above geopotential datum "Height_ above_ X" means the vertical distance above the named surface X. The surface called "surface" means the lower boundary of the atmosphere. The "geopotential datum" is any estimated surface of constant geopotential used as a datum i.e. a reference level; for the geoid as a datum, specific standard names are available. To specify which geoid or geopotential datum is being used as a reference level, a grid_ mapping variable should be attached to the data variable as described in Chapter 5.6 of the CF Convention. 2017-07-24
CFV16A46 surface litter carbon content DEPRECATED "Content" indicates a quantity per unit area. "Litter carbon" is dead plant material in or above the soil quantified as the mass of carbon which it contains. The surface called "surface" means the lower boundary of the atmosphere. 2018-04-16
2MY21HA6 surface litter mass content of carbon "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. "Surface litter" means the part of the litter resting above the soil surface. "Content" indicates a quantity per unit area. The sum of the quantities with standard names surface_ litter_ mass_ content_ of_ carbon and subsurface_ litter_ mass_ content_ of_ carbon has the standard name litter_ mass_ content_ of_ carbon. 2018-04-16
WF3PJDFK surface litter mass content of nitrogen "Content" indicates a quantity per unit area. "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. "Surface litter" means the part of the litter resting above the soil surface. The sum of the quantities with standard names wood_ debris_ mass_ content_ of_ nitrogen, surface_ litter_ mass_ content_ of_ nitrogen and subsurface_ litter_ mass_ content_ of_ nitrogen is the total nitrogen mass content of dead plant material. 2018-04-16
CF12N594 surface longwave emissivity Emissivity is the ratio of the power emitted by an object to the power that would be emitted by a perfect black body having the same temperature as the object. The emissivity is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength or radiation_ frequency is included to specify either the wavelength or frequency. The surface called "surface" means the lower boundary of the atmosphere. "longwave" means longwave radiation. 2009-07-06
CF12N595 surface microwave emissivity Emissivity is the ratio of the power emitted by an object to the power that would be emitted by a perfect black body having the same temperature as the object. The emissivity is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength or radiation_ frequency is included to specify either the wavelength or frequency. The surface called "surface" means the lower boundary of the atmosphere. 2009-07-06
P42ZWH6N surface mole concentration of dissolved inorganic phosphorus in sea water DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Dissolved inorganic phosphorus" means phosphate ions in solution. 2016-12-15
CF14N67 surface molecular oxygen partial pressure difference between sea water and air The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for molecular oxygen is O2. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. The partial pressure difference between sea water and air is positive when the partial pressure of the dissolved gas in sea water is greater than the partial pressure in air. 2018-10-15
JCGDJQJ5 surface net downward longwave dust ambient aerosol particles direct radiative effect The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). The term "longwave" means longwave radiation. "X_ direct_ radiative_ effect" refers to the instantaneous radiative impact of X on the Earth's energy balance, excluding secondary effects such as changes in cloud cover which may be caused by X. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2018-06-11
SQWOLREE surface net downward longwave dust ambient aerosol particles direct radiative effect assuming clear sky The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). The term "longwave" means longwave radiation. "X_ direct_ radiative_ effect" refers to the instantaneous radiative impact of X on the Earth's energy balance, excluding secondary effects such as changes in cloud cover which may be caused by X. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
CFSN0268 surface net downward longwave flux The surface called 'surface' means the lower boundary of the atmosphere. 'longwave' means longwave radiation. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0269 surface net downward longwave flux assuming clear sky The surface called 'surface' means the lower boundary of the atmosphere. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'longwave' means longwave radiation. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
C5161WB5 surface net downward mass flux of ammonia due to bidirectional surface exchange "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward mass flux is the difference between downward_ mass_ flux and upward_ mass_ flux. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Bidirectional surface exchange" is the exchange of a chemical species between the atmosphere and biosphere as simulated by bidirectional surface flux models. It refers to exchange through stomata and soil surfaces and is the net result of emission and dry deposition. The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for ammonia is NH3. 2015-01-07
K9B9YMKV surface net downward mass flux of carbon dioxide expressed as 13C due to all land processes The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. "C" means the element carbon and "13C" is the stable isotope "carbon-13", having six protons and seven neutrons. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "All land processes" means plant and soil respiration, photosynthesis, animal grazing, crop harvesting, natural fires and anthropogenic land use change. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change and the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. 2018-05-15
25B2OXU5 surface net downward mass flux of carbon dioxide expressed as 14C due to all land processes The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "All land processes" means plant and soil respiration, photosynthesis, animal grazing, crop harvesting, natural fires and anthropogenic land use change. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change and the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. 2018-05-15
CFV16A47 surface net downward mass flux of carbon dioxide expressed as carbon due to all land processes "Downward" indicates a vector component which is positive when directed downward (negative upward). The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "All land processes" means plant and soil respiration, photosynthesis, animal grazing, crop harvesting, natural fires and anthropogenic land use change. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change and the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. The quantity with standard name surface_ net_ downward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ all_ land_ processes is equal to the difference between the quantities with standard names surface_ net_ downward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ all_ land_ processes_ excluding_ anthropogenic_ land_ use_ change and surface_ net_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ anthropogenic_ land_ use_ change. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The chemical formula for carbon dioxide is CO2. 2010-10-11
CFV16A48 surface net downward mass flux of carbon dioxide expressed as carbon due to all land processes excluding anthropogenic land use change "Downward" indicates a vector component which is positive when directed downward (negative upward). The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "All land processes" means plant and soil respiration, photosynthesis, animal grazing, crop harvesting, natural fires and anthropogenic land use change. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change and the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. The quantity with standard name surface_ net_ downward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ all_ land_ processes is equal to the difference between the quantities with standard names surface_ net_ downward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ all_ land_ processes_ excluding_ anthropogenic_ land_ use_ change and surface_ net_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ anthropogenic_ land_ use_ change. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The chemical formula for carbon dioxide is CO2. 2010-10-11
CFSN0830 surface net downward radiative flux The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). Radiative flux is the sum of shortwave and longwave radiative fluxes. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2007-07-17
CFSN0780 surface net downward radiative flux where land DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). Radiative flux is the sum of shortwave and longwave radiative fluxes. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Unless indicated, a quantity is assumed to apply to the whole area of each horizontal grid box. The qualifier where_ type specifies instead that the quantity applies only to the part of the grid box of the named type. 2008-11-11
9XBTGUN5 surface net downward shortwave dust ambient aerosol particles direct radiative effect The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). The term "shortwave" means shortwave radiation. "X_ direct_ radiative_ effect" refers to the instantaneous radiative impact of X on the Earth's energy balance, excluding secondary effects such as changes in cloud cover which may be caused by X. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2018-06-11
NAZIJ291 surface net downward shortwave dust ambient aerosol particles direct radiative effect assuming clear sky The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). The term "shortwave" means shortwave radiation. "X_ direct_ radiative_ effect" refers to the instantaneous radiative impact of X on the Earth's energy balance, excluding secondary effects such as changes in cloud cover which may be caused by X. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-06-11
CFSN0237 surface net downward shortwave flux The surface called 'surface' means the lower boundary of the atmosphere. 'shortwave' means shortwave radiation. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0238 surface net downward shortwave flux assuming clear sky The surface called 'surface' means the lower boundary of the atmosphere. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'shortwave' means shortwave radiation. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0239 surface net upward longwave flux The surface called 'surface' means the lower boundary of the atmosphere. 'longwave' means longwave radiation. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Net upward radiation is the difference between radiation from below (upwelling) and radiation from above (downwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFV16A49 surface net upward mass flux of carbon dioxide expressed as carbon due to emission from anthropogenic land use change "Upward" indicates a vector component which is positive when directed upward (negative downward). The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change and the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. The quantity with standard name surface_ net_ downward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ all_ land_ processes is equal to the difference between the quantities with standard names surface_ net_ downward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ all_ land_ processes_ excluding_ anthropogenic_ land_ use_ change and surface_ net_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ anthropogenic_ land_ use_ change. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for carbon dioxide is CO2. 2010-10-11
YS83SX9Z surface net upward mass flux of methane due to emission from wetland biological processes "Upward" indicates a vector component which is positive when directed upward (negative downward). A net upward flux is the difference between the flux from below (upward) and the flux from above (downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Wetlands are areas where water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year, including during the growing season. The precise conditions under which wetlands produce and consume methane can vary between models. The quantity with standard name surface_ net_ upward_ mass_ flux_ of_ methane_ due_ to_ emission_ from_ wetland_ biological_ processes is the difference between the upward and downward surface fluxes of methane which have standard names surface_ upward_ mass_ flux_ of_ methane_ due_ to_ emission_ from_ wetland_ biological_ production and surface_ downward_ mass_ flux_ of_ methane_ due_ to_ wetland_ biological_ consumption, respectively. 2018-05-29
CFSN0240 surface net upward radiative flux The surface called 'surface' means the lower boundary of the atmosphere. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Net upward radiation is the difference between radiation from below (upwelling) and radiation from above (downwelling). Radiative flux is the sum of shortwave and longwave radiative fluxes. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0241 surface net upward shortwave flux The surface called 'surface' means the lower boundary of the atmosphere. 'shortwave' means shortwave radiation. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Net upward radiation is the difference between radiation from below (upwelling) and radiation from above (downwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0781 surface northward geostrophic sea water velocity DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. surface_ northward_ sea_ water_ geostrophic_ velocity is the sum of a variable part, surface_ northward_ sea_ water_ geostrophic_ velocity_ assuming_ sea_ level_ for_ geoid, and a constant part due to the stationary component of ocean circulation. 2008-04-15
CFSN0782 surface northward geostrophic sea water velocity assuming sea level for geoid DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Geostrophic" indicates that geostrophic balance is assumed. "Water" means water in all phases. "sea_ level" means mean sea level. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. surface_ northward_ sea_ water_ geostrophic_ velocity_ assuming_ sea_ level_ for_ geoid is the variable part of surface_ northward_ sea_ water_ geostrophic_ velocity. The assumption that sea level is equal to the geoid means that the stationary component of ocean circulation is equal to zero. 2008-04-15
CFSN0242 surface northward sea water velocity The surface called "surface" means the lower boundary of the atmosphere. A velocity is a vector quantity. "Northward" indicates a vector component which is positive when directed northward (negative southward). 2017-09-18
P99S30MO surface partial pressure of carbon dioxide abiotic analogue in sea water The chemical formula for carbon dioxide is CO2. In ocean biogeochemistry models, an "abiotic analogue" is used to simulate the effect on a modelled variable when biological effects on ocean carbon concentration and alkalinity are ignored. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. 2018-10-15
CFSN0243 surface partial pressure of carbon dioxide in air The surface called "surface" means the lower boundary of the atmosphere. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. The chemical formula for carbon dioxide is CO2. 2018-10-15
CFSN0244 surface partial pressure of carbon dioxide in sea water The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. The chemical formula for carbon dioxide is CO2. 2018-10-15
CCC4DXOM surface partial pressure of carbon dioxide natural analogue in sea water The chemical formula for carbon dioxide is CO2. In ocean biogeochemistry models, a "natural analogue" is used to simulate the effect on a modelled variable of imposing preindustrial atmospheric carbon dioxide concentrations, even when the model as a whole may be subjected to varying forcings. The partial pressure of a dissolved gas in sea water is the partial pressure in air with which it would be in equilibrium. The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. 2018-10-15
FKH485EY surface radioactivity content The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. 2018-02-12
Q3H382LX surface radioactivity content of 101Mo The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Mo" means the element "molybdenum" and "101Mo" is the isotope "molybdenum-101" with a half-life of 1.01e-02 days. 2018-02-12
MMUG7PMI surface radioactivity content of 101Tc The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tc" means the element "technetium" and "101Tc" is the isotope "technetium-101" with a half-life of 9.86e-03 days. 2018-02-12
JRYRLENJ surface radioactivity content of 102Mo The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Mo" means the element "molybdenum" and "102Mo" is the isotope "molybdenum-102" with a half-life of 7.71e-03 days. 2018-02-12
J9O9W6EG surface radioactivity content of 102Tc The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tc" means the element "technetium" and "102Tc" is the isotope "technetium-102" with a half-life of 6.12e-05 days. 2018-02-12
CTNNMI6G surface radioactivity content of 102mTc The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tc" means the element "technetium" and "102mTc" is the metastable state of the isotope "technetium-102" with a half-life of 2.98e-03 days. 2018-02-12
34XXBP6R surface radioactivity content of 103Ru The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ru" means the element "ruthenium" and "103Ru" is the isotope "ruthenium-103" with a half-life of 3.95e+01 days. 2018-02-12
H9MX26ME surface radioactivity content of 103mRh The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rh" means the element "rhodium" and "103mRh" is the metastable state of the isotope "rhodium-103" with a half-life of 3.89e-02 days. 2018-02-12
QPKERA6T surface radioactivity content of 104Tc The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tc" means the element "technetium" and "104Tc" is the isotope "technetium-104" with a half-life of 1.25e-02 days. 2018-02-12
ZXDAMK75 surface radioactivity content of 105Rh The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rh" means the element "rhodium" and "105Rh" is the isotope "rhodium-105" with a half-life of 1.48e+00 days. 2018-02-12
F4EUFP48 surface radioactivity content of 105Ru The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ru" means the element "ruthenium" and "105Ru" is the isotope "ruthenium-105" with a half-life of 1.85e-01 days. 2018-02-12
CCNLNIHM surface radioactivity content of 105mRh The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rh" means the element "rhodium" and "105mRh" is the metastable state of the isotope "rhodium-105" with a half-life of 4.41e-04 days. 2018-02-12
NAHAICWP surface radioactivity content of 106Rh The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rh" means the element "rhodium" and "106Rh" is the isotope "rhodium-106" with a half-life of 3.46e-04 days. 2018-02-12
X51E8GMP surface radioactivity content of 106Ru The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ru" means the element "ruthenium" and "106Ru" is the isotope "ruthenium-106" with a half-life of 3.66e+02 days. 2018-02-12
WB4QAY2N surface radioactivity content of 106mRh The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rh" means the element "rhodium" and "106mRh" is the metastable state of the isotope "rhodium-106" with a half-life of 9.09e-02 days. 2018-02-12
D1NHU6H5 surface radioactivity content of 107Pd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pd" means the element "palladium" and "107Pd" is the isotope "palladium-107" with a half-life of 2.37e+09 days. 2018-02-12
3YPXA7VJ surface radioactivity content of 107Rh The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rh" means the element "rhodium" and "107Rh" is the isotope "rhodium-107" with a half-life of 1.51e-02 days. 2018-02-12
F9CVXWYZ surface radioactivity content of 107mPd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pd" means the element "palladium" and "107mPd" is the metastable state of the isotope "palladium-107" with a half-life of 2.47e-04 days. 2018-02-12
52IUWBLO surface radioactivity content of 109Pd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pd" means the element "palladium" and "109Pd" is the isotope "palladium-109" with a half-life of 5.61e-01 days. 2018-02-12
5HV8F33O surface radioactivity content of 109mAg The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ag" means the element "silver" and "109mAg" is the metastable state of the isotope "silver-109" with a half-life of 4.58e-04 days. 2018-02-12
ZOTJCWUJ surface radioactivity content of 110mAg The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ag" means the element "silver" and "110mAg" is the metastable state of the isotope "silver-110" with a half-life of 2.70e+02 days. 2018-02-12
5WHTCL3T surface radioactivity content of 111Ag The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ag" means the element "silver" and "111Ag" is the isotope "silver-111" with a half-life of 7.50e+00 days. 2018-02-12
8GBSQ1PS surface radioactivity content of 111Pd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pd" means the element "palladium" and "111Pd" is the isotope "palladium-111" with a half-life of 1.53e-02 days. 2018-02-12
T0FQXBIC surface radioactivity content of 111mAg The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ag" means the element "silver" and "111mAg" is the metastable state of the isotope "silver-111" with a half-life of 8.56e-04 days. 2018-02-12
AN92DWEC surface radioactivity content of 111mCd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cd" means the element "cadmium" and "111mCd" is the metastable state of the isotope "cadmium-111" with a half-life of 3.39e-02 days. 2018-02-12
A1Q03958 surface radioactivity content of 111mPd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pd" means the element "palladium" and "111mPd" is the metastable state of the isotope "palladium-111" with a half-life of 2.29e-01 days. 2018-02-12
J57FPBOP surface radioactivity content of 112Ag The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ag" means the element "silver" and "112Ag" is the isotope "silver-112" with a half-life of 1.30e-01 days. 2018-02-12
YDDTEOU5 surface radioactivity content of 112Pd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pd" means the element "palladium" and "112Pd" is the isotope "palladium-112" with a half-life of 8.37e-01 days. 2018-02-12
06QUDWX0 surface radioactivity content of 113Ag The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ag" means the element "silver" and "113Ag" is the isotope "silver-113" with a half-life of 2.21e-01 days. 2018-02-12
SENVDGRH surface radioactivity content of 113Cd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cd" means the element "cadmium" and "113Cd" is the isotope "cadmium-113" with a half-life of 3.29e+18 days. 2018-02-12
U2SI4T3U surface radioactivity content of 113mAg The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ag" means the element "silver" and "113mAg" is the metastable state of the isotope "silver-113" with a half-life of 7.64e-04 days. 2018-02-12
RT0WIZ5D surface radioactivity content of 113mCd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cd" means the element "cadmium" and "113mCd" is the metastable state of the isotope "cadmium-113" with a half-life of 5.31e+03 days. 2018-02-12
XFWO8ES1 surface radioactivity content of 113mIn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "In" means the element "indium" and "113mIn" is the metastable state of the isotope "indium-113" with a half-life of 6.92e-02 days. 2018-02-12
6YJGL585 surface radioactivity content of 115Ag The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ag" means the element "silver" and "115Ag" is the isotope "silver-115" with a half-life of 1.46e-02 days. 2018-02-12
18GSR3VF surface radioactivity content of 115Cd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cd" means the element "cadmium" and "115Cd" is the isotope "cadmium-115" with a half-life of 2.23e+00 days. 2018-02-12
YVCZHRK1 surface radioactivity content of 115In The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "In" means the element "indium" and "115In" is the isotope "indium-115" with a half-life of 1.86e+18 days. 2018-02-12
V6L18VRV surface radioactivity content of 115mAg The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ag" means the element "silver" and "115mAg" is the metastable state of the isotope "silver-115" with a half-life of 1.97e-04 days. 2018-02-12
G4OS42JH surface radioactivity content of 115mCd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cd" means the element "cadmium" and "115mCd" is the metastable state of the isotope "cadmium-115" with a half-life of 4.46e+01 days. 2018-02-12
FY914OE0 surface radioactivity content of 115mIn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "In" means the element "indium" and "115mIn" is the metastable state of the isotope "indium-115" with a half-life of 1.87e-01 days. 2018-02-12
7CQEXEJE surface radioactivity content of 116In The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "In" means the element "indium" and "116In" is the isotope "indium-116" with a half-life of 1.64e-04 days. 2018-02-12
ILBKWZFP surface radioactivity content of 116mIn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "In" means the element "indium" and "116mIn" is the metastable state of the isotope "indium-116" with a half-life of 3.77e-02 days. 2018-02-12
BTKWOTWW surface radioactivity content of 117Cd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cd" means the element "cadmium" and "117Cd" is the isotope "cadmium-117" with a half-life of 1.08e-01 days. 2018-02-12
45XGD9AU surface radioactivity content of 117In The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "In" means the element "indium" and "117In" is the isotope "indium-117" with a half-life of 3.05e-02 days. 2018-02-12
S9E6COR5 surface radioactivity content of 117mCd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cd" means the element "cadmium" and "117mCd" is the metastable state of the isotope "cadmium-117" with a half-life of 1.42e-01 days. 2018-02-12
U6CGJGJG surface radioactivity content of 117mIn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "In" means the element "indium" and "117mIn" is the metastable state of the isotope "indium-117" with a half-life of 8.08e-02 days. 2018-02-12
FXPOMWE7 surface radioactivity content of 117mSn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sn" means the element "tin" and "117mSn" is the metastable state of the isotope "tin-117" with a half-life of 1.40e+01 days. 2018-02-12
YKMLLS0Y surface radioactivity content of 118Cd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cd" means the element "cadmium" and "118Cd" is the isotope "cadmium-118" with a half-life of 3.49e-02 days. 2018-02-12
KGVWERQV surface radioactivity content of 118In The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "In" means the element "indium" and "118In" is the isotope "indium-118" with a half-life of 5.77e-05 days. 2018-02-12
KPQLEFKJ surface radioactivity content of 118mIn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "In" means the element "indium" and "118mIn" is the metastable state of the isotope "indium-118" with a half-life of 3.05e-03 days. 2018-02-12
D4AEX5R2 surface radioactivity content of 119In The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "In" means the element "indium" and "119In" is the isotope "indium-119" with a half-life of 1.74e-03 days. 2018-02-12
69RPFHOR surface radioactivity content of 119mIn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "In" means the element "indium" and "119mIn" is the metastable state of the isotope "indium-119" with a half-life of 1.25e-02 days. 2018-02-12
MK63AMH2 surface radioactivity content of 119mSn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sn" means the element "tin" and "119mSn" is the metastable state of the isotope "tin-119" with a half-life of 2.45e+02 days. 2018-02-12
8YU5J8HW surface radioactivity content of 11C The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "C" means the element "carbon" and "11C" is the isotope "carbon-11" with a half-life of 1.41e-02 days. 2018-02-12
LZ2INFDX surface radioactivity content of 121Sn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sn" means the element "tin" and "121Sn" is the isotope "tin-121" with a half-life of 1.12e+00 days. 2018-02-12
1HQVJE57 surface radioactivity content of 121mSn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sn" means the element "tin" and "121mSn" is the metastable state of the isotope "tin-121" with a half-life of 1.82e+04 days. 2018-02-12
AA7RJCCX surface radioactivity content of 123Sn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sn" means the element "tin" and "123Sn" is the isotope "tin-123" with a half-life of 1.29e+02 days. 2018-02-12
ZBSIHW1O surface radioactivity content of 123mSn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sn" means the element "tin" and "123mSn" is the metastable state of the isotope "tin-123" with a half-life of 2.78e-02 days. 2018-02-12
8XNUBJ60 surface radioactivity content of 124Sb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "124Sb" is the isotope "antimony-124" with a half-life of 6.03e+01 days. 2018-02-12
2W7BHXI3 surface radioactivity content of 124mSb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "124mSb" is the metastable state of the isotope "antimony-124" with a half-life of 1.41e-02 days. 2018-02-12
0L7JO278 surface radioactivity content of 125Sb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "125Sb" is the isotope "antimony-125" with a half-life of 9.97e+02 days. 2018-02-12
VILM01EW surface radioactivity content of 125Sn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sn" means the element "tin" and "125Sn" is the isotope "tin-125" with a half-life of 9.65e+00 days. 2018-02-12
K8KBEXRC surface radioactivity content of 125mTe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Te" means the element "tellurium" and "125mTe" is the metastable state of the isotope "tellurium-125" with a half-life of 5.81e+01 days. 2018-02-12
ZRPY4AMP surface radioactivity content of 126Sb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "126Sb" is the isotope "antimony-126" with a half-life of 1.24e+01 days. 2018-02-12
O9ZTBNCK surface radioactivity content of 126Sn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sn" means the element "tin" and "126Sn" is the isotope "tin-126" with a half-life of 3.65e+07 days. 2018-02-12
4CZT4K85 surface radioactivity content of 126mSb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "126mSb" is the metastable state of the isotope "antimony-126" with a half-life of 1.32e-02 days. 2018-02-12
6SJDYZME surface radioactivity content of 127Sb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "127Sb" is the isotope "antimony-127" with a half-life of 3.80e+00 days. 2018-02-12
UDFA4QV0 surface radioactivity content of 127Sn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sn" means the element "tin" and "127Sn" is the isotope "tin-127" with a half-life of 8.84e-02 days. 2018-02-12
XNJ2MBE6 surface radioactivity content of 127Te The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Te" means the element "tellurium" and "127Te" is the isotope "tellurium-127" with a half-life of 3.91e-01 days. 2018-02-12
UYLGXAPN surface radioactivity content of 127mTe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Te" means the element "tellurium" and "127mTe" is the metastable state of the isotope "tellurium-127" with a half-life of 1.09e+02 days. 2018-02-12
3ULRAZF7 surface radioactivity content of 128Sb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "128Sb" is the isotope "antimony-128" with a half-life of 3.75e-01 days. 2018-02-12
YXJF61PR surface radioactivity content of 128Sn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sn" means the element "tin" and "128Sn" is the isotope "tin-128" with a half-life of 4.09e-02 days. 2018-02-12
FDEUBXYJ surface radioactivity content of 128mSb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "128mSb" is the metastable state of the isotope "antimony-128" with a half-life of 7.23e-03 days. 2018-02-12
SFP3I3Q6 surface radioactivity content of 129I The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "I" means the element "iodine" and "129I" is the isotope "iodine-129" with a half-life of 5.81e+09 days. 2018-02-12
RFG9S0U3 surface radioactivity content of 129Sb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "129Sb" is the isotope "antimony-129" with a half-life of 1.81e-01 days. 2018-02-12
4O9B7F67 surface radioactivity content of 129Te The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Te" means the element "tellurium" and "129Te" is the isotope "tellurium-129" with a half-life of 4.86e-02 days. 2018-02-12
H0NK3B90 surface radioactivity content of 129mTe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Te" means the element "tellurium" and "129mTe" is the metastable state of the isotope "tellurium-129" with a half-life of 3.34e+01 days. 2018-02-12
41DS5UVP surface radioactivity content of 129mXe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Xe" means the element "xenon" and "129mXe" is the metastable state of the isotope "xenon-129" with a half-life of 8.02e+00 days. 2018-02-12
TBK8EI6R surface radioactivity content of 130I The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "I" means the element "iodine" and "130I" is the isotope "iodine-130" with a half-life of 5.18e-01 days. 2018-02-12
A7U2L9A8 surface radioactivity content of 130Sb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "130Sb" is the isotope "antimony-130" with a half-life of 2.57e-02 days. 2018-02-12
DZLG2A78 surface radioactivity content of 130Sn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sn" means the element "tin" and "130Sn" is the isotope "tin-130" with a half-life of 2.57e-03 days. 2018-02-12
M0FPGP81 surface radioactivity content of 130mI The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "I" means the element "iodine" and "130mI" is the metastable state of the isotope "iodine-130" with a half-life of 6.17e-03 days. 2018-02-12
6Q586TEA surface radioactivity content of 130mSb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "130mSb" is the metastable state of the isotope "antimony-130" with a half-life of 4.58e-03 days. 2018-02-12
ZF05JOPG surface radioactivity content of 131I The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "I" means the element "iodine" and "131I" is the isotope "iodine-131" with a half-life of 8.07e+00 days. 2018-02-12
28WV1HCW surface radioactivity content of 131Sb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sb" means the element "antimony" and "131Sb" is the isotope "antimony-131" with a half-life of 1.60e-02 days. 2018-02-12
HSKA3WJU surface radioactivity content of 131Te The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Te" means the element "tellurium" and "131Te" is the isotope "tellurium-131" with a half-life of 1.74e-02 days. 2018-02-12
NA7CGUTJ surface radioactivity content of 131mTe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Te" means the element "tellurium" and "131mTe" is the metastable state of the isotope "tellurium-131" with a half-life of 1.25e+00 days. 2018-02-12
CWV3HDDQ surface radioactivity content of 131mXe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Xe" means the element "xenon" and "131mXe" is the metastable state of the isotope "xenon-131" with a half-life of 1.18e+01 days. 2018-02-12
WQNRZQG1 surface radioactivity content of 132I The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "I" means the element "iodine" and "132I" is the isotope "iodine-132" with a half-life of 9.60e-02 days. 2018-02-12
4UJ0X79G surface radioactivity content of 132Te The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Te" means the element "tellurium" and "132Te" is the isotope "tellurium-132" with a half-life of 3.25e+00 days. 2018-02-12
PQQTA1XU surface radioactivity content of 133I The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "I" means the element "iodine" and "133I" is the isotope "iodine-133" with a half-life of 8.71e-01 days. 2018-02-12
PKNTEJP8 surface radioactivity content of 133Te The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Te" means the element "tellurium" and "133Te" is the isotope "tellurium-133" with a half-life of 8.68e-03 days. 2018-02-12
Q484Y0FK surface radioactivity content of 133Xe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Xe" means the element "xenon" and "133Xe" is the isotope "xenon-133" with a half-life of 5.28e+00 days. 2018-02-12
X2UNXGGP surface radioactivity content of 133mI The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "I" means the element "iodine" and "133mI" is the metastable state of the isotope "iodine-133" with a half-life of 1.04e-04 days. 2018-02-12
9463AFMD surface radioactivity content of 133mTe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Te" means the element "tellurium" and "133mTe" is the metastable state of the isotope "tellurium-133" with a half-life of 3.84e-02 days. 2018-02-12
I93Q99NX surface radioactivity content of 133mXe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Xe" means the element "xenon" and "133mXe" is the metastable state of the isotope "xenon-133" with a half-life of 2.26e+00 days. 2018-02-12
NIHUDHJO surface radioactivity content of 134Cs The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cs" means the element "cesium" and "134Cs" is the isotope "cesium-134" with a half-life of 7.50e+02 days. 2018-02-12
II55MZMS surface radioactivity content of 134I The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "I" means the element "iodine" and "134I" is the isotope "iodine-134" with a half-life of 3.61e-02 days. 2018-02-12
4MODYAJ8 surface radioactivity content of 134Te The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Te" means the element "tellurium" and "134Te" is the isotope "tellurium-134" with a half-life of 2.92e-02 days. 2018-02-12
MZFOLS4X surface radioactivity content of 134mCs The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cs" means the element "cesium" and "134mCs" is the metastable state of the isotope "cesium-134" with a half-life of 1.21e-01 days. 2018-02-12
82BHCZEX surface radioactivity content of 134mI The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "I" means the element "iodine" and "134mI" is the metastable state of the isotope "iodine-134" with a half-life of 2.50e-03 days. 2018-02-12
2S0BBV0F surface radioactivity content of 134mXe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Xe" means the element "xenon" and "134mXe" is the metastable state of the isotope "xenon-134" with a half-life of 3.36e-06 days. 2018-02-12
0WLLW4O2 surface radioactivity content of 135Cs The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cs" means the element "cesium" and "135Cs" is the isotope "cesium-135" with a half-life of 8.39e+08 days. 2018-02-12
AFZN3MEY surface radioactivity content of 135I The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "I" means the element "iodine" and "135I" is the isotope "iodine-135" with a half-life of 2.79e-01 days. 2018-02-12
UN1IWRKL surface radioactivity content of 135Xe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Xe" means the element "xenon" and "135Xe" is the isotope "xenon-135" with a half-life of 3.82e-01 days. 2018-02-12
GIPYF1PK surface radioactivity content of 135mBa The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ba" means the element "barium" and "135mBa" is the metastable state of the isotope "barium-135" with a half-life of 1.20e+00 days. 2018-02-12
N5S4NYBR surface radioactivity content of 135mCs The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cs" means the element "cesium" and "135mCs" is the metastable state of the isotope "cesium-135" with a half-life of 3.68e-02 days. 2018-02-12
I5BH1IZU surface radioactivity content of 135mXe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Xe" means the element "xenon" and "135mXe" is the metastable state of the isotope "xenon-135" with a half-life of 1.08e-02 days. 2018-02-12
TGJ2HA3H surface radioactivity content of 136Cs The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cs" means the element "cesium" and "136Cs" is the isotope "cesium-136" with a half-life of 1.30e+01 days. 2018-02-12
JQ5TP0V3 surface radioactivity content of 137Cs The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cs" means the element "cesium" and "137Cs" is the isotope "cesium-137" with a half-life of 1.10e+04 days. 2018-02-12
A9G0MM0M surface radioactivity content of 137Xe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Xe" means the element "xenon" and "137Xe" is the isotope "xenon-137" with a half-life of 2.71e-03 days. 2018-02-12
TXVBVX0A surface radioactivity content of 137mBa The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ba" means the element "barium" and "137mBa" is the metastable state of the isotope "barium-137" with a half-life of 1.77e-03 days. 2018-02-12
RPPL9QNU surface radioactivity content of 138Cs The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cs" means the element "cesium" and "138Cs" is the isotope "cesium-138" with a half-life of 2.23e-02 days. 2018-02-12
1VVUYJ1Q surface radioactivity content of 138Xe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Xe" means the element "xenon" and "138Xe" is the isotope "xenon-138" with a half-life of 9.84e-03 days. 2018-02-12
UPTR5U8R surface radioactivity content of 139Ba The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ba" means the element "barium" and "139Ba" is the isotope "barium-139" with a half-life of 5.77e-02 days. 2018-02-12
ZNSX059Q surface radioactivity content of 13N The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "N" means the element "nitrogen" and "13N" is the isotope "nitrogen-13" with a half-life of 6.92e-03 days. 2018-02-12
MJY958BB surface radioactivity content of 140Ba The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ba" means the element "barium" and "140Ba" is the isotope "barium-140" with a half-life of 1.28e+01 days. 2018-02-12
BEKZTG9T surface radioactivity content of 140La The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "La" means the element "lanthanum" and "140La" is the isotope "lanthanum-140" with a half-life of 1.76e+00 days. 2018-02-12
13WGHAZA surface radioactivity content of 141Ce The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ce" means the element "cerium" and "141Ce" is the isotope "cerium-141" with a half-life of 3.30e+01 days. 2018-02-12
YVK6FU3E surface radioactivity content of 141La The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "La" means the element "lanthanum" and "141La" is the isotope "lanthanum-141" with a half-life of 1.61e-01 days. 2018-02-12
DW35XFAS surface radioactivity content of 142Ce The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ce" means the element "cerium" and "142Ce" is the isotope "cerium-142" with a half-life of 1.82e+19 days. 2018-02-12
WFVHWGY0 surface radioactivity content of 142La The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "La" means the element "lanthanum" and "142La" is the isotope "lanthanum-142" with a half-life of 6.42e-02 days. 2018-02-12
EIWG7BTQ surface radioactivity content of 142Pr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pr" means the element "praseodymium" and "142Pr" is the isotope "praseodymium-142" with a half-life of 7.94e-01 days. 2018-02-12
YX0IMWLX surface radioactivity content of 142mPr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pr" means the element "praseodymium" and "142mPr" is the metastable state of the isotope "praseodymium-142" with a half-life of 1.01e-02 days. 2018-02-12
1A1V7S87 surface radioactivity content of 143Ce The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ce" means the element "cerium" and "143Ce" is the isotope "cerium-143" with a half-life of 1.37e+00 days. 2018-02-12
VLDHLPQT surface radioactivity content of 143La The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "La" means the element "lanthanum" and "143La" is the isotope "lanthanum-143" with a half-life of 9.72e-03 days. 2018-02-12
P88KQPO4 surface radioactivity content of 143Pr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pr" means the element "praseodymium" and "143Pr" is the isotope "praseodymium-143" with a half-life of 1.36e+01 days. 2018-02-12
NX8YMUKU surface radioactivity content of 144Ce The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ce" means the element "cerium" and "144Ce" is the isotope "cerium-144" with a half-life of 2.84e+02 days. 2018-02-12
P20CK1W9 surface radioactivity content of 144Nd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nd" means the element "neodymium" and "144Nd" is the isotope "neodymium-144" with a half-life of 7.64e+17 days. 2018-02-12
QTWB5ITO surface radioactivity content of 144Pr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pr" means the element "praseodymium" and "144Pr" is the isotope "praseodymium-144" with a half-life of 1.20e-02 days. 2018-02-12
FWUOG935 surface radioactivity content of 144mPr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pr" means the element "praseodymium" and "144mPr" is the metastable state of the isotope "praseodymium-144" with a half-life of 4.98e-03 days. 2018-02-12
ZJ9UT8HS surface radioactivity content of 145Pr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pr" means the element "praseodymium" and "145Pr" is the isotope "praseodymium-145" with a half-life of 2.49e-01 days. 2018-02-12
VGXTAJQ9 surface radioactivity content of 146Ce The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ce" means the element "cerium" and "146Ce" is the isotope "cerium-146" with a half-life of 9.86e-03 days. 2018-02-12
ZIQR6M5K surface radioactivity content of 146Pr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pr" means the element "praseodymium" and "146Pr" is the isotope "praseodymium-146" with a half-life of 1.68e-02 days. 2018-02-12
HGUX3KLT surface radioactivity content of 147Nd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nd" means the element "neodymium" and "147Nd" is the isotope "neodymium-147" with a half-life of 1.10e+01 days. 2018-02-12
IZ5VGXQQ surface radioactivity content of 147Pm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pm" means the element "promethium" and "147Pm" is the isotope "promethium-147" with a half-life of 9.57e+02 days. 2018-02-12
68E18PKZ surface radioactivity content of 147Pr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pr" means the element "praseodymium" and "147Pr" is the isotope "praseodymium-147" with a half-life of 8.33e-03 days. 2018-02-12
AZJK9NMQ surface radioactivity content of 147Sm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sm" means the element "samarium" and "147Sm" is the isotope "samarium-147" with a half-life of 3.91e+13 days. 2018-02-12
M0QBPPGA surface radioactivity content of 148Pm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pm" means the element "promethium" and "148Pm" is the isotope "promethium-148" with a half-life of 5.38e+00 days. 2018-02-12
4KYNIHSD surface radioactivity content of 148Sm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sm" means the element "samarium" and "148Sm" is the isotope "samarium-148" with a half-life of 2.92e+18 days. 2018-02-12
9F59UO5F surface radioactivity content of 148mPm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pm" means the element "promethium" and "148mPm" is the metastable state of the isotope "promethium-148" with a half-life of 4.14e+01 days. 2018-02-12
HMIY85S5 surface radioactivity content of 149Nd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nd" means the element "neodymium" and "149Nd" is the isotope "neodymium-149" with a half-life of 7.23e-02 days. 2018-02-12
E1RI752Z surface radioactivity content of 149Pm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pm" means the element "promethium" and "149Pm" is the isotope "promethium-149" with a half-life of 2.21e+00 days. 2018-02-12
WRCKLU9K surface radioactivity content of 149Sm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sm" means the element "samarium" and "149Sm" is the isotope "samarium-149" with a half-life of 3.65e+18 days. 2018-02-12
1RFM07BV surface radioactivity content of 150Pm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pm" means the element "promethium" and "150Pm" is the isotope "promethium-150" with a half-life of 1.12e-01 days. 2018-02-12
1WRX8EPL surface radioactivity content of 151Nd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nd" means the element "neodymium" and "151Nd" is the isotope "neodymium-151" with a half-life of 8.61e-03 days. 2018-02-12
1IY2MG8V surface radioactivity content of 151Pm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pm" means the element "promethium" and "151Pm" is the isotope "promethium-151" with a half-life of 1.18e+00 days. 2018-02-12
V48ALS3P surface radioactivity content of 151Sm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sm" means the element "samarium" and "151Sm" is the isotope "samarium-151" with a half-life of 3.40e+04 days. 2018-02-12
K3QWPGJ4 surface radioactivity content of 152Nd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nd" means the element "neodymium" and "152Nd" is the isotope "neodymium-152" with a half-life of 7.94e-03 days. 2018-02-12
D22YYKEJ surface radioactivity content of 152Pm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pm" means the element "promethium" and "152Pm" is the isotope "promethium-152" with a half-life of 2.84e-03 days. 2018-02-12
O119RLKY surface radioactivity content of 152mPm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pm" means the element "promethium" and "152mPm" is the metastable state of the isotope "promethium-152" with a half-life of 1.25e-02 days. 2018-02-12
504FSRM3 surface radioactivity content of 153Sm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sm" means the element "samarium" and "153Sm" is the isotope "samarium-153" with a half-life of 1.94e+00 days. 2018-02-12
NBXJTY14 surface radioactivity content of 154Eu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Eu" means the element "europium" and "154Eu" is the isotope "europium-154" with a half-life of 3.13e+03 days. 2018-02-12
RVR8AJ1G surface radioactivity content of 155Eu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Eu" means the element "europium" and "155Eu" is the isotope "europium-155" with a half-life of 1.75e+03 days. 2018-02-12
CTAIH36C surface radioactivity content of 155Sm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sm" means the element "samarium" and "155Sm" is the isotope "samarium-155" with a half-life of 1.54e-02 days. 2018-02-12
BHE49LO4 surface radioactivity content of 156Eu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Eu" means the element "europium" and "156Eu" is the isotope "europium-156" with a half-life of 1.52e+01 days. 2018-02-12
9DJWC2S1 surface radioactivity content of 156Sm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sm" means the element "samarium" and "156Sm" is the isotope "samarium-156" with a half-life of 3.91e-01 days. 2018-02-12
L1031JZR surface radioactivity content of 157Eu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Eu" means the element "europium" and "157Eu" is the isotope "europium-157" with a half-life of 6.32e-01 days. 2018-02-12
62CID062 surface radioactivity content of 158Eu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Eu" means the element "europium" and "158Eu" is the isotope "europium-158" with a half-life of 3.18e-02 days. 2018-02-12
IKCO2MFI surface radioactivity content of 159Eu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Eu" means the element "europium" and "159Eu" is the isotope "europium-159" with a half-life of 1.26e-02 days. 2018-02-12
VP4DAED6 surface radioactivity content of 159Gd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Gd" means the element "gadolinium" and "159Gd" is the isotope "gadolinium-159" with a half-life of 7.71e-01 days. 2018-02-12
CS1ZO1OS surface radioactivity content of 15O The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "O" means the element "oxygen" and "15O" is the isotope "oxygen-15" with a half-life of 1.41e-03 days. 2018-02-12
FGZVIH2X surface radioactivity content of 160Tb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tb" means the element "terbium" and "160Tb" is the isotope "terbium-160" with a half-life of 7.23e+01 days. 2018-02-12
HB6SWC57 surface radioactivity content of 161Tb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tb" means the element "terbium" and "161Tb" is the isotope "terbium-161" with a half-life of 6.92e+00 days. 2018-02-12
IJI9WH1M surface radioactivity content of 162Gd The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Gd" means the element "gadolinium" and "162Gd" is the isotope "gadolinium-162" with a half-life of 6.92e-03 days. 2018-02-12
BKVJGRWK surface radioactivity content of 162Tb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tb" means the element "terbium" and "162Tb" is the isotope "terbium-162" with a half-life of 5.18e-03 days. 2018-02-12
1S2IV51Z surface radioactivity content of 162mTb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tb" means the element "terbium" and "162mTb" is the metastable state of the isotope "terbium-162" with a half-life of 9.30e-02 days. 2018-02-12
4HYC9MDK surface radioactivity content of 163Tb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tb" means the element "terbium" and "163Tb" is the isotope "terbium-163" with a half-life of 1.36e-02 days. 2018-02-12
Z31MNO6Q surface radioactivity content of 165Dy The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Dy" means the element "dysprosium" and "165Dy" is the isotope "dysprosium-165" with a half-life of 9.80e-02 days. 2018-02-12
N6TBQ5BU surface radioactivity content of 18F The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "F" means the element "fluorine" and "18F" is the isotope "fluorine-18" with a half-life of 6.98e-02 days. 2018-02-12
EZPJN11Z surface radioactivity content of 206Hg The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Hg" means the element "mercury" and "206Hg" is the isotope "mercury-206" with a half-life of 5.57e-03 days. 2018-02-12
UDRWK681 surface radioactivity content of 206Tl The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tl" means the element "thallium" and "206Tl" is the isotope "thallium-206" with a half-life of 2.91e-03 days. 2018-02-12
F90UYJIP surface radioactivity content of 207Tl The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tl" means the element "thallium" and "207Tl" is the isotope "thallium-207" with a half-life of 3.33e-03 days. 2018-02-12
2AI7HE2F surface radioactivity content of 207mPb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pb" means the element "lead" and "207mPb" is the metastable state of the isotope "lead-207" with a half-life of 9.26e-06 days. 2018-02-12
9NLB8450 surface radioactivity content of 208Tl The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tl" means the element "thallium" and "208Tl" is the isotope "thallium-208" with a half-life of 2.15e-03 days. 2018-02-12
1R3TWUI7 surface radioactivity content of 209Bi The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Bi" means the element "bismuth" and "209Bi" is the isotope "bismuth-209" with a half-life of 7.29e+20 days. 2018-02-12
Y63F4I2Q surface radioactivity content of 209Pb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pb" means the element "lead" and "209Pb" is the isotope "lead-209" with a half-life of 1.38e-01 days. 2018-02-12
V3ON2UDA surface radioactivity content of 209Tl The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tl" means the element "thallium" and "209Tl" is the isotope "thallium-209" with a half-life of 1.53e-03 days. 2018-02-12
3EA1SMPO surface radioactivity content of 210Bi The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Bi" means the element "bismuth" and "210Bi" is the isotope "bismuth-210" with a half-life of 5.01e+00 days. 2018-02-12
GHUC3LDE surface radioactivity content of 210Pb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pb" means the element "lead" and "210Pb" is the isotope "lead-210" with a half-life of 7.64e+03 days. 2018-02-12
KKOZPKWO surface radioactivity content of 210Po The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Po" means the element "polonium" and "210Po" is the isotope "polonium-210" with a half-life of 1.38e+02 days. 2018-02-12
L1ZLJUHD surface radioactivity content of 210Tl The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tl" means the element "thallium" and "210Tl" is the isotope "thallium-210" with a half-life of 9.02e-04 days. 2018-02-12
N4AII95X surface radioactivity content of 211Bi The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Bi" means the element "bismuth" and "211Bi" is the isotope "bismuth-211" with a half-life of 1.49e-03 days. 2018-02-12
7M8RPACU surface radioactivity content of 211Pb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pb" means the element "lead" and "211Pb" is the isotope "lead-211" with a half-life of 2.51e-02 days. 2018-02-12
QCFSIK8E surface radioactivity content of 211Po The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Po" means the element "polonium" and "211Po" is the isotope "polonium-211" with a half-life of 6.03e-06 days. 2018-02-12
6YCFS72W surface radioactivity content of 212Bi The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Bi" means the element "bismuth" and "212Bi" is the isotope "bismuth-212" with a half-life of 4.20e-02 days. 2018-02-12
PM8QT92Y surface radioactivity content of 212Pb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pb" means the element "lead" and "212Pb" is the isotope "lead-212" with a half-life of 4.43e-01 days. 2018-02-12
JWDW5COF surface radioactivity content of 212Po The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Po" means the element "polonium" and "212Po" is the isotope "polonium-212" with a half-life of 3.52e-12 days. 2018-02-12
NDZ0FTXT surface radioactivity content of 213Bi The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Bi" means the element "bismuth" and "213Bi" is the isotope "bismuth-213" with a half-life of 3.26e-02 days. 2018-02-12
VCNNO7VH surface radioactivity content of 213Pb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pb" means the element "lead" and "213Pb" is the isotope "lead-213" with a half-life of 6.92e-03 days. 2018-02-12
FM5V7JV8 surface radioactivity content of 213Po The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Po" means the element "polonium" and "213Po" is the isotope "polonium-213" with a half-life of 4.86e-11 days. 2018-02-12
8XAUWCJF surface radioactivity content of 214Bi The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Bi" means the element "bismuth" and "214Bi" is the isotope "bismuth-214" with a half-life of 1.37e-02 days. 2018-02-12
HWAWCA76 surface radioactivity content of 214Pb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pb" means the element "lead" and "214Pb" is the isotope "lead-214" with a half-life of 1.86e-02 days. 2018-02-12
XG6OFMY6 surface radioactivity content of 214Po The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Po" means the element "polonium" and "214Po" is the isotope "polonium-214" with a half-life of 1.90e-09 days. 2018-02-12
IPSPJ5QW surface radioactivity content of 215At The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "At" means the element "astatine" and "215At" is the isotope "astatine-215" with a half-life of 1.16e-09 days. 2018-02-12
UWKRSRXF surface radioactivity content of 215Bi The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Bi" means the element "bismuth" and "215Bi" is the isotope "bismuth-215" with a half-life of 4.86e-03 days. 2018-02-12
WWDGLOT3 surface radioactivity content of 215Po The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Po" means the element "polonium" and "215Po" is the isotope "polonium-215" with a half-life of 2.06e-08 days. 2018-02-12
DWPJP8AY surface radioactivity content of 216At The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "At" means the element "astatine" and "216At" is the isotope "astatine-216" with a half-life of 3.47e-09 days. 2018-02-12
B02T5FC0 surface radioactivity content of 216Po The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Po" means the element "polonium" and "216Po" is the isotope "polonium-216" with a half-life of 1.74e-06 days. 2018-02-12
9OWOYYHF surface radioactivity content of 217At The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "At" means the element "astatine" and "217At" is the isotope "astatine-217" with a half-life of 3.70e-07 days. 2018-02-12
9XIUMYGE surface radioactivity content of 217Po The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Po" means the element "polonium" and "217Po" is the isotope "polonium-217" with a half-life of 1.16e-04 days. 2018-02-12
EPEHJBCO surface radioactivity content of 218At The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "At" means the element "astatine" and "218At" is the isotope "astatine-218" with a half-life of 2.31e-05 days. 2018-02-12
P40R70T2 surface radioactivity content of 218Po The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Po" means the element "polonium" and "218Po" is the isotope "polonium-218" with a half-life of 2.12e-03 days. 2018-02-12
CI25EOUL surface radioactivity content of 218Rn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rn" means the element "radon" and "218Rn" is the isotope "radon-218" with a half-life of 4.05e-07 days. 2018-02-12
TSM7P267 surface radioactivity content of 219At The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "At" means the element "astatine" and "219At" is the isotope "astatine-219" with a half-life of 6.27e-04 days. 2018-02-12
VSZ67C2K surface radioactivity content of 219Rn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rn" means the element "radon" and "219Rn" is the isotope "radon-219" with a half-life of 4.64e-05 days. 2018-02-12
OBBY8201 surface radioactivity content of 220Rn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rn" means the element "radon" and "220Rn" is the isotope "radon-220" with a half-life of 6.37e-04 days. 2018-02-12
A9AD51BZ surface radioactivity content of 221Fr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Fr" means the element "francium" and "221Fr" is the isotope "francium-221" with a half-life of 3.33e-03 days. 2018-02-12
GLV35O6U surface radioactivity content of 221Rn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rn" means the element "radon" and "221Rn" is the isotope "radon-221" with a half-life of 1.74e-02 days. 2018-02-12
AHOA80OD surface radioactivity content of 222Fr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Fr" means the element "francium" and "222Fr" is the isotope "francium-222" with a half-life of 1.03e-02 days. 2018-02-12
97AN18NH surface radioactivity content of 222Ra The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ra" means the element "radium" and "222Ra" is the isotope "radium-222" with a half-life of 4.41e-04 days. 2018-02-12
2YHO1NVH surface radioactivity content of 222Rn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rn" means the element "radon" and "222Rn" is the isotope "radon-222" with a half-life of 3.82e+00 days. 2018-02-12
CD12V8PY surface radioactivity content of 223Fr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Fr" means the element "francium" and "223Fr" is the isotope "francium-223" with a half-life of 1.53e-02 days. 2018-02-12
M7661BKO surface radioactivity content of 223Ra The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ra" means the element "radium" and "223Ra" is the isotope "radium-223" with a half-life of 1.14e+01 days. 2018-02-12
9NN2YOQ0 surface radioactivity content of 223Rn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rn" means the element "radon" and "223Rn" is the isotope "radon-223" with a half-life of 2.98e-02 days. 2018-02-12
V2ANACEJ surface radioactivity content of 224Ra The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ra" means the element "radium" and "224Ra" is the isotope "radium-224" with a half-life of 3.65e+00 days. 2018-02-12
CHXE3LOX surface radioactivity content of 225Ac The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ac" means the element "actinium" and "225Ac" is the isotope "actinium-225" with a half-life of 1.00e+01 days. 2018-02-12
0GPAPD4P surface radioactivity content of 225Ra The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ra" means the element "radium" and "225Ra" is the isotope "radium-225" with a half-life of 1.48e+01 days. 2018-02-12
F07IYNBF surface radioactivity content of 226Ac The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ac" means the element "actinium" and "226Ac" is the isotope "actinium-226" with a half-life of 1.21e+00 days. 2018-02-12
CF7JHMBE surface radioactivity content of 226Ra The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ra" means the element "radium" and "226Ra" is the isotope "radium-226" with a half-life of 5.86e+05 days. 2018-02-12
MPWU7SAM surface radioactivity content of 226Th The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Th" means the element "thorium" and "226Th" is the isotope "thorium-226" with a half-life of 2.15e-02 days. 2018-02-12
NMEKQ8AR surface radioactivity content of 227Ac The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ac" means the element "actinium" and "227Ac" is the isotope "actinium-227" with a half-life of 7.87e+03 days. 2018-02-12
X9K9MYK0 surface radioactivity content of 227Ra The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ra" means the element "radium" and "227Ra" is the isotope "radium-227" with a half-life of 2.87e-02 days. 2018-02-12
YLZAJFVS surface radioactivity content of 227Th The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Th" means the element "thorium" and "227Th" is the isotope "thorium-227" with a half-life of 1.82e+01 days. 2018-02-12
R175YF3G surface radioactivity content of 228Ac The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ac" means the element "actinium" and "228Ac" is the isotope "actinium-228" with a half-life of 2.55e-01 days. 2018-02-12
7ZC0ORUD surface radioactivity content of 228Ra The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ra" means the element "radium" and "228Ra" is the isotope "radium-228" with a half-life of 2.45e+03 days. 2018-02-12
7AG9LEE7 surface radioactivity content of 228Th The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Th" means the element "thorium" and "228Th" is the isotope "thorium-228" with a half-life of 6.98e+02 days. 2018-02-12
5OXHKUYV surface radioactivity content of 229Ac The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ac" means the element "actinium" and "229Ac" is the isotope "actinium-229" with a half-life of 4.58e-02 days. 2018-02-12
3LHWCHI3 surface radioactivity content of 229Ra The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ra" means the element "radium" and "229Ra" is the isotope "radium-229" with a half-life of 1.16e-17 days. 2018-02-12
VN4RFRYC surface radioactivity content of 229Th The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Th" means the element "thorium" and "229Th" is the isotope "thorium-229" with a half-life of 2.68e+06 days. 2018-02-12
YMC52OKZ surface radioactivity content of 230Pa The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pa" means the element "protactinium" and "230Pa" is the isotope "protactinium-230" with a half-life of 1.77e+01 days. 2018-02-12
QR1UX2GN surface radioactivity content of 230Th The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Th" means the element "thorium" and "230Th" is the isotope "thorium-230" with a half-life of 2.92e+07 days. 2018-02-12
T811AIWV surface radioactivity content of 230U The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "U" means the element "uranium" and "230U" is the isotope "uranium-230" with a half-life of 2.08e+01 days. 2018-02-12
ARXW0V2G surface radioactivity content of 231Pa The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pa" means the element "protactinium" and "231Pa" is the isotope "protactinium-231" with a half-life of 1.19e+07 days. 2018-02-12
FMTSIANA surface radioactivity content of 231Th The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Th" means the element "thorium" and "231Th" is the isotope "thorium-231" with a half-life of 1.06e+00 days. 2018-02-12
PNGZN8J0 surface radioactivity content of 231U The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "U" means the element "uranium" and "231U" is the isotope "uranium-231" with a half-life of 4.29e+00 days. 2018-02-12
0R0JQ51G surface radioactivity content of 232Pa The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pa" means the element "protactinium" and "232Pa" is the isotope "protactinium-232" with a half-life of 1.31e+00 days. 2018-02-12
9WCH2TYI surface radioactivity content of 232Th The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Th" means the element "thorium" and "232Th" is the isotope "thorium-232" with a half-life of 5.14e+12 days. 2018-02-12
JWQBZPI1 surface radioactivity content of 232U The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "U" means the element "uranium" and "232U" is the isotope "uranium-232" with a half-life of 2.63e+04 days. 2018-02-12
7MW01FJO surface radioactivity content of 233Pa The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pa" means the element "protactinium" and "233Pa" is the isotope "protactinium-233" with a half-life of 2.70e+01 days. 2018-02-12
FG81BOOD surface radioactivity content of 233Th The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Th" means the element "thorium" and "233Th" is the isotope "thorium-233" with a half-life of 1.54e-02 days. 2018-02-12
BIE3CBV8 surface radioactivity content of 233U The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "U" means the element "uranium" and "233U" is the isotope "uranium-233" with a half-life of 5.90e+07 days. 2018-02-12
I3AB2KO0 surface radioactivity content of 234Pa The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pa" means the element "protactinium" and "234Pa" is the isotope "protactinium-234" with a half-life of 2.81e-01 days. 2018-02-12
PQXR77PL surface radioactivity content of 234Th The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Th" means the element "thorium" and "234Th" is the isotope "thorium-234" with a half-life of 2.41e+01 days. 2018-02-12
49GDOO4E surface radioactivity content of 234U The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "U" means the element "uranium" and "234U" is the isotope "uranium-234" with a half-life of 9.02e+07 days. 2018-02-12
FP2I9GLN surface radioactivity content of 234mPa The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pa" means the element "protactinium" and "234mPa" is the metastable state of the isotope "protactinium-234" with a half-life of 8.13e-04 days. 2018-02-12
F98HS0G2 surface radioactivity content of 235Np The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Np" means the element "neptunium" and "235Np" is the isotope "neptunium-235" with a half-life of 4.09e+02 days. 2018-02-12
IW2DFFIF surface radioactivity content of 235Pu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pu" means the element "plutonium" and "235Pu" is the isotope "plutonium-235" with a half-life of 1.81e-02 days. 2018-02-12
F27CKCMR surface radioactivity content of 235U The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "U" means the element "uranium" and "235U" is the isotope "uranium-235" with a half-life of 2.60e+11 days. 2018-02-12
ID3BIPJG surface radioactivity content of 236Np The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Np" means the element "neptunium" and "236Np" is the isotope "neptunium-236" with a half-life of 9.17e-01 days. 2018-02-12
43VJT7LA surface radioactivity content of 236Pu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pu" means the element "plutonium" and "236Pu" is the isotope "plutonium-236" with a half-life of 1.04e+03 days. 2018-02-12
M44P5VTI surface radioactivity content of 236U The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "U" means the element "uranium" and "236U" is the isotope "uranium-236" with a half-life of 8.73e+09 days. 2018-02-12
I1VAIV72 surface radioactivity content of 236mNp The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Np" means the element "neptunium" and "236mNp" is the metastable state of the isotope "neptunium-236" with a half-life of 4.72e+10 days. 2018-02-12
S3Q3QGLP surface radioactivity content of 237Np The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Np" means the element "neptunium" and "237Np" is the isotope "neptunium-237" with a half-life of 7.79e+08 days. 2018-02-12
U4VRC5YM surface radioactivity content of 237Pu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pu" means the element "plutonium" and "237Pu" is the isotope "plutonium-237" with a half-life of 4.56e+01 days. 2018-02-12
26GYM40I surface radioactivity content of 237U The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "U" means the element "uranium" and "237U" is the isotope "uranium-237" with a half-life of 6.74e+00 days. 2018-02-12
OY29U2IY surface radioactivity content of 238Np The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Np" means the element "neptunium" and "238Np" is the isotope "neptunium-238" with a half-life of 2.10e+00 days. 2018-02-12
O1K82YP2 surface radioactivity content of 238Pu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pu" means the element "plutonium" and "238Pu" is the isotope "plutonium-238" with a half-life of 3.15e+04 days. 2018-02-12
OVUXFB9E surface radioactivity content of 238U The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "U" means the element "uranium" and "238U" is the isotope "uranium-238" with a half-life of 1.65e+12 days. 2018-02-12
XB0COWOW surface radioactivity content of 239Np The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Np" means the element "neptunium" and "239Np" is the isotope "neptunium-239" with a half-life of 2.35e+00 days. 2018-02-12
DHILJQAV surface radioactivity content of 239Pu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pu" means the element "plutonium" and "239Pu" is the isotope "plutonium-239" with a half-life of 8.91e+06 days. 2018-02-12
BZ8DI4F8 surface radioactivity content of 239U The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "U" means the element "uranium" and "239U" is the isotope "uranium-239" with a half-life of 1.63e-02 days. 2018-02-12
AF5D9DF1 surface radioactivity content of 240Am The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Am" means the element "americium" and "240Am" is the isotope "americium-240" with a half-life of 2.12e+00 days. 2018-02-12
VRJUGCOK surface radioactivity content of 240Np The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Np" means the element "neptunium" and "240Np" is the isotope "neptunium-240" with a half-life of 4.38e-02 days. 2018-02-12
OLT6NITX surface radioactivity content of 240Pu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pu" means the element "plutonium" and "240Pu" is the isotope "plutonium-240" with a half-life of 2.40e+06 days. 2018-02-12
8Q4YTB8I surface radioactivity content of 240U The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "U" means the element "uranium" and "240U" is the isotope "uranium-240" with a half-life of 5.99e-01 days. 2018-02-12
G353241Q surface radioactivity content of 240mNp The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Np" means the element "neptunium" and "240mNp" is the metastable state of the isotope "neptunium-240" with a half-life of 5.08e-03 days. 2018-02-12
MEOEZD1P surface radioactivity content of 241Am The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Am" means the element "americium" and "241Am" is the isotope "americium-241" with a half-life of 1.67e+05 days. 2018-02-12
ALE90AK9 surface radioactivity content of 241Cm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cm" means the element "curium" and "241Cm" is the isotope "curium-241" with a half-life of 3.50e+01 days. 2018-02-12
BD1BYXBS surface radioactivity content of 241Pu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pu" means the element "plutonium" and "241Pu" is the isotope "plutonium-241" with a half-life of 4.83e+03 days. 2018-02-12
8DR10NYJ surface radioactivity content of 242Am The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Am" means the element "americium" and "242Am" is the isotope "americium-242" with a half-life of 6.69e-01 days. 2018-02-12
65JVZ0FI surface radioactivity content of 242Cm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cm" means the element "curium" and "242Cm" is the isotope "curium-242" with a half-life of 1.63e+02 days. 2018-02-12
FY2794F4 surface radioactivity content of 242Pu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pu" means the element "plutonium" and "242Pu" is the isotope "plutonium-242" with a half-life of 1.38e+08 days. 2018-02-12
QFF3TGC5 surface radioactivity content of 242m1Am The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Am" means the element "americium" and "242m1Am" is the metastable state of the isotope "americium-242" with a half-life of 5.53e+04 days. 2018-02-12
M5NMRUCB surface radioactivity content of 242m2Am The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Am" means the element "americium" and "242m2Am" is the metastable state of the isotope "americium-242" with a half-life of 1.62e-07 days. 2018-02-12
MRLV12DF surface radioactivity content of 243Am The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Am" means the element "americium" and "243Am" is the isotope "americium-243" with a half-life of 2.91e+06 days. 2018-02-12
3S7T5900 surface radioactivity content of 243Cm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cm" means the element "curium" and "243Cm" is the isotope "curium-243" with a half-life of 1.17e+04 days. 2018-02-12
PQAKJ77P surface radioactivity content of 243Pu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pu" means the element "plutonium" and "243Pu" is the isotope "plutonium-243" with a half-life of 2.07e-01 days. 2018-02-12
3DRRRLUX surface radioactivity content of 244Am The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Am" means the element "americium" and "244Am" is the isotope "americium-244" with a half-life of 4.20e-01 days. 2018-02-12
U7273GKS surface radioactivity content of 244Cm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cm" means the element "curium" and "244Cm" is the isotope "curium-244" with a half-life of 6.42e+03 days. 2018-02-12
G2BG2SUA surface radioactivity content of 244Pu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pu" means the element "plutonium" and "244Pu" is the isotope "plutonium-244" with a half-life of 2.92e+10 days. 2018-02-12
V2C3911E surface radioactivity content of 244mAm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Am" means the element "americium" and "244mAm" is the metastable state of the isotope "americium-244" with a half-life of 1.81e-02 days. 2018-02-12
A3UU43L4 surface radioactivity content of 245Am The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Am" means the element "americium" and "245Am" is the isotope "americium-245" with a half-life of 8.75e-02 days. 2018-02-12
2NFVC6YY surface radioactivity content of 245Cm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cm" means the element "curium" and "245Cm" is the isotope "curium-245" with a half-life of 3.40e+06 days. 2018-02-12
6JN2NYE5 surface radioactivity content of 245Pu The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Pu" means the element "plutonium" and "245Pu" is the isotope "plutonium-245" with a half-life of 4.16e-01 days. 2018-02-12
TK4NKFF6 surface radioactivity content of 246Cm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cm" means the element "curium" and "246Cm" is the isotope "curium-246" with a half-life of 2.01e+06 days. 2018-02-12
TO4N1RUJ surface radioactivity content of 247Cm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cm" means the element "curium" and "247Cm" is the isotope "curium-247" with a half-life of 5.86e+09 days. 2018-02-12
67OPLRFZ surface radioactivity content of 248Cm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cm" means the element "curium" and "248Cm" is the isotope "curium-248" with a half-life of 1.72e+08 days. 2018-02-12
JLQR80ZZ surface radioactivity content of 249Bk The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Bk" means the element "berkelium" and "249Bk" is the isotope "berkelium-249" with a half-life of 3.15e+02 days. 2018-02-12
FG46O9VT surface radioactivity content of 249Cf The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cf" means the element "californium" and "249Cf" is the isotope "californium-249" with a half-life of 1.32e+05 days. 2018-02-12
UZSIMDMC surface radioactivity content of 249Cm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cm" means the element "curium" and "249Cm" is the isotope "curium-249" with a half-life of 4.43e-02 days. 2018-02-12
7QJF2D3M surface radioactivity content of 24Na The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Na" means the element "sodium" and "24Na" is the isotope "sodium-24" with a half-life of 6.27e-01 days. 2018-02-12
5VM2D78P surface radioactivity content of 250Bk The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Bk" means the element "berkelium" and "250Bk" is the isotope "berkelium-250" with a half-life of 1.34e-01 days. 2018-02-12
T3GXY9EZ surface radioactivity content of 250Cf The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cf" means the element "californium" and "250Cf" is the isotope "californium-250" with a half-life of 4.75e+03 days. 2018-02-12
BDD8PD4T surface radioactivity content of 250Cm The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cm" means the element "curium" and "250Cm" is the isotope "curium-250" with a half-life of 2.52e+06 days. 2018-02-12
4CV1GR1P surface radioactivity content of 251Cf The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cf" means the element "californium" and "251Cf" is the isotope "californium-251" with a half-life of 2.92e+05 days. 2018-02-12
0P3VPY5U surface radioactivity content of 252Cf The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cf" means the element "californium" and "252Cf" is the isotope "californium-252" with a half-life of 9.68e+02 days. 2018-02-12
Q8Q00FU7 surface radioactivity content of 253Cf The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cf" means the element "californium" and "253Cf" is the isotope "californium-253" with a half-life of 1.76e+01 days. 2018-02-12
0PILY4M8 surface radioactivity content of 253Es The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Es" means the element "einsteinium" and "253Es" is the isotope "einsteinium-253" with a half-life of 2.05e+01 days. 2018-02-12
J75IEBXU surface radioactivity content of 254Cf The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Cf" means the element "californium" and "254Cf" is the isotope "californium-254" with a half-life of 6.03e+01 days. 2018-02-12
UUR1LV7Z surface radioactivity content of 254Es The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Es" means the element "einsteinium" and "254Es" is the isotope "einsteinium-254" with a half-life of 2.76e+02 days. 2018-02-12
0EPCHOFP surface radioactivity content of 254mEs The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Es" means the element "einsteinium" and "254mEs" is the metastable state of the isotope "einsteinium-254" with a half-life of 1.63e+00 days. 2018-02-12
6ZOFSSTT surface radioactivity content of 255Es The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Es" means the element "einsteinium" and "255Es" is the isotope "einsteinium-255" with a half-life of 3.84e+01 days. 2018-02-12
PXP1ROOC surface radioactivity content of 3H The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "H" means the element "hydrogen" and "3H" is the isotope "hydrogen-3" with a half-life of 4.51e+03 days. 2018-02-12
96Q65MFL surface radioactivity content of 41Ar The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ar" means the element "argon" and "41Ar" is the isotope "argon-41" with a half-life of 7.64e-02 days. 2018-02-12
ZTSF1S3U surface radioactivity content of 54Mn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Mn" means the element "manganese" and "54Mn" is the isotope "manganese-54" with a half-life of 3.12e+02 days. 2018-02-12
JL4KSLR0 surface radioactivity content of 58Co The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Co" means the element "cobalt" and "58Co" is the isotope "cobalt-58" with a half-life of 7.10e+01 days. 2018-02-12
EJBCPR0O surface radioactivity content of 60Co The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Co" means the element "cobalt" and "60Co" is the isotope "cobalt-60" with a half-life of 1.93e+03 days. 2018-02-12
RZUGHTXR surface radioactivity content of 72Ga The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ga" means the element "gallium" and "72Ga" is the isotope "gallium-72" with a half-life of 5.86e-01 days. 2018-02-12
874Y3LT7 surface radioactivity content of 72Zn The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Zn" means the element "zinc" and "72Zn" is the isotope "zinc-72" with a half-life of 1.94e+00 days. 2018-02-12
LHHQBDOU surface radioactivity content of 73Ga The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ga" means the element "gallium" and "73Ga" is the isotope "gallium-73" with a half-life of 2.03e-01 days. 2018-02-12
RXTM5BXP surface radioactivity content of 75Ge The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ge" means the element "germanium" and "75Ge" is the isotope "germanium-75" with a half-life of 5.73e-02 days. 2018-02-12
NWIISQRD surface radioactivity content of 77As The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "As" means the element "arsenic" and "77As" is the isotope "arsenic-77" with a half-life of 1.62e+00 days. 2018-02-12
4FH5X1PP surface radioactivity content of 77Ge The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ge" means the element "germanium" and "77Ge" is the isotope "germanium-77" with a half-life of 4.72e-01 days. 2018-02-12
03FMQBY3 surface radioactivity content of 77mGe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ge" means the element "germanium" and "77mGe" is the metastable state of the isotope "germanium-77" with a half-life of 6.27e-04 days. 2018-02-12
7QH58ZUH surface radioactivity content of 78As The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "As" means the element "arsenic" and "78As" is the isotope "arsenic-78" with a half-life of 6.32e-02 days. 2018-02-12
XXHUNNNO surface radioactivity content of 78Ge The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Ge" means the element "germanium" and "78Ge" is the isotope "germanium-78" with a half-life of 6.03e-02 days. 2018-02-12
QHCOUCAE surface radioactivity content of 79Se The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Se" means the element "selenium" and "79Se" is the isotope "selenium-79" with a half-life of 2.37e+07 days. 2018-02-12
VB9QKVUA surface radioactivity content of 81Se The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Se" means the element "selenium" and "81Se" is the isotope "selenium-81" with a half-life of 1.28e-02 days. 2018-02-12
18MIS90F surface radioactivity content of 81mSe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Se" means the element "selenium" and "81mSe" is the metastable state of the isotope "selenium-81" with a half-life of 3.97e-02 days. 2018-02-12
POVWZ994 surface radioactivity content of 82Br The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Br" means the element "bromine" and "82Br" is the isotope "bromine-82" with a half-life of 1.47e+00 days. 2018-02-12
98UTVHR9 surface radioactivity content of 82mBr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Br" means the element "bromine" and "82mBr" is the metastable state of the isotope "bromine-82" with a half-life of 4.24e-03 days. 2018-02-12
8SA46BW3 surface radioactivity content of 83Br The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Br" means the element "bromine" and "83Br" is the isotope "bromine-83" with a half-life of 1.00e-01 days. 2018-02-12
77HZPQ9W surface radioactivity content of 83Se The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Se" means the element "selenium" and "83Se" is the isotope "selenium-83" with a half-life of 1.56e-02 days. 2018-02-12
375EQNVW surface radioactivity content of 83mKr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Kr" means the element "krypton" and "83mKr" is the metastable state of the isotope "krypton-83" with a half-life of 7.71e-02 days. 2018-02-12
3H3VKAS4 surface radioactivity content of 83mSe The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Se" means the element "selenium" and "83mSe" is the metastable state of the isotope "selenium-83" with a half-life of 8.10e-04 days. 2018-02-12
T461DVJ6 surface radioactivity content of 84Br The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Br" means the element "bromine" and "84Br" is the isotope "bromine-84" with a half-life of 2.21e-02 days. 2018-02-12
8WRYPCHA surface radioactivity content of 84mBr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Br" means the element "bromine" and "84mBr" is the metastable state of the isotope "bromine-84" with a half-life of 4.16e-03 days. 2018-02-12
GUBBSJFU surface radioactivity content of 85Kr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Kr" means the element "krypton" and "85Kr" is the isotope "krypton-85" with a half-life of 3.95e+03 days. 2018-02-12
9XGKSWGP surface radioactivity content of 85mKr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Kr" means the element "krypton" and "85mKr" is the metastable state of the isotope "krypton-85" with a half-life of 1.83e-01 days. 2018-02-12
7C77XSHW surface radioactivity content of 86Rb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rb" means the element "rubidium" and "86Rb" is the isotope "rubidium-86" with a half-life of 1.87e+01 days. 2018-02-12
SKKKZ5IE surface radioactivity content of 86mRb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rb" means the element "rubidium" and "86mRb" is the metastable state of the isotope "rubidium-86" with a half-life of 7.04e-04 days. 2018-02-12
U48Z3Y2P surface radioactivity content of 87Kr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Kr" means the element "krypton" and "87Kr" is the isotope "krypton-87" with a half-life of 5.28e-02 days. 2018-02-12
MYUMPYYS surface radioactivity content of 87Rb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rb" means the element "rubidium" and "87Rb" is the isotope "rubidium-87" with a half-life of 1.71e+13 days. 2018-02-12
YWNYLGDI surface radioactivity content of 88Kr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Kr" means the element "krypton" and "88Kr" is the isotope "krypton-88" with a half-life of 1.17e-01 days. 2018-02-12
CRE7341A surface radioactivity content of 88Rb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rb" means the element "rubidium" and "88Rb" is the isotope "rubidium-88" with a half-life of 1.25e-02 days. 2018-02-12
B45DROCM surface radioactivity content of 89Kr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Kr" means the element "krypton" and "89Kr" is the isotope "krypton-89" with a half-life of 2.20e-03 days. 2018-02-12
Z6UQIWEV surface radioactivity content of 89Rb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Rb" means the element "rubidium" and "89Rb" is the isotope "rubidium-89" with a half-life of 1.06e-02 days. 2018-02-12
Q5QPK27S surface radioactivity content of 89Sr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sr" means the element "strontium" and "89Sr" is the isotope "strontium-89" with a half-life of 5.21e+01 days. 2018-02-12
95SAHUOK surface radioactivity content of 90Sr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sr" means the element "strontium" and "90Sr" is the isotope "strontium-90" with a half-life of 1.02e+04 days. 2018-02-12
72AC4SVU surface radioactivity content of 90Y The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Y" means the element "yttrium" and "90Y" is the isotope "yttrium-90" with a half-life of 2.67e+00 days. 2018-02-12
NVBWR9J7 surface radioactivity content of 90mY The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Y" means the element "yttrium" and "90mY" is the metastable state of the isotope "yttrium-90" with a half-life of 1.33e-01 days. 2018-02-12
EOCDL5SK surface radioactivity content of 91Sr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sr" means the element "strontium" and "91Sr" is the isotope "strontium-91" with a half-life of 3.95e-01 days. 2018-02-12
F6RQV0NZ surface radioactivity content of 91Y The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Y" means the element "yttrium" and "91Y" is the isotope "yttrium-91" with a half-life of 5.86e+01 days. 2018-02-12
V8RX87UP surface radioactivity content of 91mY The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Y" means the element "yttrium" and "91mY" is the metastable state of the isotope "yttrium-91" with a half-life of 3.46e-02 days. 2018-02-12
OFDA9BTU surface radioactivity content of 92Sr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Sr" means the element "strontium" and "92Sr" is the isotope "strontium-92" with a half-life of 1.13e-01 days. 2018-02-12
5S5FYXPN surface radioactivity content of 92Y The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Y" means the element "yttrium" and "92Y" is the isotope "yttrium-92" with a half-life of 1.47e-01 days. 2018-02-12
KO6KB659 surface radioactivity content of 93Y The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Y" means the element "yttrium" and "93Y" is the isotope "yttrium-93" with a half-life of 4.24e-01 days. 2018-02-12
2370TTAP surface radioactivity content of 93Zr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Zr" means the element "zirconium" and "93Zr" is the isotope "zirconium-93" with a half-life of 3.47e+08 days. 2018-02-12
JWYYSR0R surface radioactivity content of 94Nb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nb" means the element "niobium" and "94Nb" is the isotope "niobium-94" with a half-life of 7.29e+06 days. 2018-02-12
5QBGU843 surface radioactivity content of 94Y The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Y" means the element "yttrium" and "94Y" is the isotope "yttrium-94" with a half-life of 1.32e-02 days. 2018-02-12
IWH4JHDZ surface radioactivity content of 94mNb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nb" means the element "niobium" and "94mNb" is the metastable state of the isotope "niobium-94" with a half-life of 4.34e-03 days. 2018-02-12
8NN5EBV8 surface radioactivity content of 95Nb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nb" means the element "niobium" and "95Nb" is the isotope "niobium-95" with a half-life of 3.52e+01 days. 2018-02-12
3RM538QU surface radioactivity content of 95Y The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Y" means the element "yttrium" and "95Y" is the isotope "yttrium-95" with a half-life of 7.29e-03 days. 2018-02-12
JWJHG5UA surface radioactivity content of 95Zr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Zr" means the element "zirconium" and "95Zr" is the isotope "zirconium-95" with a half-life of 6.52e+01 days. 2018-02-12
VU3W1K35 surface radioactivity content of 95mNb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nb" means the element "niobium" and "95mNb" is the metastable state of the isotope "niobium-95" with a half-life of 3.61e+00 days. 2018-02-12
YA3JXPLK surface radioactivity content of 96Nb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nb" means the element "niobium" and "96Nb" is the isotope "niobium-96" with a half-life of 9.75e-01 days. 2018-02-12
I7SWJGSJ surface radioactivity content of 97Nb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nb" means the element "niobium" and "97Nb" is the isotope "niobium-97" with a half-life of 5.11e-02 days. 2018-02-12
4OAWFAP7 surface radioactivity content of 97Zr The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Zr" means the element "zirconium" and "97Zr" is the isotope "zirconium-97" with a half-life of 6.98e-01 days. 2018-02-12
B03TCG3X surface radioactivity content of 97mNb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nb" means the element "niobium" and "97mNb" is the metastable state of the isotope "niobium-97" with a half-life of 6.27e-04 days. 2018-02-12
FK88QDQ8 surface radioactivity content of 98Nb The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Nb" means the element "niobium" and "98Nb" is the isotope "niobium-98" with a half-life of 3.53e-02 days. 2018-02-12
93HBBA6H surface radioactivity content of 99Mo The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Mo" means the element "molybdenum" and "99Mo" is the isotope "molybdenum-99" with a half-life of 2.78e+00 days. 2018-02-12
QRTL68ET surface radioactivity content of 99Tc The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tc" means the element "technetium" and "99Tc" is the isotope "technetium-99" with a half-life of 7.79e+07 days. 2018-02-12
V6MFWA18 surface radioactivity content of 99mTc The surface called "surface" means the lower boundary of the atmosphere. "Content" indicates a quantity per unit area. "Radioactivity" means the number of radioactive decays of a material per second. "Tc" means the element "technetium" and "99mTc" is the metastable state of the isotope "technetium-99" with a half-life of 2.51e-01 days. 2018-02-12
CFV13N26 surface ratio of upwelling radiance emerging from sea water to downwelling radiative flux in air The surface called "surface" means the lower boundary of the atmosphere. The phrase "ratio_ of_ X_ to_ Y" means X/Y. Upwelling radiation is radiation from below. It does not mean "net upward". Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of angle_ of_ emergence. Radiative flux is the sum of shortwave and longwave radiative fluxes. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In relation to satellite ocean color products the quantity named surface_ ratio_ of_ upwelling_ radiance_ emerging_ from_ sea_ water_ to_ downwelling_ radiative_ flux_ in_ air is sometimes called "remote sensing reflectance" and has a bidirectional dependence. The direction of the downwelling flux can be specified using a coordinate with the standard name angle_ of_ incidence. 2018-07-03
CFSN0245 surface roughness length The surface called 'surface' means the lower boundary of the atmosphere. 2006-09-26
CFSN0246 surface roughness length for heat in air The height above the surface where the mean value of heat assumes its surface value when extrapolated along a logarithmic profile downward towards the surface. The surface called "surface" means the lower boundary of the atmosphere. 2021-01-18
QC18UPHB surface roughness length for humidity in air The height above the surface where the mean value of humidity assumes its surface value when extrapolated along a logarithmic profile downward towards the surface. The surface called "surface" means the lower boundary of the atmosphere. 2021-01-18
CFSN0247 surface roughness length for momentum in air The height above the displacement plane at which the mean wind becomes zero when extrapolating the logarithmic wind speed profile downward through the surface layer. The surface called "surface" means the lower boundary of the atmosphere. 2021-01-18
CFSN0248 surface runoff amount The surface called 'surface' means the lower boundary of the atmosphere. 'Amount' means mass per unit area. Runoff is the liquid water which drains from land. If not specified, 'runoff' refers to the sum of surface runoff and subsurface drainage. 2006-09-26
CFSN0249 surface runoff flux The surface called 'surface' means the lower boundary of the atmosphere. Runoff is the liquid water which drains from land. If not specified, 'runoff' refers to the sum of surface runoff and subsurface drainage. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
50QMCEC1 surface sea water x velocity A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. Ocean currents are related to phenomena of different nature and processes, such as density currents, currents raised by the wind, tide, wave propagation, mass flow in estuaries, etc. This standard name refers to the sum of currents of all origins. 2023-02-06
SCHD3F89 surface sea water x velocity due to tides A velocity is a vector quantity. "x" indicates a vector component along the grid x-axis, positive with increasing x. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and the Sun, and the rotation of the Earth. This rise in water level is accompanied by a horizontal movement of water called the tidal current. 2023-02-06
T4NL95LO surface sea water y velocity A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. Ocean currents are related to phenomena of different nature and processes, such as density currents, currents raised by the wind, tide, wave propagation, mass flow in estuaries, etc. This Standard Name refers to the sum of currents of all origins. 2023-02-06
DIOHC0YE surface sea water y velocity due to tides A velocity is a vector quantity. "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and the Sun, and the rotation of the Earth. This rise in water level is accompanied by a horizontal movement of water called the tidal current. 2023-02-06
CFSN0250 surface snow amount "Amount" means mass per unit area. Surface snow amount refers to the amount on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
BBAH2115 surface snow and ice melt flux In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. "Surface snow and ice melt flux" means the mass flux of all melting at the surface. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
CFV8N80 surface snow and ice melt heat flux The snow and ice melt heat flux is the supply of latent heat which is melting snow and ice at freezing point. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2021-01-18
BBAH2114 surface snow and ice refreezing flux "Surface snow and ice refreezing flux" means the mass flux of surface meltwater which refreezes within the snow or firn. The surface called "surface" means the lower boundary of the atmosphere. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2021-01-18
CFV8N81 surface snow and ice sublimation flux DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. Sublimation is the conversion of solid into vapor. The snow and ice sublimation flux is the loss of snow and ice mass resulting from their conversion to water vapor. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-06-11
CFSN0251 surface snow area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
EEFIEJID surface snow binary mask X"_ binary_ mask" has 1 where condition X is met, 0 elsewhere. The value is 1 where the snow cover area fraction is greater than a threshold, and 0 elsewhere. The threshold must be specified by associating a coordinate variable or scalar coordinate variable with the data variable and giving the coordinate variable a standard name of surface_ snow_ area_ fraction. The values of the coordinate variable are the threshold values for the corresponding subarrays of the data variable. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
XEVWT81B surface snow density Snow density is the density of the snow cover. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. The density of a substance is its mass per unit volume. 2021-01-18
CFSN0252 surface snow melt amount Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. The surface called "surface" means the lower boundary of the atmosphere. "Amount" means mass per unit area. 2021-01-18
CFSN0253 surface snow melt and sublimation heat flux Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. Sublimation is the conversion of solid into vapor. The snow melt and sublimation heat flux is the supply of latent heat which is converting snow to liquid water (melting) and water vapor (sublimation). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2021-01-18
CFSN0254 surface snow melt flux Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. The surface called "surface" means the lower boundary of the atmosphere. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2021-01-18
CFSN0255 surface snow melt heat flux Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. The snow melt heat flux is the supply of latent heat which is melting snow at freezing point. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2021-01-18
CFSN0256 surface snow sublimation amount Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. "Amount" means mass per unit area. Sublimation is the conversion of solid into vapor. 2021-01-18
CFSN0221 surface snow sublimation heat flux Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. Sublimation is the conversion of solid into vapor. The snow sublimation heat flux is the supply of latent heat which is causing evaporation of snow to water vapor. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2021-01-18
CFSN0222 surface snow thickness Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. "Thickness" means the vertical extent of a layer. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. Previously, the qualifier where_ type was used to specify that the quantity applies only to the part of the grid box of the named type. Names containing the where_ type qualifier are deprecated and newly created data should use the cell_ methods attribute to indicate the horizontal area to which the quantity applies. 2021-01-18
CFSN0223 surface snow thickness where sea ice DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. Unless indicated, a quantity is assumed to apply to the whole area of each horizontal grid box. The qualifier where_ type specifies instead that the quantity applies only to the part of the grid box of the named type. 2008-11-11
CFSN0224 surface specific humidity The surface called 'surface' means the lower boundary of the atmosphere. 'specific' means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 2006-09-26
CFSN0225 surface temperature The surface called 'surface' means the lower boundary of the atmosphere. The surface temperature is the temperature at the interface, not the bulk temperature of the medium above or below. 2008-06-10
CFSN0226 surface temperature anomaly The surface called 'surface' means the lower boundary of the atmosphere. 'anomaly' means difference from climatology. The surface temperature is the (skin) temperature at the interface, not the bulk temperature of the medium above or below. 2006-09-26
CFSN0227 surface temperature where land DEPRECATED Unless indicated, a quantity is assumed to apply to the whole area of each horizontal grid box. The qualifier where_ type specifies instead that the quantity applies only to the part of the grid box of the named type. The surface temperature is the (skin) temperature at the interface, not the bulk temperature of the medium above or below. 2008-11-11
CFSN0228 surface temperature where open sea DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. Unless indicated, a quantity is assumed to apply to the whole area of each horizontal grid box. The qualifier where_ type specifies instead that the quantity applies only to the part of the grid box of the named type. The surface temperature is the (skin) temperature at the interface, not the bulk temperature of the medium above or below. 2008-11-11
CFSN0229 surface temperature where snow DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. Unless indicated, a quantity is assumed to apply to the whole area of each horizontal grid box. The qualifier where_ type specifies instead that the quantity applies only to the part of the grid box of the named type. The surface temperature is the (skin) temperature at the interface, not the bulk temperature of the medium above or below. 2008-11-11
CFV16A50 surface upward carbon mass flux due to plant respiration for biomass growth DEPRECATED "Upward" indicates a vector component which is positive when directed upward (negative downward). Plant respiration is the sum of respiration by parts of plants both above and below the soil. Plants which photosynthesise are autotrophs i.e. "producers" of the biomass which they respire from inorganic precursors using sunlight for energy. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-04-16
CFV16A51 surface upward carbon mass flux due to plant respiration for biomass maintenance DEPRECATED "Upward" indicates a vector component which is positive when directed upward (negative downward). Plant respiration is the sum of respiration by parts of plants both above and below the soil. Plants which photosynthesise are autotrophs i.e. "producers" of the biomass which they respire from inorganic precursors using sunlight for energy. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-04-16
0C5R4PS4 surface upward eastward stress due to sea surface waves The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted at the surface. An upward stress is an upward flux of momentum into the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). "Eastward" indicates a vector component which is positive when directed northward (negative southward). "Upward eastward" indicates the ZX component of a tensor. An upward eastward stress is an upward flux of eastward momentum, which accelerates the upper medium eastward and the lower medium westward. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea surface waves" means the stress associated with oscillatory motions of a wavy sea surface. 2021-09-20
LSPCYB7Z surface upward heat flux due to anthropogenic energy consumption The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). The vertical heat flux in air is the sum of all heat fluxes i.e. radiative, latent and sensible. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Anthropogenic" means influenced, caused, or created by human activity. The heat flux due to anthropogenic energy consumption results from non-renewable human primary energy consumption, including energy use by vehicles, commercial and residential buildings, industry, and power plants. Primary energy refers to energy in natural resources, fossil and non-fossil, before conversion into other forms, such as electricity. 2016-12-13
CFSN0230 surface upward heat flux in air The surface called 'surface' means the lower boundary of the atmosphere. 'Upward' indicates a vector component which is positive when directed upward (negative downward). The vertical heat flux in air is the sum of all heat fluxes i.e. radiative, latent and sensible. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0231 surface upward latent heat flux The surface called 'surface' means the lower boundary of the atmosphere. 'Upward' indicates a vector component which is positive when directed upward (negative downward). The surface latent heat flux is the exchange of heat between the surface and the air on account of evaporation (including sublimation). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
ZEDO43GZ surface upward latent heat flux due to evaporation The quantity with standard name surface_ upward_ latent_ heat_ flux_ due_ to_ evaporation does not include transpiration from vegetation. The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called "sublimation"). The surface latent heat flux is the exchange of heat between the surface and the air on account of evaporation (including sublimation). 2023-02-06
3LC5V3PL surface upward latent heat flux due to sublimation The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). The surface latent heat flux is the exchange of heat between the surface and the air on account of evaporation (including sublimation). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sublimation is the conversion of solid into vapor. 2018-06-11
35GTZRXC surface upward mass flux of ammonia Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for ammonia is NH3. 2015-01-07
UAOD1M2B surface upward mass flux of carbon dioxide expressed as 13C due to heterotrophic respiration The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. "C" means the element carbon and "13C" is the stable isotope "carbon-13", having six protons and seven neutrons. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Heterotrophic respiration is respiration by heterotrophs ("consumers"), which are organisms (including animals and decomposers) that consume other organisms or dead organic material, rather than synthesising organic material from inorganic precursors using energy from the environment (especially sunlight) as autotrophs ("producers") do. Heterotrophic respiration goes on within both the soil and litter pools. 2018-05-15
GJC9B0YH surface upward mass flux of carbon dioxide expressed as 13C due to plant respiration The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. "C" means the element carbon and "13C" is the stable isotope "carbon-13", having six protons and seven neutrons. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Plant respiration is the sum of respiration by parts of plants both above and below the soil. It is assumed that all the respired carbon dioxide is emitted to the atmosphere. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. 2018-05-15
VIKATFCV surface upward mass flux of carbon dioxide expressed as 14C due to heterotrophic respiration The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Heterotrophic respiration is respiration by heterotrophs ("consumers"), which are organisms (including animals and decomposers) that consume other organisms or dead organic material, rather than synthesising organic material from inorganic precursors using energy from the environment (especially sunlight) as autotrophs ("producers") do. Heterotrophic respiration goes on within both the soil and litter pools. 2018-05-15
667S3A05 surface upward mass flux of carbon dioxide expressed as 14C due to plant respiration The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Plant respiration is the sum of respiration by parts of plants both above and below the soil. It is assumed that all the respired carbon dioxide is emitted to the atmosphere. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. 2018-05-15
GOLXU441 surface upward mass flux of carbon dioxide expressed as carbon due to anthropogenic land use or land cover change The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Anthropogenic" means influenced, caused, or created by human activity. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change and the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. 2016-12-13
A642WYJ1 surface upward mass flux of carbon dioxide expressed as carbon due to anthropogenic land use or land cover change excluding forestry and agricultural products The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Anthropogenic" means influenced, caused, or created by human activity. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change. The quantity with standard name surface_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ anthropogenic_ land_ use_ or_ land_ cover_ change_ excluding_ forestry_ and_ agricultural_ products excludes the carbon dioxide flux into the atmosphere due to the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. The standard name for the quantity that includes product decomposition is surface_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ anthropogenic_ land_ use_ or_ land_ cover_ change. 2018-05-15
CFV16A52 surface upward mass flux of carbon dioxide expressed as carbon due to emission from crop harvesting The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The definition of "crop" is model dependent, for example, some models may include fruit trees, trees grown for timber or other types of agricultural and forestry planting as crops. Crop harvesting means the human activity of collecting plant materials for the purpose of turning them into forestry or agricultural products. 2018-04-16
KK9M17IS surface upward mass flux of carbon dioxide expressed as carbon due to emission from fires The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The term "fires" means all biomass fires, whether naturally occurring or ignited by humans. The quantity with standard name surface_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ fires is the sum of the quantities with standard names surface_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ vegetation_ in_ fires and surface_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ litter_ in_ fires. 2018-03-13
CFV16A53 surface upward mass flux of carbon dioxide expressed as carbon due to emission from fires excluding anthropogenic land use change "Upward" indicates a vector component which is positive when directed upward (negative downward). The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Fires excluding anthropogenic land use change" means all natural fires and human ignited fires that are not associated with change of land use. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for carbon dioxide is CO2. "Anthropogenic" means influenced, caused, or created by human activity. 2010-10-11
CFV16A54 surface upward mass flux of carbon dioxide expressed as carbon due to emission from grazing "Upward" indicates a vector component which is positive when directed upward (negative downward). The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for carbon dioxide is CO2. 2010-10-11
RIL57ZQ0 surface upward mass flux of carbon dioxide expressed as carbon due to emission from litter in fires The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Litter" is dead plant material in or above the soil. The quantity with standard name surface_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ fires is the sum of the quantities with standard names surface_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ vegetation_ in_ fires and surface_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ litter_ in_ fires. 2018-03-13
IZDB6QA8 surface upward mass flux of carbon dioxide expressed as carbon due to emission from natural fires The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Natural fires" means burning of biomass, whether living or dead, excluding fires ignited by humans, e.g. for agricultural purposes. 2018-03-13
CFV16A55 surface upward mass flux of carbon dioxide expressed as carbon due to emission from natural sources "Upward" indicates a vector component which is positive when directed upward (negative downward). The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for carbon dioxide is CO2. 2010-10-11
M3QQW0R6 surface upward mass flux of carbon dioxide expressed as carbon due to emission from vegetation in fires The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Vegetation" means any living plants e.g. trees, shrubs, grass. The quantity with standard name surface_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ fires is the sum of the quantities with standard names surface_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ vegetation_ in_ fires and surface_ upward_ mass_ flux_ of_ carbon_ dioxide_ expressed_ as_ carbon_ due_ to_ emission_ from_ litter_ in_ fires. 2018-03-13
PPMSXAF8 surface upward mass flux of carbon dioxide expressed as carbon due to heterotrophic respiration The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for carbon dioxide is CO2. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Heterotrophic respiration is respiration by heterotrophs ("consumers"), which are organisms (including animals and decomposers) that consume other organisms or dead organic material, rather than synthesising organic material from inorganic precursors using energy from the environment (especially sunlight) as autotrophs ("producers") do. Heterotrophic respiration goes on both above and within the soil. 2018-04-16
067HJZRA surface upward mass flux of carbon dioxide expressed as carbon due to plant respiration The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for carbon dioxide is CO2. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Plant respiration is the sum of respiration by parts of plants both above and below the soil. It is assumed that all the respired carbon dioxide is emitted to the atmosphere. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. 2018-04-16
65PHTU2D surface upward mass flux of carbon dioxide expressed as carbon due to plant respiration for biomass growth The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for carbon dioxide is CO2. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Plant respiration is the sum of respiration by parts of plants both above and below the soil. It is assumed that all the respired carbon dioxide is emitted to the atmosphere. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. 2018-04-16
FBG5PV67 surface upward mass flux of carbon dioxide expressed as carbon due to plant respiration for biomass maintenance The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for carbon dioxide is CO2. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Plant respiration is the sum of respiration by parts of plants both above and below the soil. It is assumed that all the respired carbon dioxide is emitted to the atmosphere. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. 2018-04-16
INRMMT8S surface upward mass flux of carbon dioxide expressed as carbon due to plant respiration in leaves The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for carbon dioxide is CO2. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Plant respiration is the sum of respiration by parts of plants both above and below the soil. Plants which photosynthesise are autotrophs i.e. "producers" of the biomass which they respire from inorganic precursors using sunlight for energy. 2018-04-16
H398WTKV surface upward mass flux of carbon dioxide expressed as carbon due to plant respiration in miscellaneous living matter The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for carbon dioxide is CO2. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Plant respiration is the sum of respiration by parts of plants both above and below the soil. It is assumed that all the respired carbon dioxide is emitted to the atmosphere. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. "Miscellaneous living matter" means all those parts of plants that are not leaf, stem, root or other separately named components. 2018-04-16
16ZV88FT surface upward mass flux of carbon dioxide expressed as carbon due to plant respiration in roots The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for carbon dioxide is CO2. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Plant respiration is the sum of respiration by parts of plants both above and below the soil. Plants which photosynthesise are autotrophs i.e. "producers" of the biomass which they respire from inorganic precursors using sunlight for energy. 2018-04-16
7231AYLJ surface upward mass flux of carbon dioxide expressed as carbon due to plant respiration in stems The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for carbon dioxide is CO2. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Plant respiration is the sum of respiration by parts of plants both above and below the soil. Plants which photosynthesise are autotrophs i.e. "producers" of the biomass which they respire from inorganic precursors using sunlight for energy. The stem of a plant is the axis that bears buds and shoots with leaves and, at its basal end, roots. Its function is to carry water and nutrients. Examples include the stalk of a plant or the main trunk of a tree. 2018-04-16
RTIXFQZ3 surface upward mass flux of carbon dioxide expressed as carbon due to respiration in soil The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for carbon dioxide is CO2. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Soil respiration is the sum of respiration in the soil by animals and decomposers of litter (heterotrophs or "consumers"), which have not produced the biomass they respire, and respiration by the roots of plants (autotrophs or "producers"), which have themselves produced the biomass they respire. 2018-04-16
CBL1J5J8 surface upward mass flux of carbon due to heterotrophic respiration in litter "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Litter" is dead plant material in or above the soil. Heterotrophic respiration is respiration by heterotrophs ("consumers"), which are organisms (including animals and decomposers) that consume other organisms or dead organic material, rather than synthesising organic material from inorganic precursors using energy from the environment (especially sunlight) as autotrophs ("producers") do. Heterotrophic respiration goes on within both the soil and litter pools. 2018-04-16
QGOOLVIF surface upward mass flux of carbon due to heterotrophic respiration in soil "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Heterotrophic respiration is respiration by heterotrophs ("consumers"), which are organisms (including animals and decomposers) that consume other organisms or dead organic material, rather than synthesising organic material from inorganic precursors using energy from the environment (especially sunlight) as autotrophs ("producers") do. Heterotrophic respiration goes on within both the soil and litter pools. 2018-04-16
BU0DQDLA surface upward mass flux of methane due to emission from fires Methane emitted from the surface, generated by biomass burning (fires). Positive direction upwards. The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for methane is CH4. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The term "fires" means all biomass fires, whether naturally occurring or ignited by humans. The precise conditions under which fires produce and consume methane can vary between models. 2023-04-24
7V274BWB surface upward mass flux of methane due to emission from herbivorous mammals The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for methane is CH4. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Herbivores are animals that feed on vegetation. Mammals are any vertebrates within the class Mammalia. Examples of large herbivorous mammals include cows, elks, and buffalos. These animals eat grass, tree bark, aquatic vegetation, and shrubby growth. Herbivores can also be medium-sized animals such as sheep and goats, which eat shrubby vegetation and grasses. Small herbivores include rabbits, chipmunks, squirrels, and mice. The precise conditions under which herbivorous mammals produce and consume methane can vary between models. 2023-04-24
1Z5MX55T surface upward mass flux of methane due to emission from termites The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for methane is CH4. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Termites belong to any of a group of cellulose-eating insects, the social system of which shows remarkable parallels with those of ants and bees, although it has evolved independently. The precise conditions under which termites produce and consume methane can vary between models. 2023-04-24
76LWI9UK surface upward mass flux of methane due to emission from wetland biological production The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for methane is CH4. The mass is the total mass of the molecules. The phrase "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Wetlands are areas where water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year, including during the growing season. The precise conditions under which wetlands produce and consume methane can vary between models. 2018-04-16
9ZRQ4N6G surface upward mass flux of nitrogen compounds expressed as nitrogen The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. he phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2018-05-15
85AKQID1 surface upward mass flux of nitrogen compounds expressed as nitrogen due to all land processes excluding fires "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "All land processes" means plant and soil respiration, photosynthesis, animal grazing, crop harvesting, natural fires and anthropogenic land use change. 2018-04-16
GI95T1NL surface upward mass flux of nitrogen compounds expressed as nitrogen due to emission from fires The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The term "fires" means all biomass fires, whether naturally occurring or ignited by humans. 2018-04-16
H0JTDQKT surface upward mass flux of nitrogen compounds expressed as nitrogen out of vegetation and litter and soil The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Vegetation" means any living plants e.g. trees, shrubs, grass. "Litter" is dead plant material in or above the soil. 2018-04-16
XDKKUOHY surface upward mass flux of nitrous oxide expressed as nitrogen out of vegetation and litter and soil The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for nitrous oxide is N2O. "Vegetation" means any living plants e.g. trees, shrubs, grass. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. "Litter" is dead plant material in or above the soil. It is distinct from coarse wood debris. The precise distinction between "fine" and "coarse" is model dependent. 2018-05-15
D32N6YZZ surface upward mass flux of nox expressed as nitrogen out of vegetation and litter and soil The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nox" means a combination of two radical species containing nitrogen and oxygen NO+NO2. "Vegetation" means any living plants e.g. trees, shrubs, grass. "Litter" is dead plant material in or above the soil. 2018-04-16
CFV15A22 surface upward mole flux of carbon dioxide "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The surface called "surface" means the lower boundary of the atmosphere. The chemical formula for carbon dioxide is CO2. The standard name surface_ downward_ mole_ flux_ of_ carbon_ dioxide should be used to label data in which the flux is positive when directed downward. The standard name "surface_ carbon_ dioxide_ mole_ flux" is deprecated because it does not specify in which direction the flux is positive. Any data having the standard name "surface_ carbon_ dioxide_ mole_ flux" should be examined carefully to determine which sign convention was used. 2010-07-26
CF14N68 surface upward mole flux of dimethyl sulfide The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The chemical formula for dimethyl sulfide is (CH3)2S. Dimethyl sulfide is sometimes referred to as DMS. 2018-12-17
Q1RAOO7Z surface upward northward stress due to sea surface waves The surface called "surface" means the lower boundary of the atmosphere. "Surface stress" means the shear stress (force per unit area) exerted at the surface. An upward stress is an upward flux of momentum into the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). "Northward" indicates a vector component which is positive when directed northward (negative southward). "Upward northward" indicates the ZY component of a tensor. An upward northward stress is an upward flux of northward momentum, which accelerates the upper medium northward and the lower medium southward. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea surface waves" means the stress associated with oscillatory motions of a wavy sea surface. 2021-09-20
CFSN0232 surface upward sensible heat flux The surface called 'surface' means the lower boundary of the atmosphere. 'Upward' indicates a vector component which is positive when directed upward (negative downward). The surface sensible heat flux, also called 'turbulent' heat flux, is the exchange of heat between the surface and the air by motion of air. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0233 surface upward sensible heat flux where sea DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. Unless indicated, a quantity is assumed to apply to the whole area of each horizontal grid box. The qualifier where_ type specifies instead that the quantity applies only to the part of the grid box of the named type. 'Upward' indicates a vector component which is positive when directed upward (negative downward). The surface sensible heat flux, also called 'turbulent' heat flux, is the exchange of heat between the surface and the air by motion of air. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2008-11-11
CFSN0234 surface upward water flux The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. 'Upward' indicates a vector component which is positive when directed upward (negative downward). The surface water flux is the result of precipitation and evaporation. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFV8N82 surface upward water vapor flux in air The surface called "surface" means the lower boundary of the atmosphere. "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-04-15
CFSNA036 surface upwelling longwave flux DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'longwave' means longwave radiation. Upwelling radiation is radiation from below. It does not mean 'net upward'. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSNA037 surface upwelling longwave flux assuming clear sky DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'longwave' means longwave radiation. Upwelling radiation is radiation from below. It does not mean 'net upward'. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0235 surface upwelling longwave flux in air The surface called "surface" means the lower boundary of the atmosphere. The term "longwave" means longwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFSN0236 surface upwelling longwave flux in air assuming clear sky The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "longwave" means longwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
CFSN0211 surface upwelling photosynthetic photon flux in air The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. "Photosynthetic" radiation is the part of the spectrum which is used in photosynthesis e.g. 400-700 nm. The range of wavelengths could be specified precisely by the bounds of a coordinate of radiation_ wavelength. A photon flux is specified in terms of numbers of photons expressed in moles. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFSN0212 surface upwelling radiance in air The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
CFSN0213 surface upwelling radiance in air emerging from sea water The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
CFSN0214 surface upwelling radiance in air reflected by sea water The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
CFSN0215 surface upwelling radiance in sea water The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
CS10ZOYX surface upwelling radiance per unit wavelength in air The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
WEHO2P23 surface upwelling radiance per unit wavelength in air emerging from sea water The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
105YAXZ4 surface upwelling radiance per unit wavelength in air reflected by sea water The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
RWP7TWKV surface upwelling radiance per unit wavelength in sea water The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
J0VGRYWY surface upwelling radiative flux per unit wavelength in air The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
VY6WUPOO surface upwelling radiative flux per unit wavelength in sea water The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
CFSNA038 surface upwelling shortwave flux DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'shortwave' means shortwave radiation. Upwelling radiation is radiation from below. It does not mean 'net upward'. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSNA039 surface upwelling shortwave flux assuming clear sky DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'shortwave' means shortwave radiation. Upwelling radiation is radiation from below. It does not mean 'net upward'. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0216 surface upwelling shortwave flux in air The surface called "surface" means the lower boundary of the atmosphere. The term "shortwave" means shortwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
3691THAI surface upwelling shortwave flux in air assuming clean clear sky DEPRECATED The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clean sky" means in the absence of atmospheric aerosol. "Clear sky" means in the absence of clouds. 2018-05-30
CFSN0217 surface upwelling shortwave flux in air assuming clear sky The surface called "surface" means the lower boundary of the atmosphere. The term "shortwave" means shortwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
ZEQML5PB surface upwelling shortwave flux in air assuming clear sky and no aerosol The surface called "surface" means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
CFSN0218 surface upwelling spectral radiance in air DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean 'net upward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2013-06-27
CFSN0219 surface upwelling spectral radiance in air emerging from sea water DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. Upwelling radiation is radiation from below. It does not mean 'net upward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2013-06-27
CFSN0220 surface upwelling spectral radiance in air reflected by sea water DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. Upwelling radiation is radiation from below. It does not mean 'net upward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2013-06-27
CFSN0195 surface upwelling spectral radiance in sea water DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. Upwelling radiation is radiation from below. It does not mean 'net upward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2013-06-27
CFSN0196 surface upwelling spectral radiative flux in air DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. Upwelling radiation is radiation from below. It does not mean 'net upward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2013-06-27
CFSN0197 surface upwelling spectral radiative flux in sea water DEPRECATED The surface called 'surface' means the lower boundary of the atmosphere. 'Water' means water in all phases, including frozen i.e. ice and snow. Upwelling radiation is radiation from below. It does not mean 'net upward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2013-06-27
CFSN0198 surface water amount The surface called 'surface' means the lower boundary of the atmosphere. 'Amount' means mass per unit area. 'Water' means water in all phases, including frozen i.e. ice and snow. Surface amount refers to the amount on the ground, excluding that on the plant or vegetation canopy. 2006-09-26
97T4F10I surface water evaporation flux The surface called "surface" means the lower boundary of the atmosphere. "Water" means water in all phases, including frozen i.e. ice and snow. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called "sublimation"). The quantity with standard name surface_ water_ evaporation_ flux does not include transpiration from vegetation. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. Previously, the qualifier where_ type was used to specify that the quantity applies only to the part of the grid box of the named type. Names containing the where_ type qualifier are deprecated and newly created data should use the cell_ methods attribute to indicate the horizontal area to which the quantity applies. 2018-07-03
CFSNA027 swell wave period DEPRECATED A period is an interval of time, or the time-period of an oscillation. Swell waves are waves on the ocean surface. 2006-09-26
VJ1PUAOC syntax test quality flag A quality flag that reports the result of the Syntax test, which checks that the data contain no indicators of flawed transmission. The linkage between the data variable and this variable is achieved using the ancillary_ variables attribute. There are standard names for other specific quality tests which take the form of X_ quality_ flag. Quality information that does not match any of the specific quantities should be given the more general standard name of quality_ flag. 2020-03-09
8L7VIB67 temperature at base of ice sheet model The quantity with standard name temperature_ at_ base_ of_ ice_ sheet_ model is the lower boundary temperature that is used to force ice sheet models. Beneath ice shelves it is the temperature at the ice-ocean interface. Beneath grounded ice, it is the temperature at the ice-bedrock interface. In all instances the temperature is that of the interface itself and not that of the medium above or below the interface. 2017-01-24
DNS5N2NN temperature at top of ice sheet model The quantity with standard name temperature_ at_ top_ of_ ice_ sheet_ model is the upper boundary temperature that is used to force ice sheet models. It is the temperature at the interface between the ice sheet and the overlying medium which may be snow or the atmosphere. In all instances the temperature is that of the interface itself and not that of the medium above or below the interface. 2017-01-24
29L9FYDU temperature difference between ambient air and air lifted adiabatically This quantity is defined as the temperature difference between a parcel of air lifted adiabatically from a starting air pressure to a finishing air pressure in the troposphere and the ambient air temperature at the finishing air pressure in the troposphere. It is often called the lifted index (LI) and provides a measure of the instability of the atmosphere. The air parcel is "lifted" by moving the air parcel from the starting air pressure to the Lifting Condensation Level (dry adiabatically) and then from the Lifting Condensation Level to the finishing air pressure (wet adiabatically). Air temperature is the bulk temperature of the air. Coordinate variables of original_ air_ pressure_ of_ lifted_ parcel and final_ air_ pressure_ of_ lifted_ parcel should be specified to indicate the specific air pressures at which the parcel lifting starts (starting air pressure) and the temperature difference is calculated at (finishing air pressure), respectively. 2013-11-08
4B19G007 temperature difference between ambient air and air lifted adiabatically from the surface This quantity is defined as the temperature difference between a parcel of air lifted adiabatically from the surface to a finishing air pressure in the troposphere and the ambient air temperature at the finishing air pressure in the troposphere. It is often called the lifted index (LI) and provides a measure of the instability of the atmosphere. The air parcel is "lifted" by moving the air parcel from the surface to the Lifting Condensation Level (dry adiabatically) and then from the Lifting Condensation Level to the finishing air pressure (wet adiabatically). Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The term "surface" means the lower boundary of the atmosphere. A coordinate variable of final_ air_ pressure_ of_ lifted_ parcel should be specified to indicate the specific air pressure that the temperature difference is calculated at. 2013-11-08
CF12N596 temperature flux due to evaporation expressed as heat flux out of sea water Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called "sublimation".) The quantity with standard name temperature_ flux_ due_ to_ evaporation_ expressed_ as_ heat_ flux_ out_ of_ sea_ water is the heat energy carried by the transfer of water away from the liquid ocean through the process of evaporation. It is distinct from the transfer of latent heat and is calculated relative to the heat that would be transported by water evaporating at zero degrees Celsius. It is calculated as the product QevapCpTevap, where Qevap is the mass flux of evaporating water (kg m-2 s-1), Cp is the specific heat capacity of water and Tevap is the temperature in degrees Celsius of the evaporating water. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2009-07-06
CF12N597 temperature flux due to rainfall expressed as heat flux into sea water The quantity with standard name temperature_ flux_ due_ to_ rainfall_ expressed_ as_ heat_ flux_ into_ sea_ water is the heat energy carried by rainfall entering the sea at the sea surface. It is calculated relative to the heat that would be carried by rainfall entering the sea at zero degrees Celsius. It is calculated as the product QrainCpTrain, where Qrain is the mass flux of rainfall entering the sea (kg m-2 s-1), Cp is the specific heat capacity of water and Train is the temperature in degrees Celsius of the rain water entering the sea surface. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2009-07-06
CF12N598 temperature flux due to runoff expressed as heat flux into sea water The quantity with standard name temperature_ flux_ due_ to_ runoff_ expressed_ as_ heat_ flux_ into_ sea_ water is the heat carried by the transfer of water into the liquid ocean by the process of runoff. This quantity additionally includes melt water from sea ice and icebergs. It is calculated relative to the heat that would be transported by runoff water entering the sea at zero degrees Celsius. It is calculated as the product QrunoffCpTrunoff, where Q runoff is the mass flux of liquid runoff entering the sea water (kg m-2 s-1), Cp is the specific heat capacity of water, and Trunoff is the temperature in degrees Celsius of the runoff water. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Runoff is the liquid water which drains from land. If not specified, "runoff" refers to the sum of surface runoff and subsurface drainage. 2019-02-04
OLF2XJ9Y temperature in ground The temperature at any given depth (or in a layer) below the surface of the ground, excluding surficial snow and ice (but not permafrost or soil). For temperatures in surface lying snow and ice, the more specific standard names temperature_ in_ surface_ snow and land_ ice_ temperature should be used. For temperatures measured or modelled specifically for the soil layer (the near-surface layer where plants sink their roots) the standard name soil_ temperature should be used. 2021-09-20
CFV15A23 temperature in surface snow "Temperature in surface snow" is the bulk temperature of the snow, not the surface (skin) temperature. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
THTBXRBY temperature of analysis of sea water The temperature_ of_ analysis_ of_ sea_ water is the reference temperature for the effects of temperature on the measurement of another variable. This temperature should be measured, but may have been calculated, or assumed. For example, the temperature of the sample when measuring pH, or the temperature of equilibration in the case of dissolved gases. The linkage between the data variable and the variable with a standard_ name of temperature_ of_ analysis_ of_ sea_ water is achieved using the ancillary_ variables attribute on the data variable. 2020-08-03
CFSN0199 temperature of sensor for oxygen in sea water Temperature_ of_ sensor_ for_ oxygen_ in_ sea_ water is the instrument temperature used in calculating the concentration of oxygen in sea water; it is not a measurement of the ambient water temperature. 2006-09-26
CFSN0200 tendency of air density 'tendency_ of_ X' means derivative of X with respect to time. 2006-09-26
CFSN0201 tendency of air pressure "tendency_ of_ X" means derivative of X with respect to time. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFSN0202 tendency of air temperature 'tendency_ of_ X' means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0203 tendency of air temperature due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
EOU697N7 tendency of air temperature due to boundary layer mixing The phrase "tendency_ of_ X" means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Boundary layer mixing" means turbulent motions that transport heat, water, momentum and chemical constituents within the atmospheric boundary layer and affect exchanges between the surface and the atmosphere. The atmospheric boundary layer is typically characterised by a well-mixed sub-cloud layer of order 500 metres, and by a more extended conditionally unstable layer with boundary-layer clouds up to 2 km. (Reference: IPCC Third Assessment Report, Working Group 1: The Scientific Basis, 7.2.2.3, https://archive.ipcc.ch/ipccreports/tar/wg1/273.htm). 2020-03-09
CFV13N27 tendency of air temperature due to convection Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2010-03-11
CFSN0204 tendency of air temperature due to diabatic processes The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0205 tendency of air temperature due to diffusion The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
MKQ5SKU1 tendency of air temperature due to dissipation of nonorographic gravity waves The phrase "tendency_ of_ X" means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Nonorographic" gravity waves refer to gravity waves which are not generated by flow over orography. The dissipation of gravity waves generates heating through an eddy heat flux convergence and through a viscous stress term. 2018-05-29
7B9Z7JUV tendency of air temperature due to dissipation of orographic gravity waves The phrase "tendency_ of_ X" means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Orographic gravity waves" refer to gravity waves which are generated by flow over orography. The dissipation of gravity waves generates heating through an eddy heat flux convergence and through a viscous stress term. 2018-05-29
CFSN0206 tendency of air temperature due to dry convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0207 tendency of air temperature due to large scale precipitation DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2010-03-11
CFSN0208 tendency of air temperature due to longwave heating The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'longwave' means longwave radiation. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0209 tendency of air temperature due to longwave heating assuming clear sky The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'tendency_ of_ X' means derivative of X with respect to time. 'longwave' means longwave radiation. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
07XQ0799 tendency of air temperature due to longwave heating from volcanic ambient aerosol particles The phrase "tendency_ of_ X" means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The term "longwave" means longwave radiation. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". Volcanic aerosols include both volcanic ash and secondary products such as sulphate aerosols formed from gaseous emissions of volcanic eruptions. 2018-05-15
CFV13N28 tendency of air temperature due to model physics Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2010-03-11
CFSN0210 tendency of air temperature due to moist convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0183 tendency of air temperature due to radiative heating The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0184 tendency of air temperature due to shortwave heating The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'shortwave' means shortwave radiation. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0185 tendency of air temperature due to shortwave heating assuming clear sky The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'tendency_ of_ X' means derivative of X with respect to time. 'shortwave' means shortwave radiation. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
ASUGYYOH tendency of air temperature due to shortwave heating from volcanic ambient aerosol particles The phrase "tendency_ of_ X" means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The term "shortwave" means shortwave radiation. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". Volcanic aerosols include both volcanic ash and secondary products such as sulphate aerosols formed from gaseous emissions of volcanic eruptions. 2018-05-15
TNBLPUM0 tendency of air temperature due to stratiform cloud and precipitation The phrase "tendency_ of_ X" means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Precipitation" in the earth's atmosphere means precipitation of water in all phases. A variable with the standard name tendency_ of_ air_ temperature_ due_ to_ stratiform_ cloud_ and_ precipitation should contain net latent heating effects of all processes which convert stratiform clouds and precipitation between water vapor, liquid or ice phases. 2018-08-06
CFV13N29 tendency of air temperature due to stratiform cloud and precipitation and boundary layer mixing The phrase "tendency_ of_ X" means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Precipitation" in the earth's atmosphere means precipitation of water in all phases. "Boundary layer mixing" means turbulent motions that transport heat, water, momentum and chemical constituents within the atmospheric boundary layer and affect exchanges between the surface and the atmosphere. The atmospheric boundary layer is typically characterised by a well-mixed sub-cloud layer of order 500 metres, and by a more extended conditionally unstable layer with boundary-layer clouds up to 2 km. (Reference: IPCC Third Assessment Report, Working Group 1: The Scientific Basis, 7.2.2.3, https://archive.ipcc.ch/ipccreports/tar/wg1/273.htm). 2020-03-09
CFV13A6 tendency of air temperature due to stratiform precipitation The phrase "tendency_ of_ X" means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Precipitation" in the earth's atmosphere means precipitation of water in all phases. 2018-08-06
CFSN0186 tendency of air temperature due to turbulence The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0187 tendency of atmosphere dry energy content 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Dry energy is the sum of dry static energy and kinetic energy. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0188 tendency of atmosphere enthalpy content due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0189 tendency of atmosphere kinetic energy content due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 2006-09-26
KFMFX4NW tendency of atmosphere mass content of acetaldehyde due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for acetaldehyde is CH3CHO. The IUPAC name for acetaldehyde is ethanal. 2015-01-07
17R7BI4V tendency of atmosphere mass content of acetaldehyde due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for acetaldehyde is CH3CHO. The IUPAC name for acetaldehyde is ethanal. 2015-01-07
58LTGL5X tendency of atmosphere mass content of acetaldehyde due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for acetaldehyde is CH3CHO. The IUPAC name for acetaldehyde is ethanal. 2015-01-07
CF12N599 tendency of atmosphere mass content of acetic acid due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for acetic_ acid is CH3COOH. The IUPAC name for acetic acid is ethanoic acid. 2009-07-06
CF12N600 tendency of atmosphere mass content of acetic acid due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Wet deposition" means deposition by precipitation. The chemical formula for acetic_ acid is CH3COOH. The IUPAC name for acetic acid is ethanoic acid. 2009-07-06
CF12N601 tendency of atmosphere mass content of aceto nitrile due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for aceto-nitrile is CH3CN. The IUPAC name for aceto-nitrile is ethanenitrile. 2009-07-06
G8QV6NOM tendency of atmosphere mass content of acetone due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. Acetone is an organic molecule with the chemical formula CH3CH3CO. The IUPAC name for acetone is propan-2-one. Acetone is a member of the group of organic compounds known as ketones. There are standard names for the ketone group as well as for some of the individual species. 2015-01-07
CHFBJJHF tendency of atmosphere mass content of alcohols due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Alcohols include all organic compounds with an alcoholic (OH) group. In standard names "alcohols" is the term used to describe the group of chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BJJJHDBF tendency of atmosphere mass content of alcohols due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Alcohols include all organic compounds with an alcoholic (OH) group. In standard names "alcohols" is the term used to describe the group of chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
GCACCCFE tendency of atmosphere mass content of alcohols due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Alcohols include all organic compounds with an alcoholic (OH) group. In standard names "alcohols" is the term used to describe the group of chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
ADEJABDJ tendency of atmosphere mass content of alcohols due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Alcohols include all organic compounds with an alcoholic (OH) group. In standard names "alcohols" is the term used to describe the group of chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BIIBBBBH tendency of atmosphere mass content of alcohols due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Alcohols include all organic compounds with an alcoholic (OH) group. In standard names "alcohols" is the term used to describe the group of chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
BDDIIIEB tendency of atmosphere mass content of alcohols due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Alcohols include all organic compounds with an alcoholic (OH) group. In standard names "alcohols" is the term used to describe the group of chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
GICDGACA tendency of atmosphere mass content of alcohols due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Alcohols include all organic compounds with an alcoholic (OH) group. In standard names "alcohols" is the term used to describe the group of chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
GIABFHDG tendency of atmosphere mass content of alcohols due to emission from solvent production and use "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Alcohols include all organic compounds with an alcoholic (OH) group. In standard names "alcohols" is the term used to describe the group of chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "solvent production and use" sector comprises industrial processes related to the consumption of halocarbons, SF6, solvent and other product use. "Solvent production and use" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 2F and 3 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IIEECIAA tendency of atmosphere mass content of alcohols due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Alcohols include all organic compounds with an alcoholic (OH) group. In standard names "alcohols" is the term used to describe the group of chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
HH29YCET tendency of atmosphere mass content of aldehydes due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. Aldehydes are organic compounds with a CHO group; "aldehydes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual aldehyde species, e.g., formaldehyde and acetyladehyde. 2015-01-07
ZDO3640M tendency of atmosphere mass content of aldehydes due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. Aldehydes are organic compounds with a CHO group; "aldehydes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual aldehyde species, e.g., formaldehyde and acetyladehyde. 2015-01-07
04XZVO7H tendency of atmosphere mass content of alkanes due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. Alkanes are saturated hydrocarbons, i.e. they do not contain any chemical double bonds. "Hydrocarbon" means a compound containing hydrogen and carbon. Alkanes contain only hydrogen and carbon combined in the general proportions C(n)H(2n+2); "alkanes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual alkane species, e.g., methane and ethane. 2015-01-07
XVMCQNYJ tendency of atmosphere mass content of alkenes due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. Alkenes are unsaturated hydrocarbons as they contain chemical double bonds between adjacent carbon atoms. "Hydrocarbon" means a compound containing hydrogen and carbon. Alkenes contain only hydrogen and carbon combined in the general proportions C(n)H(2n); "alkenes" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual alkene species, e.g., ethene and propene. 2015-01-07
CFV7N60 tendency of atmosphere mass content of alpha hexachlorocyclohexane due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2009-07-06
CFV7N61 tendency of atmosphere mass content of alpha hexachlorocyclohexane due to emission "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2007-11-21
CFV7N62 tendency of atmosphere mass content of alpha hexachlorocyclohexane due to re emission "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Re-emission" refers to emission that is not from a primary source; it refers to emission of a species that has previously been deposited and accumulated in soils or water. "Re-emission" is a process entirely distinct from "emission" which is used in some standard names. 2007-11-21
CFV7N63 tendency of atmosphere mass content of alpha hexachlorocyclohexane due to wet deposition "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Wet deposition" means deposition by precipitation. 2007-11-21
CF12N602 tendency of atmosphere mass content of alpha pinene due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for alpha_ pinene is C10H16. The IUPAC name for alpha-pinene is (1S,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene. 2009-07-06
CFV7N64 tendency of atmosphere mass content of ammonia due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2009-07-06
CFV7N65 tendency of atmosphere mass content of ammonia due to emission "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2007-11-21
CCJDADCF tendency of atmosphere mass content of ammonia due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ammonia is NH3. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JHJHGGIA tendency of atmosphere mass content of ammonia due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ammonia is NH3. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AGIIGJAA tendency of atmosphere mass content of ammonia due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ammonia is NH3. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
HHABHHAB tendency of atmosphere mass content of ammonia due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. he chemical formula for ammonia is NH3. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
EAFHGFGC tendency of atmosphere mass content of ammonia due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ammonia is NH3. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
JAAGHGHH tendency of atmosphere mass content of ammonia due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ammonia is NH3. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
EJGIBBAG tendency of atmosphere mass content of ammonia due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ammonia is NH3. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CCIIJHAI tendency of atmosphere mass content of ammonia due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ammonia is NH3. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CFV7N66 tendency of atmosphere mass content of ammonia due to wet deposition "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Wet deposition" means deposition by precipitation. 2007-11-21
CF12N603 tendency of atmosphere mass content of ammonium dry aerosol due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for ammonium is NH4. 2015-01-07
CF12N604 tendency of atmosphere mass content of ammonium dry aerosol due to wet deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Wet deposition" means deposition by precipitation. The chemical formula for ammonium is NH4. 2015-01-07
L2OD8IOR tendency of atmosphere mass content of ammonium dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for ammonium is NH4. 2015-01-07
H81P2AIH tendency of atmosphere mass content of ammonium dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for ammonium is NH4. 2015-01-07
AL5HMT39 tendency of atmosphere mass content of aromatic compounds due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. Aromatic compounds in organic chemistry are compounds that contain at least one benzene ring of six carbon atoms joined by alternating single and double covalent bonds. The simplest aromatic compound is benzene itself. In standard names "aromatic_ compounds" is the term used to describe the group of aromatic chemical species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual aromatic species, e.g. benzene and xylene. 2015-01-07
CF12N605 tendency of atmosphere mass content of benzene due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
JACIIHAB tendency of atmosphere mass content of benzene due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
EHJFGBBJ tendency of atmosphere mass content of benzene due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CJJJIICA tendency of atmosphere mass content of benzene due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AHAAHFJJ tendency of atmosphere mass content of benzene due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
GFGAAGDI tendency of atmosphere mass content of benzene due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
CEEEHJEC tendency of atmosphere mass content of benzene due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
FIFEDHGB tendency of atmosphere mass content of benzene due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
EIBEBEAA tendency of atmosphere mass content of benzene due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
AACHEEEA tendency of atmosphere mass content of benzene due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N606 tendency of atmosphere mass content of beta pinene due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for beta_ pinene is C10H16. The IUPAC name for beta-pinene is (1S,5S)-6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane. 2009-07-06
7OQTWDED tendency of atmosphere mass content of biogenic nmvoc expressed as carbon due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Biogenic" means influenced, caused, or created by natural processes. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
CFV7N67 tendency of atmosphere mass content of black carbon dry aerosol due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2015-01-07
CFV7N29 tendency of atmosphere mass content of black carbon dry aerosol due to emission DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2015-01-07
ACJAAJGD tendency of atmosphere mass content of black carbon dry aerosol due to emission from agricultural waste burning DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
IBJEIJJG tendency of atmosphere mass content of black carbon dry aerosol due to emission from energy production and distribution DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
GCGJHGCD tendency of atmosphere mass content of black carbon dry aerosol due to emission from forest fires DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
JJHHAHAA tendency of atmosphere mass content of black carbon dry aerosol due to emission from industrial processes and combustion DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
DBAHIIHF tendency of atmosphere mass content of black carbon dry aerosol due to emission from land transport DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
GABGECDG tendency of atmosphere mass content of black carbon dry aerosol due to emission from maritime transport DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2015-01-07
DCGHDBGG tendency of atmosphere mass content of black carbon dry aerosol due to emission from residential and commercial combustion DEPRECATED tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
JBBBGFJB tendency of atmosphere mass content of black carbon dry aerosol due to emission from savanna and grassland fires DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
HHFIBGAE tendency of atmosphere mass content of black carbon dry aerosol due to emission from waste treatment and disposal DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
CF12N607 tendency of atmosphere mass content of black carbon dry aerosol due to gravitational settling DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The sum of turbulent deposition and gravitational settling is dry deposition. 2015-01-07
CF12N608 tendency of atmosphere mass content of black carbon dry aerosol due to turbulent deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The sum of turbulent deposition and gravitational settling is dry deposition. 2015-01-07
CFV7N30 tendency of atmosphere mass content of black carbon dry aerosol due to wet deposition DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. "Wet deposition" means deposition by precipitation. 2015-01-07
CF12N609 tendency of atmosphere mass content of butane due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
JAGJGJJI tendency of atmosphere mass content of butane due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JEACCCHB tendency of atmosphere mass content of butane due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
GJCBEJHC tendency of atmosphere mass content of butane due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DAFFDIAD tendency of atmosphere mass content of butane due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CCAJACGA tendency of atmosphere mass content of butane due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
ABGHEBAB tendency of atmosphere mass content of butane due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BJDACBFB tendency of atmosphere mass content of butane due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
DAAIAADF tendency of atmosphere mass content of butane due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
ECABCEEE tendency of atmosphere mass content of butane due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BBAAJCIJ tendency of atmosphere mass content of butane due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N610 tendency of atmosphere mass content of carbon dioxide due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for carbon dioxide is CO2. 2009-07-06
CFV16A56 tendency of atmosphere mass content of carbon dioxide expressed as carbon due to anthropogenic emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for carbon dioxide is CO2. "Anthropogenic" means influenced, caused, or created by human activity. Anthropogenic emission of carbon dioxide includes fossil fuel use, cement production, agricultural burning and sources associated with anthropogenic land use change, except forest regrowth. 2010-10-11
248KZNJZ tendency of atmosphere mass content of carbon dioxide expressed as carbon due to emission from forestry and agricultural products "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The chemical formula for carbon dioxide is CO2. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Examples of "forestry and agricultural products" are paper, cardboard, furniture, timber for construction, biofuels and food for both humans and livestock. Models that simulate land use changes have one or more pools of carbon that represent these products in order to conserve carbon and allow its eventual release into the atmosphere, for example, when the products decompose in landfill sites. 2016-12-13
CFV16A57 tendency of atmosphere mass content of carbon dioxide expressed as carbon due to emission from fossil fuel combustion "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for carbon dioxide is CO2. Fossil fuel combustion includes cement production and flaring of natural gas. 2010-10-11
CF12N611 tendency of atmosphere mass content of carbon monoxide due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula of carbon monoxide is CO. 2009-07-06
CFV7N31 tendency of atmosphere mass content of carbon monoxide due to emission "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2007-11-21
AFAJJBGF tendency of atmosphere mass content of carbon monoxide due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of carbon monoxide is CO. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BEGBIIEH tendency of atmosphere mass content of carbon monoxide due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of carbon monoxide is CO. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
EBBFDCAJ tendency of atmosphere mass content of carbon monoxide due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of carbon monoxide is CO. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
FDBJGFDB tendency of atmosphere mass content of carbon monoxide due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of carbon monoxide is CO. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DFFAAGCD tendency of atmosphere mass content of carbon monoxide due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of carbon monoxide is CO. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
IBFDDBJF tendency of atmosphere mass content of carbon monoxide due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of carbon monoxide is CO. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IBDAADDA tendency of atmosphere mass content of carbon monoxide due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of carbon monoxide is CO. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
IIFHAIII tendency of atmosphere mass content of carbon monoxide due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for carbon monoxide is CO. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DJEJIGGE tendency of atmosphere mass content of carbon monoxide due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of carbon monoxide is CO. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CCFAJJHC tendency of atmosphere mass content of carbon monoxide due to emission from solvent production and use "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for carbon monoxide is CO. The "solvent production and use" sector comprises industrial processes related to the consumption of halocarbons, SF6, solvent and other product use. "Solvent production and use" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 2F and 3 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
HBHGABHG tendency of atmosphere mass content of carbon monoxide due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of carbon monoxide is CO. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N612 tendency of atmosphere mass content of carbon tetrachloride due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of carbon tetrachloride is CCl4. The IUPAC name for carbon tetrachloride is tetrachloromethane. 2019-04-08
CF12N614 tendency of atmosphere mass content of cfc113 due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of CFC113 is CCl2FCClF2. The IUPAC name for CFC113 is 1,1,2-trichloro-1,2,2-trifluoroethane. 2019-05-14
CF12N615 tendency of atmosphere mass content of cfc113a due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of CFC113a is CCl3CF3. The IUPAC name for CFC113a is 1,1,1-trichloro-2,2,2-trifluoroethane. 2019-05-14
CF12N616 tendency of atmosphere mass content of cfc114 due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of CFC114 is CClF2CClF2. The IUPAC name for CFC114 is 1,2-dichloro-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12N617 tendency of atmosphere mass content of cfc115 due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer are used". The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of CFC115 is CClF2CF3. The IUPAC name for CFC115 is 1-chloro-1,1,2,2,2-pentafluoroethane. 2019-05-14
CF12N613 tendency of atmosphere mass content of cfc11 due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro(fluoro)methane. 2019-05-14
CF12N618 tendency of atmosphere mass content of cfc12 due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro(difluoro)methane. 2019-05-14
AGDGIBDH tendency of atmosphere mass content of chlorinated hydrocarbons due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Chlorinated hydrocarbons are a group of chemicals composed of carbon, chlorine and hydrogen. As pesticides, they are also referred to by several other names, including chlorinated organics, chlorinated insecticides and chlorinated synthetics. In standard names "chlorinated_ hydrocarbons" is the term used to describe the group of chlorinated hydrocarbon species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
HDGDIIAG tendency of atmosphere mass content of chlorinated hydrocarbons due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Chlorinated hydrocarbons are a group of chemicals composed of carbon, chlorine and hydrogen. As pesticides, they are also referred to by several other names, including chlorinated organics, chlorinated insecticides and chlorinated synthetics. In standard names "chlorinated_ hydrocarbons" is the term used to describe the group of chlorinated hydrocarbon species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
ICJAECBC tendency of atmosphere mass content of chlorinated hydrocarbons due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Chlorinated hydrocarbons are a group of chemicals composed of carbon, chlorine and hydrogen. As pesticides, they are also referred to by several other names, including chlorinated organics, chlorinated insecticides and chlorinated synthetics. In standard names "chlorinated_ hydrocarbons" is the term used to describe the group of chlorinated hydrocarbon species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
JGFJAGJJ tendency of atmosphere mass content of chlorinated hydrocarbons due to emission from solvent production and use "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Chlorinated hydrocarbons are a group of chemicals composed of carbon, chlorine and hydrogen. As pesticides, they are also referred to by several other names, including chlorinated organics, chlorinated insecticides and chlorinated synthetics. In standard names "chlorinated_ hydrocarbons" is the term used to describe the group of chlorinated hydrocarbon species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "solvent production and use" sector comprises industrial processes related to the consumption of halocarbons, SF6, solvent and other product use. "Solvent production and use" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 2F and 3 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JJHEJCJC tendency of atmosphere mass content of chlorinated hydrocarbons due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Chlorinated hydrocarbons are a group of chemicals composed of carbon, chlorine and hydrogen. As pesticides, they are also referred to by several other names, including chlorinated organics, chlorinated insecticides and chlorinated synthetics. In standard names "chlorinated_ hydrocarbons" is the term used to describe the group of chlorinated hydrocarbon species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CFV7N32 tendency of atmosphere mass content of dimethyl sulfide due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2009-07-06
CFV7N33 tendency of atmosphere mass content of dimethyl sulfide due to emission "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2007-11-21
JCIAJBEE tendency of atmosphere mass content of dimethyl sulfide due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for dimethyl sulfide is (CH3)2S. Dimethyl sulfide is sometimes referred to as DMS. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
CFJEAFJH tendency of atmosphere mass content of dimethyl sulfide due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for dimethyl sulfide is (CH3)2S. Dimethyl sulfide is sometimes referred to as DMS. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
CFV7N34 tendency of atmosphere mass content of dimethyl sulfide due to wet deposition "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Wet deposition" means deposition by precipitation. 2007-11-21
CFV7N35 tendency of atmosphere mass content of dust dry aerosol due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2015-01-07
CFV7N36 tendency of atmosphere mass content of dust dry aerosol due to emission DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2015-01-07
CF12N619 tendency of atmosphere mass content of dust dry aerosol due to gravitational settling DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The sum of turbulent deposition and gravitational settling is dry deposition. 2015-01-07
CF12N620 tendency of atmosphere mass content of dust dry aerosol due to turbulent deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The sum of turbulent deposition and gravitational settling is dry deposition. 2015-01-07
CFV7N37 tendency of atmosphere mass content of dust dry aerosol due to wet deposition DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Wet deposition" means deposition by precipitation. 2015-01-07
92X5O7UW tendency of atmosphere mass content of dust dry aerosol particles due to deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Deposition" is the sum of wet and dry deposition. 2018-06-11
QTYB0PGB tendency of atmosphere mass content of dust dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
8FKHOJ0X tendency of atmosphere mass content of dust dry aerosol particles due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
GOP20L7L tendency of atmosphere mass content of dust dry aerosol particles due to gravitational settling "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
NWMYKIW4 tendency of atmosphere mass content of dust dry aerosol particles due to turbulent deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
02TE7PDC tendency of atmosphere mass content of dust dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
YEP61YZ8 tendency of atmosphere mass content of elemental carbon dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
0K0F0Y2P tendency of atmosphere mass content of elemental carbon dry aerosol particles due to emission "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
37U1ZUXR tendency of atmosphere mass content of elemental carbon dry aerosol particles due to emission from agricultural waste burning The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2019-03-04
OHV8PBIF tendency of atmosphere mass content of elemental carbon dry aerosol particles due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
3SGXMKJ9 tendency of atmosphere mass content of elemental carbon dry aerosol particles due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
TKHC48UB tendency of atmosphere mass content of elemental carbon dry aerosol particles due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
4UZJL4HX tendency of atmosphere mass content of elemental carbon dry aerosol particles due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
HTG3FF2P tendency of atmosphere mass content of elemental carbon dry aerosol particles due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
KE3VGDT1 tendency of atmosphere mass content of elemental carbon dry aerosol particles due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The mass is the total mass of the particles. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
YX6OSE3Y tendency of atmosphere mass content of elemental carbon dry aerosol particles due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
BOMY8L2Z tendency of atmosphere mass content of elemental carbon dry aerosol particles due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
TJBER2QW tendency of atmosphere mass content of elemental carbon dry aerosol particles due to gravitational settling "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The sum of turbulent deposition and gravitational settling is dry deposition. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
IJWJWK1A tendency of atmosphere mass content of elemental carbon dry aerosol particles due to turbulent deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the molecules. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
RAWK0OMW tendency of atmosphere mass content of elemental carbon dry aerosol particles due to wet deposition "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
DGDGDEEB tendency of atmosphere mass content of esters due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Esters in organic chemistry are chemical compounds derived by reacting an oxoacid with a hydroxyl compound such as an alcohol or phenol. Esters are usually derived from an inorganic acid or organic acid in which at least one -OH (hydroxyl) group is replaced by an -O-alkyl (alkoxy) group, and most commonly from carboxylic acids and alcohols. That is, esters are formed by condensing an acid with an alcohol. In standard names "esters" is the term used to describe the group of ester species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DJDCAJCD tendency of atmosphere mass content of esters due to emission from solvent production and use "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Esters in organic chemistry are chemical compounds derived by reacting an oxoacid with a hydroxyl compound such as an alcohol or phenol. Esters are usually derived from an inorganic acid or organic acid in which at least one -OH (hydroxyl) group is replaced by an -O-alkyl (alkoxy) group, and most commonly from carboxylic acids and alcohols. That is, esters are formed by condensing an acid with an alcohol. In standard names "esters" is the term used to describe the group of ester species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "solvent production and use" sector comprises industrial processes related to the consumption of halocarbons, SF6, solvent and other product use. "Solvent production and use" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 2F and 3 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DDJDDGDG tendency of atmosphere mass content of esters due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Esters in organic chemistry are chemical compounds derived by reacting an oxoacid with a hydroxyl compound such as an alcohol or phenol. Esters are usually derived from an inorganic acid or organic acid in which at least one -OH (hydroxyl) group is replaced by an -O-alkyl (alkoxy) group, and most commonly from carboxylic acids and alcohols. That is, esters are formed by condensing an acid with an alcohol. In standard names "esters" is the term used to describe the group of ester species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N621 tendency of atmosphere mass content of ethane due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
DIECCDDJ tendency of atmosphere mass content of ethane due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
EIGFAJFE tendency of atmosphere mass content of ethane due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IFHEEAIC tendency of atmosphere mass content of ethane due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DIJFACBB tendency of atmosphere mass content of ethane due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JAECEEFA tendency of atmosphere mass content of ethane due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
AAHHHBAB tendency of atmosphere mass content of ethane due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DBDBBDDB tendency of atmosphere mass content of ethane due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
CDAEIBCJ tendency of atmosphere mass content of ethane due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
GHHDAGGA tendency of atmosphere mass content of ethane due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BEHEBAJE tendency of atmosphere mass content of ethane due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N622 tendency of atmosphere mass content of ethanol due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethanol is C2H5OH. 2009-07-06
CF12N623 tendency of atmosphere mass content of ethene due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
HBAHJJBH tendency of atmosphere mass content of ethene due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BDHCHBDD tendency of atmosphere mass content of ethene due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IDBDDICA tendency of atmosphere mass content of ethene due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DACCAIIA tendency of atmosphere mass content of ethene due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
EAEIFADJ tendency of atmosphere mass content of ethene due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
HEBBIGAB tendency of atmosphere mass content of ethene due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BEJAAADI tendency of atmosphere mass content of ethene due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
HBHBHBBC tendency of atmosphere mass content of ethene due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BFAFCGAF tendency of atmosphere mass content of ethene due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AAAFJFAA tendency of atmosphere mass content of ethene due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BGBGBABB tendency of atmosphere mass content of ethers due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Ethers are a class of organic compounds that contain an ether group - an oxygen atom connected to two alkyl or aryl groups - of general formula R-O-R. In standard names "ethers" is the term used to describe the group of ether species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
GIHGIFHF tendency of atmosphere mass content of ethers due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Ethers are a class of organic compounds that contain an ether group - an oxygen atom connected to two alkyl or aryl groups - of general formula R-O-R. In standard names "ethers" is the term used to describe the group of ether species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
AEEFIFFE tendency of atmosphere mass content of ethers due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Ethers are a class of organic compounds that contain an ether group - an oxygen atom connected to two alkyl or aryl groups - of general formula R-O-R. In standard names "ethers" is the term used to describe the group of ether species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DCFHHFDA tendency of atmosphere mass content of ethers due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Ethers are a class of organic compounds that contain an ether group - an oxygen atom connected to two alkyl or aryl groups - of general formula R-O-R. In standard names "ethers" is the term used to describe the group of ether species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
GCEBGCGA tendency of atmosphere mass content of ethers due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Ethers are a class of organic compounds that contain an ether group - an oxygen atom connected to two alkyl or aryl groups - of general formula R-O-R. In standard names "ethers" is the term used to describe the group of ether species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
EDBGIGDD tendency of atmosphere mass content of ethers due to emission from solvent production and use "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Ethers are a class of organic compounds that contain an ether group - an oxygen atom connected to two alkyl or aryl groups - of general formula R-O-R. In standard names "ethers" is the term used to describe the group of ether species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "solvent production and use" sector comprises industrial processes related to the consumption of halocarbons, SF6, solvent and other product use. "Solvent production and use" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 2F and 3 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
GBIBIBIC tendency of atmosphere mass content of ethers due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Ethers are a class of organic compounds that contain an ether group - an oxygen atom connected to two alkyl or aryl groups - of general formula R-O-R. In standard names "ethers" is the term used to describe the group of ether species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N624 tendency of atmosphere mass content of ethyne due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. 2009-07-06
AIIAIBBA tendency of atmosphere mass content of ethyne due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IGFJCJJI tendency of atmosphere mass content of ethyne due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BFBBBACD tendency of atmosphere mass content of ethyne due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IIBEJGFE tendency of atmosphere mass content of ethyne due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
FFHIAAAI tendency of atmosphere mass content of ethyne due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
CAGCHGGC tendency of atmosphere mass content of ethyne due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
HHBFHBHF tendency of atmosphere mass content of ethyne due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
HADFHBHF tendency of atmosphere mass content of ethyne due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CBCIIABC tendency of atmosphere mass content of ethyne due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IGIHFJCI tendency of atmosphere mass content of ethyne due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N625 tendency of atmosphere mass content of formaldehyde due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. 2019-02-04
CF12N626 tendency of atmosphere mass content of formaldehyde due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. 2019-02-04
BHHGFCAH tendency of atmosphere mass content of formaldehyde due to emission from agricultural production The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2018-12-17
EIBDBBFA tendency of atmosphere mass content of formaldehyde due to emission from agricultural waste burning The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2018-12-17
AJEJHHIB tendency of atmosphere mass content of formaldehyde due to emission from energy production and distribution The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2018-12-17
HCCBECIH tendency of atmosphere mass content of formaldehyde due to emission from forest fires The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2018-12-17
DBEGDDDD tendency of atmosphere mass content of formaldehyde due to emission from industrial processes and combustion The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2018-12-17
CBHJDCDH tendency of atmosphere mass content of formaldehyde due to emission from land transport The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2018-12-17
BGBBFDBF tendency of atmosphere mass content of formaldehyde due to emission from residential and commercial combustion The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2018-12-17
FAEFGFCB tendency of atmosphere mass content of formaldehyde due to emission from savanna and grassland fires The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2018-12-17
JIJJJIJI tendency of atmosphere mass content of formaldehyde due to emission from waste treatment and disposal The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2018-12-17
76G5N5OC tendency of atmosphere mass content of formaldehyde due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. 2018-12-17
CF12N627 tendency of atmosphere mass content of formic acid due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for formic acid is HCOOH. The IUPAC name for formic acid is methanoic acid. 2019-02-04
CF12N628 tendency of atmosphere mass content of formic acid due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. The chemical formula for formic acid is HCOOH. The IUPAC name for formic acid is methanoic acid. 2019-02-04
CFV7N38 tendency of atmosphere mass content of gaseous divalent mercury due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Divalent mercury" means all compounds in which the mercury has two binding sites to other ion(s) in a salt or to other atom(s) in a molecule. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2018-12-17
CFV7N39 tendency of atmosphere mass content of gaseous divalent mercury due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Divalent mercury" means all compounds in which the mercury has two binding sites to other ion(s) in a salt or to other atom(s) in a molecule. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2018-12-17
CFV7N40 tendency of atmosphere mass content of gaseous divalent mercury due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "Divalent mercury" means all compounds in which the mercury has two binding sites to other ion(s) in a salt or to other atom(s) in a molecule. 2018-12-17
CFV7N41 tendency of atmosphere mass content of gaseous elemental mercury due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition"is the sum of turbulent deposition and gravitational settling. 2018-12-17
CFV7N42 tendency of atmosphere mass content of gaseous elemental mercury due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2018-12-17
CFV7N43 tendency of atmosphere mass content of gaseous elemental mercury due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. 2018-12-17
CF12N629 tendency of atmosphere mass content of halon1202 due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for Halon1202 is CBr2F2. The IUPAC name for Halon1202 is dibromo(difluoro)methane. 2019-05-14
CF12N630 tendency of atmosphere mass content of halon1211 due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for Halon1211 is CBrClF2. The IUPAC name for Halon1211 is bromo-chloro-difluoromethane. 2019-05-14
CF12N631 tendency of atmosphere mass content of halon1301 due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for Halon1301 is CBrF3. The IUPAC name for Halon1301 is bromo(trifluoro)methane. 2019-05-14
CF12N632 tendency of atmosphere mass content of halon2402 due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for Halon2402 is C2Br2F4. The IUPAC name for Halon2402 is 1,2-dibromo-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12N633 tendency of atmosphere mass content of hcc140a due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The chemical formula for HCC140a, also called methyl chloroform, is CH3CCl3. The IUPAC name for HCC140a is 1,1,1-trichloroethane. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2019-05-14
CF12N634 tendency of atmosphere mass content of hcfc141b due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for HCFC141b is CH3CCl2F. The IUPAC name for HCFC141b is 1,1-dichloro-1-fluoroethane. 2018-12-17
CF12N635 tendency of atmosphere mass content of hcfc142b due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for HCFC142b is CH3CClF2. The IUPAC name for HCFC142b is 1-chloro-1,1-difluoroethane. 2018-12-17
CF12N636 tendency of atmosphere mass content of hcfc22 due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The chemical formula for HCFC22 is CHClF2. The IUPAC name for HCFC22 is chloro(difluoro)methane. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2019-05-14
CFV7N14 tendency of atmosphere mass content of hexachlorobiphenyl due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for hexachlorobiphenyl is C12H4Cl6. The structure of this species consists of two linked benzene rings, each of which is additionally bonded to three chlorine atoms. 2018-12-17
CFV7N15 tendency of atmosphere mass content of hexachlorobiphenyl due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for hexachlorobiphenyl is C12H4Cl6. The structure of this species consists of two linked benzene rings, each of which is additionally bonded to three chlorine atoms. 2018-12-17
CFV7N16 tendency of atmosphere mass content of hexachlorobiphenyl due to re emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Re-emission" refers to emission that is not from a primary source; it refers to emission of a species that has previously been deposited and accumulated in soils or water. "Re-emission" is a process entirely distinct from "emission" which is used in some standard names. The chemical formula for hexachlorobiphenyl is C12H4Cl6. The structure of this species consists of two linked benzene rings, each of which is additionally bonded to three chlorine atoms. 2018-12-17
CFV7N17 tendency of atmosphere mass content of hexachlorobiphenyl due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. The chemical formula for hexachlorobiphenyl is C12H4Cl6. The structure of this species consists of two linked benzene rings, each of which is additionally bonded to three chlorine atoms. 2018-12-17
CF12N637 tendency of atmosphere mass content of hydrogen cyanide due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for hydrogen cyanide is HCN. 2018-12-17
CF12N638 tendency of atmosphere mass content of hydrogen cyanide due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for hydrogen cyanide is HCN. 2018-12-17
CF12N639 tendency of atmosphere mass content of hydrogen peroxide due to dry deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for hydrogen peroxide is H2O2. 2018-12-17
6PKIBDQJ tendency of atmosphere mass content of hydrogen peroxide due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. The chemical formula for hydrogen peroxide is H2O2. 2018-12-17
X07UFBWA tendency of atmosphere mass content of insoluble dust dry aerosol particles due to deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Insoluble aerosol" means aerosol which is not soluble in water, such as mineral dusts. At low temperatures such particles can be efficient nuclei for ice clouds. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Deposition" is the sum of wet and dry deposition. 2018-07-03
CF12N640 tendency of atmosphere mass content of isoprene due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for isoprene is CH2=C(CH3)CH=CH2. The IUPAC name for isoprene is 2-methylbuta-1,3-diene. Isoprene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2019-05-14
IBAIAAIA tendency of atmosphere mass content of isoprene due to emission from forest fires The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The chemical formula for isoprene is CH2=C(CH3)CH=CH2. The IUPAC name for isoprene is 2-methylbuta-1,3-diene. Isoprene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2019-05-14
BBCFJCFC tendency of atmosphere mass content of isoprene due to emission from savanna and grassland fires The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The chemical formula for isoprene is CH2=C(CH3)CH=CH2. The IUPAC name for isoprene is 2-methylbuta-1,3-diene. Isoprene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2019-05-14
EIJEGAIE tendency of atmosphere mass content of ketones due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. In organic chemistry, a ketone is a compound with the structure RC(=O)R&amp;apos;, where R and R&amp;apos; can be a variety of atoms and groups of atoms. It features a carbonyl group (C=O) bonded to two other carbon atoms. Acetone is the simplest example of a ketone. In standard names "ketones" is the term used to describe the group of ketone species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CHFFAJJB tendency of atmosphere mass content of ketones due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. In organic chemistry, a ketone is a compound with the structure RC(=O)R&amp;apos;, where R and R&amp;apos; can be a variety of atoms and groups of atoms. It features a carbonyl group (C=O) bonded to two other carbon atoms. Acetone is the simplest example of a ketone. In standard names "ketones" is the term used to describe the group of ketone species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AGAAGJGG tendency of atmosphere mass content of ketones due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. In organic chemistry, a ketone is a compound with the structure RC(=O)R&amp;apos;, where R and R&amp;apos; can be a variety of atoms and groups of atoms. It features a carbonyl group (C=O) bonded to two other carbon atoms. Acetone is the simplest example of a ketone. In standard names "ketones" is the term used to describe the group of ketone species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
HBCDGAJH tendency of atmosphere mass content of ketones due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. In organic chemistry, a ketone is a compound with the structure RC(=O)R&amp;apos;, where R and R&amp;apos; can be a variety of atoms and groups of atoms. It features a carbonyl group (C=O) bonded to two other carbon atoms. Acetone is the simplest example of a ketone. In standard names "ketones" is the term used to describe the group of ketone species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
DBAAFFII tendency of atmosphere mass content of ketones due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. In organic chemistry, a ketone is a compound with the structure RC(=O)R&amp;apos;, where R and R&amp;apos; can be a variety of atoms and groups of atoms. It features a carbonyl group (C=O) bonded to two other carbon atoms. Acetone is the simplest example of a ketone. In standard names "ketones" is the term used to describe the group of ketone species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
EBFDHFFF tendency of atmosphere mass content of ketones due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. In organic chemistry, a ketone is a compound with the structure RC(=O)R&amp;apos;, where R and R&amp;apos; can be a variety of atoms and groups of atoms. It features a carbonyl group (C=O) bonded to two other carbon atoms. Acetone is the simplest example of a ketone. In standard names "ketones" is the term used to describe the group of ketone species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
GADADDBH tendency of atmosphere mass content of ketones due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. In organic chemistry, a ketone is a compound with the structure RC(=O)R&amp;apos;, where R and R&amp;apos; can be a variety of atoms and groups of atoms. It features a carbonyl group (C=O) bonded to two other carbon atoms. Acetone is the simplest example of a ketone. In standard names "ketones" is the term used to describe the group of ketone species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JAIJGIJC tendency of atmosphere mass content of ketones due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. In organic chemistry, a ketone is a compound with the structure RC(=O)R&amp;apos;, where R and R&amp;apos; can be a variety of atoms and groups of atoms. It features a carbonyl group (C=O) bonded to two other carbon atoms. Acetone is the simplest example of a ketone. In standard names "ketones" is the term used to describe the group of ketone species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
CCECJJHE tendency of atmosphere mass content of ketones due to emission from solvent production and use "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. In organic chemistry, a ketone is a compound with the structure RC(=O)R&amp;apos;, where R and R&amp;apos; can be a variety of atoms and groups of atoms. It features a carbonyl group (C=O) bonded to two other carbon atoms. Acetone is the simplest example of a ketone. In standard names "ketones" is the term used to describe the group of ketone species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "solvent production and use" sector comprises industrial processes related to the consumption of halocarbons, SF6, solvent and other product use. "Solvent production and use" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 2F and 3 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AGBEDAAB tendency of atmosphere mass content of ketones due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. In organic chemistry, a ketone is a compound with the structure RC(=O)R&amp;apos;, where R and R&amp;apos; can be a variety of atoms and groups of atoms. It features a carbonyl group (C=O) bonded to two other carbon atoms. Acetone is the simplest example of a ketone. In standard names "ketones" is the term used to describe the group of ketone species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N641 tendency of atmosphere mass content of limonene due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for limonene is C10H16. The IUPAC name for limonene is 1-methyl-4-prop-1-en-2-ylcyclohexene. Limonene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2019-05-14
CFV7N18 tendency of atmosphere mass content of mercury dry aerosol due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2015-01-07
CFV7N19 tendency of atmosphere mass content of mercury dry aerosol due to emission DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2019-05-14
CFV7N20 tendency of atmosphere mass content of mercury dry aerosol due to wet deposition DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Wet deposition" means deposition by precipitation. 2015-01-07
TGMSIFL6 tendency of atmosphere mass content of mercury dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
LE4PB3MS tendency of atmosphere mass content of mercury dry aerosol particles due to emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2019-05-14
85XN19KM tendency of atmosphere mass content of mercury dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
CF12N642 tendency of atmosphere mass content of methane due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
FIIHIIBD tendency of atmosphere mass content of methane due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DIGBIBEH tendency of atmosphere mass content of methane due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CIJHGIIJ tendency of atmosphere mass content of methane due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
FAEEBIAD tendency of atmosphere mass content of methane due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AJAJCJAA tendency of atmosphere mass content of methane due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
EDFEEJCA tendency of atmosphere mass content of methane due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. he chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CGHBCHCH tendency of atmosphere mass content of methane due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
EFEHBIHJ tendency of atmosphere mass content of methane due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CDCEABEC tendency of atmosphere mass content of methane due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
HCCCFIIF tendency of atmosphere mass content of methane due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
K4F1YM71 tendency of atmosphere mass content of methanesulfonic acid dry aerosol particles due to net chemical production Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Net chemical production" means the net result of all chemical reactions within the atmosphere that produce or destroy a particular species. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for methanesulfonic acid is CH3SO3H. 2015-01-07
OCE7XYKR tendency of atmosphere mass content of methanesulfonic acid dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for methanesulfonic acid is CH3SO3H. 2015-01-07
KL9I5X8X tendency of atmosphere mass content of methanesulfonic acid due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for methanesulfonic acid is CH3SO3H. 2015-01-07
CF12N643 tendency of atmosphere mass content of methanol due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methanol is CH3OH. 2009-07-06
CF12N644 tendency of atmosphere mass content of methyl bromide due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methyl bromide is CH3Br. The IUPAC name for methyl bromide is bromomethane. 2009-07-06
CF12N645 tendency of atmosphere mass content of methyl chloride due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for methyl chloride is CH3Cl. The IUPAC name for methyl chloride is chloromethane. 2009-07-06
CF12N646 tendency of atmosphere mass content of molecular hydrogen due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for molecular hydrogen is H2. 2009-07-06
CF12N647 tendency of atmosphere mass content of molecular hydrogen due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for molecular hydrogen is H2. 2009-07-06
IBIFIIAG tendency of atmosphere mass content of molecular hydrogen due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for molecular hydrogen is H2. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
CABCFHDI tendency of atmosphere mass content of molecular hydrogen due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to" process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for molecular hydrogen is H2. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
CNNDWCWV tendency of atmosphere mass content of monoterpenes due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. Monoterpenes are a class of terpenes that consist of two isoprene units and have the molecular formula C10H16. Terpenes are hydrocarbons. The term "monoterpenes" is used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
CF12N648 tendency of atmosphere mass content of nitrate dry aerosol due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for the nitrate anion is NO3-. 2015-01-07
RV4GJ49C tendency of atmosphere mass content of nitrate dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the nitrate anion is NO3-. 2015-01-07
O3JBAOK8 tendency of atmosphere mass content of nitrate dry aerosol particles due to net chemical production "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Net chemical production" means the net result of all chemical reactions within the atmosphere that produce or destroy a particular species. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the nitrate anion is NO3-. 2015-01-07
XWL9GOEY tendency of atmosphere mass content of nitrate dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the nitrate anion is NO3-. 2015-01-07
CFV7N21 tendency of atmosphere mass content of nitric acid due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2009-07-06
CFV7N22 tendency of atmosphere mass content of nitric acid due to wet deposition "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Wet deposition" means deposition by precipitation. 2007-11-21
876DS3YK tendency of atmosphere mass content of nitrogen compounds expressed as nitrogen due to anthropogenic emission The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Anthropogenic" means influenced, caused, or created by human activity. 2018-05-15
BAKDTIT0 tendency of atmosphere mass content of nitrogen compounds expressed as nitrogen due to anthropogenic land use or land cover change The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Anthropogenic" means influenced, caused, or created by human activity. "Anthropogenic land use change" means human changes to land, excluding forest regrowth. It includes fires ignited by humans for the purpose of land use change and the processes of eventual disposal and decomposition of wood products such as paper, cardboard, furniture and timber for construction. 2018-04-16
DTZ449B7 tendency of atmosphere mass content of nitrogen compounds expressed as nitrogen due to deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Deposition" is the sum of wet and dry deposition. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. Usually, particle bound and gaseous nitrogen compounds, such as atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrate (NO3-), peroxynitric acid (HNO4), ammonia (NH3), ammonium (NH4+), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)) are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2017-06-26
IR9CXAYI tendency of atmosphere mass content of nitrogen compounds expressed as nitrogen due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "dry_ deposition" is the sum of turbulent deposition and gravitational settling. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. Usually, particle bound and gaseous nitrogen compounds, such as atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrate (NO3-), peroxynitric acid (HNO4), ammonia (NH3), ammonium (NH4+), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)) are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2017-06-26
FILQ1KD8 tendency of atmosphere mass content of nitrogen compounds expressed as nitrogen due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. Usually, particle bound and gaseous nitrogen compounds, such as atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrate (NO3-), peroxynitric acid (HNO4), ammonia (NH3), ammonium (NH4+), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)) are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2019-02-04
CFV7N23 tendency of atmosphere mass content of nitrogen dioxide due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2009-07-06
CF12N649 tendency of atmosphere mass content of nitrogen dioxide due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen dioxide is NO2. 2009-07-06
HGJBHGJJ tendency of atmosphere mass content of nitrogen dioxide due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to" process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen dioxide is NO2. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
DCAEGAAH tendency of atmosphere mass content of nitrogen dioxide due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen dioxide is NO2. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
I5V0KRHS tendency of atmosphere mass content of nitrogen due to deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Deposition" is the sum of wet and dry deposition. "Nitrogen" summarizes all chemical species containing nitrogen atoms. Usually, particle bound and gaseous nitrogen compounds, such as atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrage (NO3-), peroxynitric acid (HNO4), ammoina (NH3), ammonium (NH4+), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)) are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2017-06-26
SKE9VU03 tendency of atmosphere mass content of nitrogen due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "dry_ deposition" is the sum of turbulent deposition and gravitational settling. "Nitrogen" summarizes all chemical species containing nitrogen atoms. Usually, particle bound and gaseous nitrogen compounds, such as atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrage (NO3-), peroxynitric acid (HNO4), ammoina (NH3), ammonium (NH4+), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)) are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2017-06-26
GZ7VQ2YN tendency of atmosphere mass content of nitrogen due to wet deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "wet_ deposition" means deposition by precipitation. "Nitrogen" summarizes all chemical species containing nitrogen atoms. Usually, particle bound and gaseous nitrogen compounds, such as atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrage (NO3-), peroxynitric acid (HNO4), ammoina (NH3), ammonium (NH4+), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)) are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2017-06-26
CF12N650 tendency of atmosphere mass content of nitrogen monoxide due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. 2009-07-06
AAJAJIAB tendency of atmosphere mass content of nitrogen monoxide due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
HHHHBBFH tendency of atmosphere mass content of nitrogen monoxide due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IIFEACAI tendency of atmosphere mass content of nitrogen monoxide due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AFAGAAED tendency of atmosphere mass content of nitrogen monoxide due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AAGGDGJH tendency of atmosphere mass content of nitrogen monoxide due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
JFFAIHFA tendency of atmosphere mass content of nitrogen monoxide due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CACADJAA tendency of atmosphere mass content of nitrogen monoxide due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
GBJJBCCH tendency of atmosphere mass content of nitrogen monoxide due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BAGAHHAH tendency of atmosphere mass content of nitrogen monoxide due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JHIHGHAJ tendency of atmosphere mass content of nitrogen monoxide due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N651 tendency of atmosphere mass content of nitrous acid due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for nitrous acid is HNO2. 2009-07-06
CF12N652 tendency of atmosphere mass content of nitrous acid due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrous acid is HNO2. 2009-07-06
MLWABS09 tendency of atmosphere mass content of nitrous acid due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for nitrous acid is HNO2. 2015-01-07
CF12N653 tendency of atmosphere mass content of nitrous oxide due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for nitrous oxide is N2O. 2009-07-06
CF12N654 tendency of atmosphere mass content of nitrous oxide due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrous oxide is N2O. 2009-07-06
J01NT9RE tendency of atmosphere mass content of nmvoc due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
HFGGJHBH tendency of atmosphere mass content of nmvoc due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
IJJGIAAI tendency of atmosphere mass content of nmvoc due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
BHHECEBC tendency of atmosphere mass content of nmvoc due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
FAHICCAB tendency of atmosphere mass content of nmvoc due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
IDFBGHIE tendency of atmosphere mass content of nmvoc due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
JJJBGAGB tendency of atmosphere mass content of nmvoc due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
JJJADAJJ tendency of atmosphere mass content of nmvoc due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2015-01-07
GHGGHGGA tendency of atmosphere mass content of nmvoc due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
FHHFAADF tendency of atmosphere mass content of nmvoc due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
EIGCCBHB tendency of atmosphere mass content of nmvoc due to emission from solvent production and use "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "solvent production and use" sector comprises industrial processes related to the consumption of halocarbons, SF6, solvent and other product use. "Solvent production and use" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 2F and 3 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
EGGHJEEE tendency of atmosphere mass content of nmvoc due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
BN4LEB4T tendency of atmosphere mass content of nmvoc expressed as carbon due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. "nmvoc" means non methane volatile organic compounds. "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
CFV7N24 tendency of atmosphere mass content of nox expressed as nitrogen due to emission "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Nox" means nitric oxide (NO) and nitrogen dioxide (NO2). "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2007-11-21
DCCCCADJ tendency of atmosphere mass content of nox expressed as nitrogen monoxide due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
EJBEBBBF tendency of atmosphere mass content of nox expressed as nitrogen monoxide due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
HABAHAEA tendency of atmosphere mass content of nox expressed as nitrogen monoxide due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
IBBCEBBA tendency of atmosphere mass content of nox expressed as nitrogen monoxide due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
BGIBDCIB tendency of atmosphere mass content of nox expressed as nitrogen monoxide due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
JAABAAJF tendency of atmosphere mass content of nox expressed as nitrogen monoxide due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
EIIEAAGD tendency of atmosphere mass content of nox expressed as nitrogen monoxide due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2013-02-12
HEHHCAHC tendency of atmosphere mass content of nox expressed as nitrogen monoxide due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
HBBBJCFF tendency of atmosphere mass content of nox expressed as nitrogen monoxide due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to" process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
E8SXAB5A tendency of atmosphere mass content of nox expressed as nitrogen monoxide due to emission from soil "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for nitrogen monoxide is NO. "Nox" means a combination of two radical species containing nitrogen and oxygen NO+NO2. 2015-01-07
GHHHDGJE tendency of atmosphere mass content of nox expressed as nitrogen monoxide due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
496GHBC8 tendency of atmosphere mass content of noy expressed as nitrogen due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "Noy" describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)). The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
OF628DOR tendency of atmosphere mass content of noy expressed as nitrogen due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. "Noy" describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)). The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
JGJDJIIA tendency of atmosphere mass content of organic acids due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group -COOH. In standard names "organic_ acids" is the term used to describe the group of organic acid species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
FABAIJBF tendency of atmosphere mass content of organic acids due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group -COOH. In standard names "organic_ acids" is the term used to describe the group of organic acid species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AGIFGGCC tendency of atmosphere mass content of organic acids due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group -COOH. In standard names "organic_ acids" is the term used to describe the group of organic acid species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CDGDCCCD tendency of atmosphere mass content of organic acids due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group -COOH. In standard names "organic_ acids" is the term used to describe the group of organic acid species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
EDHEDBHC tendency of atmosphere mass content of organic acids due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group -COOH. In standard names "organic_ acids" is the term used to describe the group of organic acid species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
AGCCFDDB tendency of atmosphere mass content of organic acids due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group -COOH. In standard names "organic_ acids" is the term used to describe the group of organic acid species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
FJFJCBJC tendency of atmosphere mass content of organic acids due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group -COOH. In standard names "organic_ acids" is the term used to describe the group of organic acid species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
DDDDDHFI tendency of atmosphere mass content of organic acids due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group -COOH. In standard names "organic_ acids" is the term used to describe the group of organic acid species that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
A5NB5R7C tendency of atmosphere mass content of organic nitrates due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. Organic nitrates are nitrogen-containing compounds having the general formula RONO2, where R is an alkyl (or organic) group; "organic nitrates" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
N1ZKPG8G tendency of atmosphere mass content of organic nitrates due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. Organic nitrates are nitrogen-containing compounds having the general formula RONO2, where R is an alkyl (or organic) group; "organic_ nitrates" is the term used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
IIK8I1E6 tendency of atmosphere mass content of organic peroxides due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. Organic peroxides are organic molecules containing an oxygen-oxygen bond. The general chemical formula is ROOR or ROOH, where R is an organic group. 2015-01-07
KCHQA882 tendency of atmosphere mass content of organic peroxides due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. Organic peroxides are organic molecules containing an oxygen-oxygen bond. The general chemical formula is ROOR or ROOH, where R is an organic group. 2015-01-07
2SYWROCM tendency of atmosphere mass content of oxidized nitrogen compounds expressed as nitrogen due to deposition "Content" indicates a quantity per unit area. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Deposition" is the sum of wet and dry deposition. "Oxidized nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state greater than zero. Usually, particle bound and gaseous nitrogen compounds, such as nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrate (NO3-), peroxynitric acid (HNO4), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
Q138VHYM tendency of atmosphere mass content of oxidized nitrogen compounds expressed as nitrogen due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "Oxidized nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state greater than zero. Usually, particle bound and gaseous nitrogen compounds, such as nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrate (NO3-), peroxynitric acid (HNO4), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
2FB7VY3E tendency of atmosphere mass content of oxidized nitrogen compounds expressed as nitrogen due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "Oxidized nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state greater than zero. Usually, particle bound and gaseous nitrogen compounds, such as nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrate (NO3-), peroxynitric acid (HNO4), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
CFV7N25 tendency of atmosphere mass content of ozone due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2009-07-06
CFV7N26 tendency of atmosphere mass content of ozone due to dry deposition into stomata "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2009-07-06
CFV7N27 tendency of atmosphere mass content of particulate organic matter dry aerosol due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2015-01-07
CF12N655 tendency of atmosphere mass content of particulate organic matter dry aerosol due to gravitational settling DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The sum of turbulent deposition and gravitational settling is dry deposition. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
CF12S35 tendency of atmosphere mass content of particulate organic matter dry aerosol due to net chemical production and emission DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Net chemical production" means the net result of all chemical reactions within the atmosphere that produce or destroy a particular species. 2015-01-07
CFV7N28 tendency of atmosphere mass content of particulate organic matter dry aerosol due to net production and emission DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Net production" means the net result of all chemical reactions within the atmosphere that produce or destroy a particular species. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol (which is emitted into the atmosphere) and secondary_ particulate_ organic_ matter_ dry_ aerosol (which is produced within the atmosphere). 2009-07-06
CF12N656 tendency of atmosphere mass content of particulate organic matter dry aerosol due to turbulent deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The sum of turbulent deposition and gravitational settling is dry deposition. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
CFV7N5 tendency of atmosphere mass content of particulate organic matter dry aerosol due to wet deposition DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. "Wet deposition" means deposition by precipitation. 2015-01-07
GFJIGBFA tendency of atmosphere mass content of particulate organic matter dry aerosol expressed as carbon due to emission from agricultural waste burning DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
BBBGAIAG tendency of atmosphere mass content of particulate organic matter dry aerosol expressed as carbon due to emission from energy production and distribution DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
GJHGGGAH tendency of atmosphere mass content of particulate organic matter dry aerosol expressed as carbon due to emission from forest fires DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
IFEICGEA tendency of atmosphere mass content of particulate organic matter dry aerosol expressed as carbon due to emission from industrial processes and combustion DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
JIJGJHII tendency of atmosphere mass content of particulate organic matter dry aerosol expressed as carbon due to emission from land transport DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
DDDHBHHD tendency of atmosphere mass content of particulate organic matter dry aerosol expressed as carbon due to emission from maritime transport DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2015-01-07
BGJBBJFB tendency of atmosphere mass content of particulate organic matter dry aerosol expressed as carbon due to emission from residential and commercial combustion DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
IFIJJFAJ tendency of atmosphere mass content of particulate organic matter dry aerosol expressed as carbon due to emission from savanna and grassland fires DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except black carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
EDDDFHDD tendency of atmosphere mass content of particulate organic matter dry aerosol expressed as carbon due to emission from waste treatment and disposal DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
1SO3598I tendency of atmosphere mass content of particulate organic matter dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
3ZRX84QZ tendency of atmosphere mass content of particulate organic matter dry aerosol particles due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
O1NFQ760 tendency of atmosphere mass content of particulate organic matter dry aerosol particles due to gravitational settling "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
EC58CHWI tendency of atmosphere mass content of particulate organic matter dry aerosol particles due to net chemical production and emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Net chemical production" means the net result of all chemical reactions within the atmosphere that produce or destroy a particular species. "tendency_ of_ X" means derivative of X with respect to time. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. 2015-01-07
N0WSPN8I tendency of atmosphere mass content of particulate organic matter dry aerosol particles due to turbulent deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol.The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
R5WXPV1R tendency of atmosphere mass content of particulate organic matter dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
SB5GUODT tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
7X0DRNML tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except black carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
1Z0QLL6T tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
MY3194P0 tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
GRFAUB95 tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
1EZNH3ET tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
SZRKUV5H tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
0O5CSWT7 tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2015-01-07
53FJNEEM tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
MECUC61J tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except elemental carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
0RBP5DGR tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The "waste treatment and disposal" sector comprises solid waste disposal on land, waste water handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2015-01-07
B954IGKE tendency of atmosphere mass content of particulate organic matter dry aerosol particles expressed as carbon due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The term "particulate_ organic_ matter_ dry_ aerosol" means all particulate organic matter dry aerosol except elemental carbon. It is the sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
EEBFDCFH tendency of atmosphere mass content of pentane due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for pentane is C5H12. Pentane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
FGBGGEEF tendency of atmosphere mass content of pentane due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for pentane is C5H12. Pentane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AHAFIAAE tendency of atmosphere mass content of pentane due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for pentane is C5H12. Pentane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IJAAICGG tendency of atmosphere mass content of pentane due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for pentane is C5H12. Pentane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
JCAIGJJC tendency of atmosphere mass content of pentane due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for pentane is C5H12. Pentane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DFICJAFJ tendency of atmosphere mass content of pentane due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for pentane is C5H12. Pentane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
DDBDBAAD tendency of atmosphere mass content of pentane due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for pentane is C5H12. Pentane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JEHCJGIA tendency of atmosphere mass content of pentane due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for pentane is C5H12. Pentane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
HAAAACAH tendency of atmosphere mass content of pentane due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for pentane is C5H12. Pentane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N657 tendency of atmosphere mass content of peroxyacetyl nitrate due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for peroxyacetyl nitrate, sometimes referred to as PAN, is CH3COO2NO2. The IUPAC name for peroxyacetyl_ nitrate is nitroethaneperoxoate. 2009-07-06
CF12N658 tendency of atmosphere mass content of peroxynitric acid due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for peroxynitric acid, sometimes referred to as PNA, is HO2NO2. 2009-07-06
VVPN2BZG tendency of atmosphere mass content of pm10 dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
OAELVGN0 tendency of atmosphere mass content of pm10 dry aerosol particles due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
37SRGJ9S tendency of atmosphere mass content of pm10 dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
2CDWDPLR tendency of atmosphere mass content of pm10 dust dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
C6SD7LJQ tendency of atmosphere mass content of pm10 dust dry aerosol particles due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
DCIYYLHY tendency of atmosphere mass content of pm10 dust dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
2K7FF6H0 tendency of atmosphere mass content of pm10 sea salt dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
1X10YOBN tendency of atmosphere mass content of pm10 sea salt dry aerosol particles due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
R1HFS76P tendency of atmosphere mass content of pm10 sea salt dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 10 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
P4IUKD6T tendency of atmosphere mass content of pm10 seasalt dry aerosol particles due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Pm10 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 10 micrometers. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
JLMLN8CI tendency of atmosphere mass content of pm10 seasalt dry aerosol particles due to emission DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Pm10 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 10 micrometers. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
PO5EFBL5 tendency of atmosphere mass content of pm10 seasalt dry aerosol particles due to wet deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm10 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 10 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
AU8CTE7W tendency of atmosphere mass content of pm2p5 dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
DX63INRT tendency of atmosphere mass content of pm2p5 dry aerosol particles due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
6XE8CBF3 tendency of atmosphere mass content of pm2p5 dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
U8D6TDXF tendency of atmosphere mass content of pm2p5 dust dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
CLV6IS0E tendency of atmosphere mass content of pm2p5 dust dry aerosol particles due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
I8SLEWD2 tendency of atmosphere mass content of pm2p5 dust dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
8EM9UQ1C tendency of atmosphere mass content of pm2p5 sea salt dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
IONOVEZM tendency of atmosphere mass content of pm2p5 sea salt dry aerosol particles due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
4ED55N1Q tendency of atmosphere mass content of pm2p5 sea salt dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" means atmospheric particulate compounds with an aerodynamic diameter of less than or equal to 2.5 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
9BT1EM7W tendency of atmosphere mass content of pm2p5 seasalt dry aerosol particles due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Pm2p5 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 2.5 micrometers. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
MU75QKKV tendency of atmosphere mass content of pm2p5 seasalt dry aerosol particles due to emission DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Pm2p5 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 2.5 micrometers. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
A7LKPMP3 tendency of atmosphere mass content of pm2p5 seasalt dry aerosol particles due to wet deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Pm2p5 aerosol" is an air pollutant with an aerodynamic diameter of less than or equal to 2.5 micrometers. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
CFV7N6 tendency of atmosphere mass content of primary particulate organic matter dry aerosol due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2015-01-07
CFV7N7 tendency of atmosphere mass content of primary particulate organic matter dry aerosol due to emission DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except black carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2015-01-07
CFV7N8 tendency of atmosphere mass content of primary particulate organic matter dry aerosol due to wet deposition DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except black carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. "Wet deposition" means deposition by precipitation. 2015-01-07
PCQV9HBC tendency of atmosphere mass content of primary particulate organic matter dry aerosol particles due to dry deposition "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2015-01-07
SZQ4294N tendency of atmosphere mass content of primary particulate organic matter dry aerosol particles due to emission "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except elemental carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2015-01-07
Q8JPIQBO tendency of atmosphere mass content of primary particulate organic matter dry aerosol particles due to wet deposition "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. "Primary particulate organic matter " means all organic matter emitted directly to the atmosphere as particles except elemental carbon. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. 2015-01-07
CF12N659 tendency of atmosphere mass content of propane due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
GIHEGHFI tendency of atmosphere mass content of propane due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CCIIDCBE tendency of atmosphere mass content of propane due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DHEHFDDE tendency of atmosphere mass content of propane due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BBADAAJE tendency of atmosphere mass content of propane due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
FAAAAFEJ tendency of atmosphere mass content of propane due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
AAHHEAHH tendency of atmosphere mass content of propane due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CFFGHIDC tendency of atmosphere mass content of propane due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
JHEJBJJC tendency of atmosphere mass content of propane due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IDDAEIII tendency of atmosphere mass content of propane due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
DDHDDAJJ tendency of atmosphere mass content of propane due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N660 tendency of atmosphere mass content of propene due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
JHHGEJBH tendency of atmosphere mass content of propene due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JFFJFGGE tendency of atmosphere mass content of propene due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JBJJJDAB tendency of atmosphere mass content of propene due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AABAEAGJ tendency of atmosphere mass content of propene due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JJAABAAI tendency of atmosphere mass content of propene due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
FFAEFAIA tendency of atmosphere mass content of propene due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CCICGIDC tendency of atmosphere mass content of propene due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
GBIJIDDD tendency of atmosphere mass content of propene due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IBGGGIEJ tendency of atmosphere mass content of propene due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IEDDBDED tendency of atmosphere mass content of propene due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N661 tendency of atmosphere mass content of radon due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical symbol for radon is Rn. 2009-07-06
41TYF52D tendency of atmosphere mass content of reduced nitrogen compounds expressed as nitrogen due to deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Deposition" is the sum of wet and dry deposition. "Reduced nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state less than zero. Usually, particle bound and gaseous nitrogen compounds, primarily ammonium (NH4+) and ammonia (NH3), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
NYEJEW20 tendency of atmosphere mass content of reduced nitrogen compounds expressed as nitrogen due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "Reduced nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state less than zero. Usually, particle bound and gaseous nitrogen compounds, primarily ammonium (NH4+) and ammonia (NH3), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
LLWKS2Q7 tendency of atmosphere mass content of reduced nitrogen compounds expressed as nitrogen due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "Reduced nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state less than zero. Usually, particle bound and gaseous nitrogen compounds, primarily ammonium (NH4+) and ammonia (NH3), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
0L1IA5Z9 tendency of atmosphere mass content of sea salt dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
3ZP5PFW6 tendency of atmosphere mass content of sea salt dry aerosol particles due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2017-07-24
5NCCEKPE tendency of atmosphere mass content of sea salt dry aerosol particles due to gravitational settling "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
SEYBUFZ5 tendency of atmosphere mass content of sea salt dry aerosol particles due to turbulent deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
FIRGH6OT tendency of atmosphere mass content of sea salt dry aerosol particles due to wet deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2017-07-24
MK0VKZR5 tendency of atmosphere mass content of sea salt dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
CFV7N9 tendency of atmosphere mass content of seasalt dry aerosol due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2015-01-07
CFV7N10 tendency of atmosphere mass content of seasalt dry aerosol due to emission DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2015-01-07
CF12N662 tendency of atmosphere mass content of seasalt dry aerosol due to gravitational settling DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The sum of turbulent deposition and gravitational settling is dry deposition. 2015-01-07
CF12N663 tendency of atmosphere mass content of seasalt dry aerosol due to turbulent deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The sum of turbulent deposition and gravitational settling is dry deposition. 2015-01-07
CFV7N11 tendency of atmosphere mass content of seasalt dry aerosol due to wet deposition DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Wet deposition" means deposition by precipitation. 2015-01-07
C4AGSXHQ tendency of atmosphere mass content of seasalt dry aerosol particles due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
6L3Z7RH7 tendency of atmosphere mass content of seasalt dry aerosol particles due to emission DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
3XHVIYNY tendency of atmosphere mass content of seasalt dry aerosol particles due to gravitational settling DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
TANBDOQS tendency of atmosphere mass content of seasalt dry aerosol particles due to turbulent deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
G7JCBPY7 tendency of atmosphere mass content of seasalt dry aerosol particles due to wet deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
CFV7N12 tendency of atmosphere mass content of secondary particulate organic matter dry aerosol due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2015-01-07
CF12S36 tendency of atmosphere mass content of secondary particulate organic matter dry aerosol due to net chemical production DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Secondary particulate organic matter " means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. "Net chemical production" means the net result of all chemical reactions within the atmosphere that produce or destroy a particular species. 2015-01-07
CFV7N13 tendency of atmosphere mass content of secondary particulate organic matter dry aerosol due to net production DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Secondary particulate organic matter " means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. "Net production" means the net result of all chemical reactions within the atmosphere that produce or destroy a particular species. 2009-07-06
CFV7N1 tendency of atmosphere mass content of secondary particulate organic matter dry aerosol due to wet deposition DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "Secondary particulate organic matter " means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. "Wet deposition" means deposition by precipitation. 2015-01-07
WH0SX7G4 tendency of atmosphere mass content of secondary particulate organic matter dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
G5O5OLPB tendency of atmosphere mass content of secondary particulate organic matter dry aerosol particles due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Secondary particulate organic matter" means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
KSU11DIP tendency of atmosphere mass content of secondary particulate organic matter dry aerosol particles due to net chemical production "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Secondary particulate organic matter" means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Net chemical production" means the net result of all chemical reactions within the atmosphere that produce or destroy a particular species. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
9M73ZUY9 tendency of atmosphere mass content of secondary particulate organic matter dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "Secondary particulate organic matter" means particulate organic matter formed within the atmosphere from gaseous precursors. The sum of primary_ particulate_ organic_ matter_ dry_ aerosol and secondary_ particulate_ organic_ matter_ dry_ aerosol is particulate_ organic_ matter_ dry_ aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
C27A7K4C tendency of atmosphere mass content of sesquiterpenes due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. Terpenes are hydrocarbons, that is, they contain only hydrogen and carbon combined in the general proportions (C5H8)n where n is an integer greater than on equal to one. Sesquiterpenes are a class of terpenes that consist of three isoprene units and have the molecular formula C15H24. Terpenes are hydrocarbons. The term "sesquiterpenes" is used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
CF12N664 tendency of atmosphere mass content of sulfate dry aerosol due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
CF12N665 tendency of atmosphere mass content of sulfate dry aerosol due to emission DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2015-01-07
CFV15A24 tendency of atmosphere mass content of sulfate dry aerosol expressed as sulfur due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
CFV15A25 tendency of atmosphere mass content of sulfate dry aerosol expressed as sulfur due to gravitational settling DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
CFV15A26 tendency of atmosphere mass content of sulfate dry aerosol expressed as sulfur due to turbulent deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
CFV15A27 tendency of atmosphere mass content of sulfate dry aerosol expressed as sulfur due to wet deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2019-05-14
PE5DISHK tendency of atmosphere mass content of sulfate dry aerosol particles due to aqueous phase net chemical production "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Net chemical production" means the net result of all chemical reactions within the atmosphere that produce or destroy a particular species. "Aqueous phase net chemical production" means the net result of all aqueous chemical processes in fog and clouds that produce or destroy a species, as opposed to chemical processes in the gaseous phase. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
GM6Q50OD tendency of atmosphere mass content of sulfate dry aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
VV0S90FL tendency of atmosphere mass content of sulfate dry aerosol particles due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
3TVT57J2 tendency of atmosphere mass content of sulfate dry aerosol particles due to gaseous phase net chemical production "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Gaseous phase net chemical production" means the net result of all gaseous chemical processes in the atmosphere that produce or destroy a species, distinct from chemical processes in the aqueous phase. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
DE9VJB0A tendency of atmosphere mass content of sulfate dry aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the particles. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
7Y2S1MBH tendency of atmosphere mass content of sulfate dry aerosol particles expressed as sulfur due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
IK675SDG tendency of atmosphere mass content of sulfate dry aerosol particles expressed as sulfur due to gravitational settling "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
QWLW1M4H tendency of atmosphere mass content of sulfate dry aerosol particles expressed as sulfur due to turbulent deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
KCKKUJTQ tendency of atmosphere mass content of sulfate dry aerosol particles expressed as sulfur due to wet deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer are used". "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. The chemical formula for the sulfate anion is SO4(2-). 2019-05-14
CF12N666 tendency of atmosphere mass content of sulfate expressed as sulfur dry aerosol due to dry deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2010-07-26
CF12N667 tendency of atmosphere mass content of sulfate expressed as sulfur dry aerosol due to gravitational settling DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The sum of turbulent deposition and gravitational settling is dry deposition. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2010-07-26
CF12N668 tendency of atmosphere mass content of sulfate expressed as sulfur dry aerosol due to turbulent deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. The sum of turbulent deposition and gravitational settling is dry deposition. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2010-07-26
CF12N669 tendency of atmosphere mass content of sulfate expressed as sulfur dry aerosol due to wet deposition DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Wet deposition" means deposition by precipitation. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2010-07-26
CFV7N2 tendency of atmosphere mass content of sulfur dioxide due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dry deposition" is the sum of turbulent deposition and gravitational settling. 2009-07-06
CFV7N3 tendency of atmosphere mass content of sulfur dioxide due to emission "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. 2007-11-21
GCJHIIDH tendency of atmosphere mass content of sulfur dioxide due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for sulfur dioxide is SO2. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
ICEACIFB tendency of atmosphere mass content of sulfur dioxide due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for sulfur dioxide is SO2. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JBCIIFEB tendency of atmosphere mass content of sulfur dioxide due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for sulfur dioxide is SO2. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
ICEIJJCJ tendency of atmosphere mass content of sulfur dioxide due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for sulfur dioxide is SO2. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
AGJIJGEG tendency of atmosphere mass content of sulfur dioxide due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for sulfur dioxide is SO2. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BGDGBDGG tendency of atmosphere mass content of sulfur dioxide due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for sulfur dioxide is SO2. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
FHBJIJAA tendency of atmosphere mass content of sulfur dioxide due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for sulfur dioxide is SO2. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BBIHBHCB tendency of atmosphere mass content of sulfur dioxide due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for sulfur dioxide is SO2. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JEDFIAHA tendency of atmosphere mass content of sulfur dioxide due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for sulfur dioxide is SO2. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CFV7N4 tendency of atmosphere mass content of sulfur dioxide due to wet deposition "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Wet deposition" means deposition by precipitation. 2007-11-21
BAFAHFFC tendency of atmosphere mass content of terpenes due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Terpenes are hydrocarbons, that is, they contain only hydrogen and carbon combined in the general proportions (C5H8)n where n is an integer greater than on equal to one. The term "terpenes" is used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual terpene species, e.g., isoprene and limonene. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JIGGGJBI tendency of atmosphere mass content of terpenes due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. Terpenes are hydrocarbons, that is, they contain only hydrogen and carbon combined in the general proportions (C5H8)n where n is an integer greater than on equal to one. The term "terpenes" is used in standard names to describe the group of chemical species having this common structure that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names exist for some individual terpene species, e.g., isoprene and limonene. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CF12N671 tendency of atmosphere mass content of toluene due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. 2019-03-04
GGIIJAGJ tendency of atmosphere mass content of toluene due to emission from agricultural production The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2019-03-04
BIIBCIGB tendency of atmosphere mass content of toluene due to emission from agricultural waste burning The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2019-03-04
IAEEBAAE tendency of atmosphere mass content of toluene due to emission from energy production and distribution The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2019-03-04
IFJBGBGG tendency of atmosphere mass content of toluene due to emission from forest fires The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2019-03-04
JEDEEBDE tendency of atmosphere mass content of toluene due to emission from industrial processes and combustion The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2019-03-04
BHBAHJHD tendency of atmosphere mass content of toluene due to emission from land transport The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2019-03-04
EEDFFAED tendency of atmosphere mass content of toluene due to emission from maritime transport The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2019-03-04
BBEBEHHH tendency of atmosphere mass content of toluene due to emission from residential and commercial combustion The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2019-03-04
AJJEFBJF tendency of atmosphere mass content of toluene due to emission from savanna and grassland fires The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2019-03-04
HDFHDBII tendency of atmosphere mass content of toluene due to emission from solvent production and use The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. The "solvent production and use" sector comprises industrial processes related to the consumption of halocarbons, SF6, solvent and other product use. "Solvent production and use" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 2F and 3 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2019-03-04
HGCHCCAI tendency of atmosphere mass content of toluene due to emission from waste treatment and disposal The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2019-03-04
BDHCCIGA tendency of atmosphere mass content of trimethylbenzene due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for trimethylbenzene is C9H12. The IUPAC names for trimethylbenzene is 1,3,5-trimethylbenzene. Trimethylbenzene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BBAH2142 tendency of atmosphere mass content of water due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Water" means water in all phases. 2011-07-21
BBAH2141 tendency of atmosphere mass content of water vapor "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. 2011-07-21
H2MP3LLX tendency of atmosphere mass content of water vapor due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. 2013-03-23
BBAH2139 tendency of atmosphere mass content of water vapor due to convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. 2011-07-21
BBAH2137 tendency of atmosphere mass content of water vapor due to deep convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. 2011-07-21
BBAH2135 tendency of atmosphere mass content of water vapor due to shallow convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. 2011-07-21
I92FDBV3 tendency of atmosphere mass content of water vapor due to sublimation of surface ice The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sublimation is the conversion of solid into vapor. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. 2018-07-10
IGBU7W2R tendency of atmosphere mass content of water vapor due to sublimation of surface snow The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sublimation is the conversion of solid into vapor. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. 2021-01-18
P22BTMMS tendency of atmosphere mass content of water vapor due to sublimation of surface snow and ice The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sublimation is the conversion of solid into vapor. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. 2021-01-18
BBAH2134 tendency of atmosphere mass content of water vapor due to turbulence The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as "precipitable water", although this term does not imply the water could all be precipitated. 2011-07-21
CF12N672 tendency of atmosphere mass content of xylene due to emission "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth's surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
JBABCJJJ tendency of atmosphere mass content of xylene due to emission from agricultural production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "agricultural production" sector comprises the agricultural processes of enteric fermentation, manure management, rice cultivation, agricultural soils and other. It may also include any not-classified or "other" combustion, which is commonly included in agriculture-related inventory data. "Agricultural production" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 4A, 4B, 4C, 4D and 4G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
IEDIJDFB tendency of atmosphere mass content of xylene due to emission from agricultural waste burning "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "agricultural waste burning" sector comprises field burning of agricultural residues. "Agricultural waste burning" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 4F as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
AAEAADDD tendency of atmosphere mass content of xylene due to emission from energy production and distribution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "energy production and distribution" sector comprises fuel combustion activities related to energy industries and fugitive emissions from fuels. It may also include any not-classified or "other" combustion, which is commonly included in energy-related inventory data. "Energy production and distribution" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A1 and 1B as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
EFBBAJEB tendency of atmosphere mass content of xylene due to emission from forest fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "forest fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in forests. "Forest fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
IIGBBAFG tendency of atmosphere mass content of xylene due to emission from industrial processes and combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "industrial processes and combustion" sector comprises fuel combustion activities related to manufacturing industries and construction, industrial processes related to mineral products, the chemical industry, metal production, the production of pulp, paper, food and drink, and non-energy industry use of lubricants and waxes. It may also include any not-classified or "other" combustion, which is commonly included in industry-related inventory data. "Industrial processes and combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A2, 2A, 2B, 2C, 2D and 2G as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
CAJBFJEI tendency of atmosphere mass content of xylene due to emission from land transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "land transport" sector includes fuel combustion activities related to road transportation, railways and other transportation. "Land transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A3b, 1A3c and 1A3e as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BFBFCCFF tendency of atmosphere mass content of xylene due to emission from maritime transport "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "maritime transport" sector includes fuel combustion activities related to maritime transport. "Maritime transport" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3d as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
IEEBIIIE tendency of atmosphere mass content of xylene due to emission from residential and commercial combustion "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "residential and commercial combustion" sector comprises fuel combustion activities related to the commercial/institutional sector, the residential sector and the agriculture/forestry/fishing sector. It may also include any not-classified or "other" combustion, which is commonly included in the inventory data. "Residential and commercial combustion" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 1A4a, 1A4b and 1A4c as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
BGDBFDBA tendency of atmosphere mass content of xylene due to emission from savanna and grassland fires "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "savanna and grassland fires" sector comprises the burning (natural and human-induced) of living or dead vegetation in non-forested areas. It excludes field burning of agricultural residues. "Savanna and grassland fires" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 5 as defined in the 2006 IPCC guidelines for national greenhouse gas Inventories". 2012-09-19
CEBBBBJH tendency of atmosphere mass content of xylene due to emission from solvent production and use "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "solvent production and use" sector comprises industrial processes related to the consumption of halocarbons, SF6, solvent and other product use. "Solvent production and use" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 2F and 3 as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
HHGFHGDE tendency of atmosphere mass content of xylene due to emission from waste treatment and disposal "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. The "waste treatment and disposal" sector comprises solid waste disposal on land, wastewater handling, waste incineration and other waste disposal. "Waste treatment and disposal" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source categories 6A, 6B, 6C and 6D as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CFSN0190 tendency of atmosphere mass per unit area 'tendency_ of_ X' means derivative of X with respect to time. 'X_ area' means the horizontal area occupied by X within the grid cell. 2006-09-26
CFSN0191 tendency of atmosphere mass per unit area due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'X_ area' means the horizontal area occupied by X within the grid cell. 2006-09-26
Y0PZNAFN tendency of atmosphere mole concentration of carbon monoxide due to chemical destruction Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Chemical destruction" means the result of all chemical reactions within the medium (here, atmosphere) that remove a certain amount of a particular species from the medium. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula of carbon monoxide is CO. 2018-05-15
DWDVJ3B2 tendency of atmosphere mole concentration of methane due to chemical destruction Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Chemical destruction" means the result of all chemical reactions within the medium (here, atmosphere) that remove a certain amount of a particular species from the medium. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2015-01-07
D2DQDFR3 tendency of atmosphere mole concentration of nitrous oxide due to chemical destruction The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The chemical formula for nitrous oxide is N2O. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Chemical destruction" means the result of all chemical reactions within the medium (here, atmosphere) that remove a certain amount of a particular species from the medium. 2018-05-15
8E57ZUSK tendency of atmosphere mole concentration of ozone due to chemical destruction Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Chemical destruction" means the result of all chemical reactions within the medium (here, atmosphere) that remove a certain amount of a particular species from the medium. The chemical formula for ozone is O3. The IUPAC name for ozone is trioxygen. 2015-01-07
MPI2OAKT tendency of atmosphere mole concentration of ozone due to chemical production Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Chemical production" means the result of all chemical reactions within the medium (here, atmosphere) that produce a certain amount of the particular species. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for ozone is O3. The IUPAC name for ozone is trioxygen. 2015-01-07
CF12N673 tendency of atmosphere moles of acetic acid "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for acetic_ acid is CH3COOH. The IUPAC name for acetic acid is ethanoic acid. 2009-07-06
CF12N674 tendency of atmosphere moles of aceto nitrile "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for aceto-nitrile is CH3CN. The IUPAC name for aceto-nitrile is ethanenitrile. 2009-07-06
CF12N675 tendency of atmosphere moles of alpha hexachlorocyclohexane "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for alpha_ hexachlorocyclohexane is C6H6Cl6. 2009-07-06
CF12N676 tendency of atmosphere moles of alpha pinene "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for alpha_ pinene is C10H16. The IUPAC name for alpha-pinene is (1S,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene. 2009-07-06
CF12N677 tendency of atmosphere moles of ammonia "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ammonia is NH3. 2009-07-06
CF12N678 tendency of atmosphere moles of anthropogenic nmvoc expressed as carbon "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Anthropogenic" means influenced, caused, or created by human activity. 2015-01-07
CF12N679 tendency of atmosphere moles of atomic bromine "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical symbol for atomic bromine is Br. 2009-07-06
CF12N680 tendency of atmosphere moles of atomic chlorine "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical symbol for atomic chlorine is Cl. 2009-07-06
CF12N681 tendency of atmosphere moles of atomic nitrogen "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical symbol for atomic nitrogen is N. 2009-07-06
CF12N682 tendency of atmosphere moles of benzene "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for benzene is C6H6. Benzene is the simplest aromatic hydrocarbon and has a ring structure consisting of six carbon atoms joined by alternating single and double chemical bonds. Each carbon atom is additionally bonded to one hydrogen atom. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
CF12N683 tendency of atmosphere moles of beta pinene "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for beta_ pinene is C10H16. The IUPAC name for beta-pinene is (1S,5S)-6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane. 2009-07-06
CF12N684 tendency of atmosphere moles of biogenic nmvoc expressed as carbon "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Biogenic" means influenced, caused, or created by natural processes. 2015-01-07
CF12N685 tendency of atmosphere moles of bromine chloride "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for bromine chloride is BrCl. 2009-07-06
CF12N686 tendency of atmosphere moles of bromine monoxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for bromine monoxide is BrO. 2009-07-06
CF12N687 tendency of atmosphere moles of bromine nitrate "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for bromine nitrate is BrONO2. 2009-07-06
CF12N688 tendency of atmosphere moles of brox expressed as bromine The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Brox" describes a family of chemical species consisting of inorganic bromine compounds with the exception of hydrogen bromide (HBr) and bromine nitrate (BrONO2). The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Brox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. Standard names that use the term "inorganic_ bromine" are used for quantities that contain all inorganic bromine species including HCl and ClONO2. 2019-03-04
CF12N689 tendency of atmosphere moles of butane "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for butane is C4H10. Butane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N690 tendency of atmosphere moles of carbon dioxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for carbon dioxide is CO2. 2009-07-06
CF12S37 tendency of atmosphere moles of carbon monoxide The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of carbon monoxide is CO. 2019-02-04
CF12S38 tendency of atmosphere moles of carbon tetrachloride The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of carbon tetrachloride is CCl4. The IUPAC name for carbon tetrachloride is tetrachloromethane. 2019-02-04
CF12S39 tendency of atmosphere moles of cfc11 The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro(fluoro)methane. 2019-05-14
CF12S40 tendency of atmosphere moles of cfc113 The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of CFC113 is CCl2FCClF2. The IUPAC name for CFC113 is 1,1,2-trichloro-1,2,2-trifluoroethane. 2019-05-14
CF12N691 tendency of atmosphere moles of cfc113a The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of CFC113a is CCl3CF3. The IUPAC name for CFC113a is 1,1,1-trichloro-2,2,2-trifluoroethane. 2019-05-14
CF12S41 tendency of atmosphere moles of cfc114 The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of CFC114 is CClF2CClF2. The IUPAC name for CFC114 is 1,2-dichloro-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12S42 tendency of atmosphere moles of cfc115 The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula of CFC115 is CClF2CF3. The IUPAC name for CFC115 is 1-chloro-1,1,2,2,2-pentafluoroethane. 2019-05-14
CF12S43 tendency of atmosphere moles of cfc12 The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro(difluoro)methane. 2019-05-14
CF12N692 tendency of atmosphere moles of chlorine dioxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for chlorine dioxide is OClO. 2009-07-06
CF12N693 tendency of atmosphere moles of chlorine monoxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for chlorine monoxide is ClO. 2009-07-06
CF12N694 tendency of atmosphere moles of chlorine nitrate "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for chlorine nitrate is ClONO2. 2009-07-06
CF12N695 tendency of atmosphere moles of clox expressed as chlorine The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Clox" describes a family of chemical species consisting of inorganic chlorine compounds with the exception of hydrogen chloride (HCl) and chlorine nitrate (ClONO2). The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Clox" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity with a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. Standard names that use the term "inorganic_ chlorine" are used for quantities that contain all inorganic chlorine species including HCl and ClONO2. 2019-03-04
CF12N696 tendency of atmosphere moles of dichlorine peroxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for dichlorine peroxide is Cl2O2. 2009-07-06
CF12N697 tendency of atmosphere moles of dimethyl sulfide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for dimethyl sulfide is (CH3)2S. Dimethyl sulfide is sometimes referred to as DMS. 2009-07-06
CF12N698 tendency of atmosphere moles of dinitrogen pentoxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for dinitrogen pentoxide is N2O5. 2009-07-06
CF12N699 tendency of atmosphere moles of ethane "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ethane is C2H6. Ethane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N700 tendency of atmosphere moles of ethanol "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ethanol is C2H5OH. 2009-07-06
CF12N701 tendency of atmosphere moles of ethene "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ethene is C2H4. Ethene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
CF12N702 tendency of atmosphere moles of ethyne "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ethyne is HC2H. Ethyne is the IUPAC name for this species, which is also commonly known as acetylene. 2009-07-06
CF12N703 tendency of atmosphere moles of formaldehyde "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. 2009-07-06
CF12N704 tendency of atmosphere moles of formic acid "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for formic acid is HCOOH. The IUPAC name for formic acid is methanoic acid. 2009-07-06
CF12N705 tendency of atmosphere moles of gaseous divalent mercury "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Divalent mercury" means all compounds in which the mercury has two binding sites to other ion(s) in a salt or to other atom(s) in a molecule. 2009-07-06
CF12N706 tendency of atmosphere moles of gaseous elemental mercury "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical symbol for mercury is Hg. 2009-07-06
CF12S44 tendency of atmosphere moles of halon1202 The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for Halon1202 is CBr2F2. The IUPAC name for Halon1202 is dibromo(difluoro)methane. 2019-05-14
CF12S45 tendency of atmosphere moles of halon1211 The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for Halon1211 is CBrClF2. The IUPAC name for Halon1211 is bromo-chloro-difluoromethane. 2019-05-14
CF12S46 tendency of atmosphere moles of halon1301 The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for Halon1301 is CBrF3. The IUPAC name for Halon1301 is bromo(trifluoro)methane. 2019-05-14
CF12S47 tendency of atmosphere moles of halon2402 The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for Halon2402 is C2Br2F4. The IUPAC name for Halon2402 is 1,2-dibromo-1,1,2,2-tetrafluoroethane. 2019-05-14
CF12S48 tendency of atmosphere moles of hcc140a The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for HCC140a, also called methyl chloroform, is CH3CCl3. The IUPAC name for HCC140a is 1,1,1-trichloroethane. 2019-05-14
CF12N707 tendency of atmosphere moles of hcfc141b "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for HCFC141b is CH3CCl2F. The IUPAC name for HCFC141b is 1,1-dichloro-1-fluoroethane. 2009-07-06
CF12N708 tendency of atmosphere moles of hcfc142b "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for HCFC142b is CH3CClF2. The IUPAC name for HCFC142b is 1-chloro-1,1-difluoroethane. 2009-07-06
CF12S49 tendency of atmosphere moles of hcfc22 The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for HCFC22 is CHClF2. The IUPAC name for HCFC22 is chloro(difluoro)methane. 2019-05-14
CF12N709 tendency of atmosphere moles of hexachlorobiphenyl "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hexachlorobiphenyl is C12H4Cl6. This structure of this species consists of two linked benzene rings, each of which is additionally bonded to three chlorine atoms. 2009-07-06
CF12N710 tendency of atmosphere moles of hox expressed as hydrogen "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "HOx" means a combination of two radical species containing hydrogen and oxygen: OH and HO2. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
CF12N711 tendency of atmosphere moles of hydrogen bromide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hydrogen bromide is HBr. 2009-07-06
CF12N712 tendency of atmosphere moles of hydrogen chloride "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hydrogen chloride is HCl. 2009-07-06
CF12N713 tendency of atmosphere moles of hydrogen cyanide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hydrogen cyanide is HCN. 2009-07-06
CF12N714 tendency of atmosphere moles of hydrogen peroxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hydrogen peroxide is H2O2. 2009-07-06
CF12N715 tendency of atmosphere moles of hydroperoxyl radical The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for the hydroperoxyl radical is HO2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N716 tendency of atmosphere moles of hydroxyl radical The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for the hydroxyl radical is OH. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N717 tendency of atmosphere moles of hypobromous acid "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hypobromous acid is HOBr. 2009-07-06
CF12N718 tendency of atmosphere moles of hypochlorous acid "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for hypochlorous acid is HOCl. 2009-07-06
CF12N719 tendency of atmosphere moles of inorganic bromine The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Inorganic bromine", sometimes referred to as Bry, describes a family of chemical species which result from the degradation of source gases containing bromine (halons, methyl bromide, VSLS) and natural inorganic bromine sources such as volcanoes, sea salt and other aerosols. "Inorganic bromine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "brox" are used for quantities that contain all inorganic bromine species except HBr and BrONO2. 2019-03-04
CF12N720 tendency of atmosphere moles of inorganic chlorine The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Inorganic chlorine", sometimes referred to as Cly, describes a family of chemical species which result from the degradation of source gases containing chlorine (CFCs, HCFCs, VSLS) and natural inorganic chlorine sources such as sea salt and other aerosols. "Inorganic chlorine" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. Standard names that use the term "clox" are used for quantities that contain all inorganic chlorine species except HCl and ClONO2. 2019-03-04
CF12N721 tendency of atmosphere moles of isoprene The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for isoprene is CH2=C(CH3)CH=CH2. The IUPAC name for isoprene is 2-methylbuta-1,3-diene. Isoprene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
CF12N722 tendency of atmosphere moles of limonene The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for limonene is C10H16. The IUPAC name for limonene is 1-methyl-4-prop-1-en-2-ylcyclohexene. Limonene is a member of the group of hydrocarbons known as terpenes. There are standard names for the terpene group as well as for some of the individual species. 2019-05-14
CF12S50 tendency of atmosphere moles of methane The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere,i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2019-03-04
CF12N723 tendency of atmosphere moles of methanol "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methanol is CH3OH. 2009-07-06
CF12S51 tendency of atmosphere moles of methyl bromide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methyl bromide is CH3Br. The IUPAC name for methyl bromide is bromomethane. 2009-07-06
CF12S52 tendency of atmosphere moles of methyl chloride "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methyl chloride is CH3Cl. The IUPAC name for methyl chloride is chloromethane. 2009-07-06
CF12N724 tendency of atmosphere moles of methyl hydroperoxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methyl hydroperoxide is CH3OOH. 2009-07-06
CF12N725 tendency of atmosphere moles of methyl peroxy radical The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for methyl_ peroxy_ radical is CH3O2. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12S53 tendency of atmosphere moles of molecular hydrogen "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for molecular hydrogen is H2. 2009-07-06
CF12N726 tendency of atmosphere moles of nitrate radical The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitrate is NO3. In chemistry, a "radical" is a highly reactive, and therefore short lived, species. 2019-03-04
CF12N727 tendency of atmosphere moles of nitric acid "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitric acid is HNO3. 2009-07-06
CF12N728 tendency of atmosphere moles of nitric acid trihydrate ambient aerosol DEPRECATED "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
B5DD6TTP tendency of atmosphere moles of nitric acid trihydrate ambient aerosol particles The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for nitric acid is HNO3. Nitric acid trihydrate, sometimes referred to as NAT, is a stable crystalline substance consisting of three molecules of water to one molecule of nitric acid. 2015-01-07
CF12N729 tendency of atmosphere moles of nitrogen dioxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitrogen dioxide is NO2. 2009-07-06
CF12N730 tendency of atmosphere moles of nitrogen monoxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitrogen monoxide is NO. 2009-07-06
CF12N731 tendency of atmosphere moles of nitrous acid "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitrous acid is HNO2. 2009-07-06
CF12S54 tendency of atmosphere moles of nitrous oxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for nitrous oxide is N2O. 2009-07-06
CF12N732 tendency of atmosphere moles of nmvoc expressed as carbon "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "nmvoc" means non methane volatile organic compounds; "nmvoc" is the term used in standard names to describe the group of chemical species having this classification that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2015-01-07
CF12N733 tendency of atmosphere moles of nox expressed as nitrogen "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
CF12N734 tendency of atmosphere moles of noy expressed as nitrogen "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Noy" describes a family of chemical species. The family usually includes atomic nitrogen (N), nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), peroxynitric acid (HNO4), bromine nitrate (BrONO2) , chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)). The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2009-07-06
CF12N735 tendency of atmosphere moles of ozone "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for ozone is O3. 2009-07-06
CF12N736 tendency of atmosphere moles of peroxyacetyl nitrate "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for peroxyacetyl nitrate, sometimes referred to as PAN, is CH3COO2NO2. The IUPAC name for peroxyacetyl_ nitrate is nitroethaneperoxoate. 2009-07-06
CF12N737 tendency of atmosphere moles of peroxynitric acid "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for peroxynitric acid, sometimes referred to as PNA, is HO2NO2. 2009-07-06
CF12N738 tendency of atmosphere moles of propane "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for propane is C3H8. Propane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12N739 tendency of atmosphere moles of propene "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for propene is C3H6. Propene is a member of the group of hydrocarbons known as alkenes. There are standard names for the alkene group as well as for some of the individual species. 2009-07-06
CF12N740 tendency of atmosphere moles of radon "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical symbol for radon is Rn. 2009-07-06
CF12N741 tendency of atmosphere moles of sulfate dry aerosol DEPRECATED "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
OZ7FJ55U tendency of atmosphere moles of sulfate dry aerosol particles The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol particles take up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the particles. "Dry aerosol particles" means aerosol particles without any water uptake. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the sulfate anion is SO4(2-). 2015-01-07
CF12N742 tendency of atmosphere moles of sulfur dioxide "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for sulfur dioxide is SO2. 2009-07-06
CF12N743 tendency of atmosphere moles of toluene The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for toluene is C6H5CH3. Toluene has the same structure as benzene, except that one of the hydrogen atoms is replaced by a methyl group. The IUPAC name for toluene is methylbenzene. 2019-03-04
CF12N744 tendency of atmosphere moles of water vapor "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. 2009-07-06
CF12N745 tendency of atmosphere moles of xylene "tendency_ of_ X" means derivative of X with respect to time. The construction "atmosphere_ moles_ of_ X" means the total number of moles of X in the entire atmosphere, i.e. summed over the atmospheric column and over the entire globe. The chemical formula for xylene is C6H4C2H6. In chemistry, xylene is a generic term for a group of three isomers of dimethylbenzene. The IUPAC names for the isomers are 1,2-dimethylbenzene, 1,3-dimethylbenzene and 1,4-dimethylbenzene. Xylene is an aromatic hydrocarbon. There are standard names that refer to aromatic_ compounds as a group, as well as those for individual species. 2009-07-06
CF12N746 tendency of atmosphere number content of aerosol particles due to dry deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dry deposition" is the sum of turbulent deposition and gravitational settling. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
CF12N747 tendency of atmosphere number content of aerosol particles due to gravitational settling "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
STAEGS8Z tendency of atmosphere number content of aerosol particles due to turbulent deposition The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. 2019-05-14
CF12N748 tendency of atmosphere number content of aerosol particles due to turbulent depostion DEPRECATED "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The sum of turbulent deposition and gravitational settling is dry deposition. "tendency_ of_ X" means derivative of X with respect to time. 2019-05-14
CF12N749 tendency of atmosphere number content of aerosol particles due to wet deposition "Content" indicates a quantity per unit area. The "atmosphere content" of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Wet deposition" means deposition by precipitation. "tendency_ of_ X" means derivative of X with respect to time. 2015-01-07
1VBQ7NDV tendency of atmosphere of mole concentration of carbon monoxide due to chemical destruction DEPRECATED Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Chemical destruction" means the result of all chemical reactions within the medium (here, atmosphere) that remove a certain amount of a particular species from the medium. "tendency_ of_ X" means derivative of X with respect to time. The chemical formula of carbon monoxide is CO. 2018-05-15
CFSN0192 tendency of atmosphere potential energy content due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) 2006-09-26
CFSN0193 tendency of atmosphere water content due to advection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. 'Water' means water in all phases. 2011-07-21
CFSN0194 tendency of atmosphere water vapor content DEPRECATED 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as 'precipitable water', although this term does not imply the water could all be precipitated. 2011-07-21
CFSN0173 tendency of atmosphere water vapor content due to advection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as 'precipitable water', although this term does not imply the water could all be precipitated. 2013-03-23
CFSN0174 tendency of atmosphere water vapor content due to convection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as 'precipitable water', although this term does not imply the water could all be precipitated. 2011-07-21
CFSN0175 tendency of atmosphere water vapor content due to deep convection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as 'precipitable water', although this term does not imply the water could all be precipitated. 2011-07-21
CFSN0176 tendency of atmosphere water vapor content due to shallow convection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as 'precipitable water', although this term does not imply the water could all be precipitated. 2011-07-21
CFSN0177 tendency of atmosphere water vapor content due to turbulence DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. The 'atmosphere content' of a quantity refers to the vertical integral from the surface to the top of the atmosphere. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. Atmosphere water vapor content is sometimes referred to as 'precipitable water', although this term does not imply the water could all be precipitated. 2011-07-21
CFSN0178 tendency of bedrock altitude The phrase 'tendency_ of_ X' means derivative of X with respect to time. Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 'Bedrock' is the solid Earth surface beneath land ice, ocean water or soil. 2020-06-22
GO0ZOAVW tendency of canopy water amount due to evaporation of intercepted precipitation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. "Water" means water in all phases. "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called "sublimation"). Canopy interception is the precipitation, including snow, that is intercepted by the canopy of a tree and then evaporates from the leaves. Evaporation of intercepted precipitation excludes plant transpiration and evaporation from the surface beneath the canopy. 2018-07-03
BP71JK6Y tendency of change in land ice amount "Amount" means mass per unit area. Zero change in land ice amount is an arbitrary level. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. "tendency_ of_ X" means derivative of X with respect to time. 2016-04-05
CFSN0179 tendency of dry energy content of atmosphere layer 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Dry energy is the sum of dry static energy and kinetic energy. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0180 tendency of dry static energy content of atmosphere layer 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
CFSN0181 tendency of eastward wind 'tendency_ of_ X' means derivative of X with respect to time. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0182 tendency of eastward wind due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
7XIDLX9W tendency of eastward wind due to advection by northward transformed eulerian mean air velocity The phrase "tendency_ of_ X" means derivative of X with respect to time. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The "Transformed Eulerian Mean" refers to a formulation of the mean equations which incorporates some eddy terms into the definition of the mean, described in Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. 2018-05-29
IDKJG4QT tendency of eastward wind due to advection by upward transformed eulerian mean air velocity The phrase "tendency_ of_ X" means derivative of X with respect to time. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The "Transformed Eulerian Mean" refers to a formulation of the mean equations which incorporates some eddy terms into the definition of the mean, described in Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. 2018-05-29
CFSN0160 tendency of eastward wind due to convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0161 tendency of eastward wind due to diffusion The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Eastward' indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFV8N83 tendency of eastward wind due to eliassen palm flux divergence The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Eliassen Palm flux" is a widely used vector in the meridional plane, and the divergence of this flux appears as a forcing in the Transformed Eulerian mean formulation of the zonal mean zonal wind equation. Thus, "eastward_ wind" here will generally be the zonally averaged eastward wind. 2008-04-15
CFSN0162 tendency of eastward wind due to gravity wave drag The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). The quantity named tendency_ of_ eastward_ wind_ due_ to_ gravity_ wave_ drag is the sum of the tendencies due to orographic and nonorographic gravity waves which have standard names of tendency_ of_ eastward_ wind_ due_ to_ orographic_ gravity_ wave_ drag and tendency_ of_ eastward_ wind_ due_ to_ nonorographic_ gravity_ wave_ drag, respectively. 2008-04-15
CFV8N84 tendency of eastward wind due to nonorographic gravity wave drag The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). The total tendency of the eastward wind due to gravity waves has the standard name tendency_ of_ eastward_ wind_ due_ to_ gravity_ wave_ drag. It is the sum of the tendencies due to orographic gravity waves and nonorographic waves. The tendency of eastward wind due to orographic gravity waves has the standard name tendency_ of_ eastward_ wind_ due_ to_ orographic_ gravity_ wave_ drag. 2008-04-15
CFV8N85 tendency of eastward wind due to numerical artefacts The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). The total tendency of the eastward wind will include a variety of numerical and diffusive effects: a variable with this standard name is sometimes needed to allow the momentum budget to be closed. 2008-04-15
CFV8N86 tendency of eastward wind due to orographic gravity wave drag The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). The total tendency of the eastward wind due to gravity waves has the standard name tendency_ of_ eastward_ wind_ due_ to_ gravity_ wave_ drag. It is the sum of the tendencies due to orographic gravity waves and nonorographic waves. The tendency of eastward wind due to nonorographic gravity waves has the standard name tendency_ of_ eastward_ wind_ due_ to_ nonorographic_ gravity_ wave_ drag. 2008-04-15
CFSN0163 tendency of enthalpy content of atmosphere layer due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. 2006-09-26
XRCBF7SB tendency of global average sea level change Global average sea level change is due to change in volume of the water in the ocean, caused by mass and/or density change, or to change in the volume of the ocean basins, caused by tectonics etc. It is sometimes called "eustatic", which is a term that also has other definitions. It differs from the change in the global average sea surface height relative to the centre of the Earth by the global average vertical movement of the ocean floor. Zero sea level change is an arbitrary level. "tendency_ of_ X" means derivative of X with respect to time. Because global average sea level change quantifies the change in volume of the world ocean, it is not calculated necessarily by considering local changes in mean sea level. 2017-07-24
CFSN0164 tendency of kinetic energy content of atmosphere layer due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2006-09-26
AH2MSSNC tendency of land ice mass The phrase "tendency_ of_ X" means derivative of X with respect to time. "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. The horizontal domain over which the quantity is calculated is described by the associated coordinate variables and coordinate bounds or by a coordinate variable or scalar coordinate variable with the standard name of "region" supplied according to section 6.1.1 of the CF conventions. 2021-09-20
SUJ756R0 tendency of land ice mass due to basal mass balance "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Mass balance means the net rate at which ice is accumulated. A negative value means loss of ice. The tendency in ice mass due to the basal mass balance is the spatial integral of the quantity with standard name land_ ice_ basal_ specific_ mass_ balance_ flux. The geographical extent of the ice over which the mass is calculated is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of "region". 2018-04-16
JBIEE1L0 tendency of land ice mass due to calving "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The tendency in ice mass due to calving is the spatial integral of the quantity named land_ ice_ specific_ mass_ flux_ due_ to_ calving. The geographical extent over which the quantity is calculated is defined by the horizontal coordinates and any associated coordinate bounds or by a string valued auxiliary coordinate variable with a standard name of "region". 2018-04-16
5O10JWUW tendency of land ice mass due to surface mass balance "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. The phrase "tendency_ of_ X" means derivative of X with respect to time. The surface called "surface" means the lower boundary of the atmosphere. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Mass balance" means the net rate at which ice is added. A negative value means loss of ice. The tendency in ice mass due to the surface mass balance is the spatial integral of the quantity with standard name land_ ice_ surface_ specific_ mass_ balance_ flux. The horizontal domain over which the quantity is described by the associated coordinate variables and coordinate bounds or by a string valued coordinate variable or scalar coordinate variable with a standard name of "region". 2018-04-16
CFSN0165 tendency of land ice thickness "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. "Thickness" means the vertical extent of a layer. "tendency_ of_ X" means derivative of X with respect to time. 2010-03-11
JBDFFFBB tendency of mass concentration of black carbon dry aerosol in air due to emission from aviation DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the suspended liquid or solid particles in air (except cloud droplets). Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol" means aerosol without water. Black carbon aerosol is composed of elemental carbon. It is strongly light absorbing. The "aviation" sector includes fuel combustion activities related to civil aviation. "Aviation" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3a as defined in the 2006 IPCC guidelines for national greenhouse gas inventories." 2015-01-07
CLQ62JNA tendency of mass concentration of elemental carbon dry aerosol particles in air due to emission from aviation "tendency_ of_ X" means derivative of X with respect to time. Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The mass is the total mass of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. the surface of the earth). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. Aerosol takes up ambient water (a process known as hygroscopic growth) depending on the relative humidity and the composition of the aerosol. "Dry aerosol particles" means aerosol particles without any water uptake. The "aviation" sector includes fuel combustion activities related to civil aviation. "Aviation" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3a as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". Chemically, "elemental carbon" is the carbonaceous fraction of particulate matter that is thermally stable in an inert atmosphere to high temperatures near 4000K and can only be gasified by oxidation starting at temperatures above 340 C. It is assumed to be inert and non-volatile under atmospheric conditions and insoluble in any solvent (Ogren and Charlson, 1983). 2017-07-24
DBAJGJDG tendency of mass concentration of nitrogen dioxide in air due to emission from aviation "tendency_ of_ X" means derivative of X with respect to time. Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen dioxide is NO2. The "aviation" sector includes fuel combustion activities related to civil aviation. "Aviation" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3a as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
JJJHDEJD tendency of mass concentration of nitrogen monoxide in air due to emission from aviation "tendency_ of_ X" means derivative of X with respect to time. Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. The mass is the total mass of the molecules. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. The chemical formula for nitrogen monoxide is NO. The "aviation" sector includes fuel combustion activities related to civil aviation. "Aviation" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3a as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2012-09-19
CBBCDBCC tendency of mass concentration of nox expressed as nitrogen monoxide in air due to emission from aviation "tendency_ of_ X" means derivative of X with respect to time. Mass concentration means mass per unit volume and is used in the construction mass_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical species denoted by X may be described by a single term such as &amp;apos;nitrogen&amp;apos; or a phrase such as &amp;apos;nox_ expressed_ as_ nitrogen&amp;apos;. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Emission" means emission from a primary source located anywhere within the atmosphere, including at the lower boundary (i.e. earth&amp;apos;s surface). "Emission" is a process entirely distinct from "re-emission" which is used in some standard names. "Nox" means a combination of two radical species containing nitrogen and oxygen: NO+NO2. The phrase &amp;apos;expressed_ as&amp;apos; is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The "aviation" sector includes fuel combustion activities related to civil aviation. "Aviation" is the term used in standard names to describe a collection of emission sources. A variable which has this value for the standard_ name attribute should be accompanied by a comment attribute which lists the source categories and provides a reference to the categorization scheme, for example, "IPCC (Intergovernmental Panel on Climate Change) source category 1A3a as defined in the 2006 IPCC guidelines for national greenhouse gas inventories". 2013-02-12
BBAH2132 tendency of mass content of water vapor in atmosphere layer "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
BBAH2131 tendency of mass content of water vapor in atmosphere layer due to convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
BBAH2129 tendency of mass content of water vapor in atmosphere layer due to deep convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
BBAH2128 tendency of mass content of water vapor in atmosphere layer due to shallow convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
BBAH2123 tendency of mass content of water vapor in atmosphere layer due to turbulence The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary variable) as well. 2011-07-21
CFSN0824 tendency of mass fraction of cloud condensed water in air "Tendency_ of_ X" means derivative of X with respect to time. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). "Condensed_ water" means liquid and ice. 2007-05-15
CFSN0166 tendency of mass fraction of cloud condensed water in air due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'condensed_ water' means liquid and ice. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). 2006-09-26
CFSN0167 tendency of mass fraction of cloud ice in air 'tendency_ of_ X' means derivative of X with respect to time. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). 2006-09-26
CFSN0168 tendency of mass fraction of cloud ice in air due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). 2006-09-26
CFSN0169 tendency of mass fraction of cloud ice in air due to diffusion The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of Y to the mass of X (including Y). 2006-09-26
CFSN0170 tendency of mass fraction of cloud liquid water in air The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CFSN0171 tendency of mass fraction of cloud liquid water in air due to advection The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2020-03-09
CFSN0172 tendency of mass fraction of cloud liquid water in air due to diffusion The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2020-03-09
A55JTE0B tendency of mass fraction of convective cloud ice in air The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Convective cloud is that produced by the convection schemes in an atmosphere model. 2021-01-18
IR1CZODD tendency of mass fraction of convective cloud liquid water in air The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". Convective cloud is that produced by the convection schemes in an atmosphere model. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2021-01-18
CF14N69 tendency of mass fraction of stratiform cloud condensed water in air The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The phrase "condensed_ water" means liquid and ice. 2019-02-04
CF12N750 tendency of mass fraction of stratiform cloud condensed water in air due to advection Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "condensed_ water" means liquid and ice. 2009-07-06
CF12N751 tendency of mass fraction of stratiform cloud condensed water in air due to autoconversion to rain Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Autoconversion is the process of collision and coalescence which results in the formation of precipitation particles from cloud water droplets or ice crystals. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "condensed_ water" means liquid and ice. 2009-07-06
CF12N752 tendency of mass fraction of stratiform cloud condensed water in air due to autoconversion to snow Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Autoconversion is the process of collision and coalescence which results in the formation of precipitation particles from cloud water droplets or ice crystals. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "condensed_ water" means liquid and ice. 2009-07-06
CF14N70 tendency of mass fraction of stratiform cloud condensed water in air due to boundary layer mixing The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The phrase "condensed_ water" means liquid and ice. "Boundary layer mixing" means turbulent motions that transport heat, water, momentum and chemical constituents within the atmospheric boundary layer and affect exchanges between the surface and the atmosphere. The atmospheric boundary layer is typically characterised by a well-mixed sub-cloud layer of order 500 metres, and by a more extended conditionally unstable layer with boundary-layer clouds up to 2 km. (Reference: IPCC Third Assessment Report, Working Group 1: The Scientific Basis, 7.2.2.3, https://archive.ipcc.ch/ipccreports/tar/wg1/273.htm). 2020-03-09
CF14N71 tendency of mass fraction of stratiform cloud condensed water in air due to cloud microphysics The phrase "tendency_ of_ X" means derivative of X with respect to time. Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The phrase "condensed_ water" means liquid and ice. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Cloud microphysics" is the sum of many cloud processes such as condensation, evaporation, homogeneous nucleation, heterogeneous nucleation, deposition, sublimation, the Bergeron-Findeisen process, riming, accretion, aggregation and icefall. The precise list of processes that are included in "cloud microphysics" can vary between models. Where possible, the data variable should be accompanied by a complete description of the processes included, for example, by using a comment attribute. Standard names also exist to describe the tendencies due to the separate processes. 2019-02-04
CF12N753 tendency of mass fraction of stratiform cloud condensed water in air due to condensation and evaporation Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called "sublimation".) Condensation is the conversion of vapor into liquid. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "condensed_ water" means liquid and ice. 2009-07-06
CF12N754 tendency of mass fraction of stratiform cloud condensed water in air due to icefall Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "condensed_ water" means liquid and ice. 2009-07-06
CF14N72 tendency of mass fraction of stratiform cloud ice in air The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). 2019-02-04
CF12N755 tendency of mass fraction of stratiform cloud ice in air due to accretion to snow Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Accretion is the growth of a hydrometeor by collision with cloud droplets or ice crystals. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2009-07-06
CF12N756 tendency of mass fraction of stratiform cloud ice in air due to advection Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2009-07-06
CF12N757 tendency of mass fraction of stratiform cloud ice in air due to aggregation Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Aggregation is the clumping together of frozen cloud particles to produce snowflakes. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2009-07-06
CF14N73 tendency of mass fraction of stratiform cloud ice in air due to bergeron findeisen process from cloud liquid The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The Bergeron-Findeisen process is the conversion of cloud liquid water to cloud ice arising from the fact that water vapor has a lower equilibrium vapor pressure with respect to ice than it has with respect to liquid water at the same subfreezing temperature. 2019-02-04
CF14N74 tendency of mass fraction of stratiform cloud ice in air due to boundary layer mixing The phrase "tendency_ of_ X" means derivative of X with respect to time. Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Boundary layer mixing" means turbulent motions that transport heat, water, momentum and chemical constituents within the atmospheric boundary layer and affect exchanges between the surface and the atmosphere. The atmospheric boundary layer is typically characterised by a well-mixed sub-cloud layer of order 500 metres, and by a more extended conditionally unstable layer with boundary-layer clouds up to 2 km. (Reference: IPCC Third Assessment Report, Working Group 1: The Scientific Basis, 7.2.2.3, https://archive.ipcc.ch/ipccreports/tar/wg1/273.htm). 2020-03-09
CF14N75 tendency of mass fraction of stratiform cloud ice in air due to cloud microphysics The phrase "tendency_ of_ X" means derivative of X with respect to time. Mass fraction is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Cloud microphysics" is the sum of many cloud processes such as condensation, evaporation, homogeneous nucleation, heterogeneous nucleation, deposition, sublimation, the Bergeron-Findeisen process, riming, accretion, aggregation and icefall. The precise list of processes that are included in "cloud microphysics" can vary between models. Where possible, the data variable should be accompanied by a complete description of the processes included, for example, by using a comment attribute. Standard names also exist to describe the tendencies due to the separate processes. 2019-02-04
CFV13N32 tendency of mass fraction of stratiform cloud ice in air due to convective detrainment Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2010-03-11
CF12N758 tendency of mass fraction of stratiform cloud ice in air due to deposition and sublimation Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Sublimation is the conversion of solid into vapor. Deposition is the opposite of sublimation, i.e. it is the conversion of vapor into solid. Deposition is distinct from the processes of dry deposition and wet deposition of atmospheric aerosol particles, which are referred to in some standard names. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2009-07-06
CF12N759 tendency of mass fraction of stratiform cloud ice in air due to evaporation of melting ice Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called "sublimation".) In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2009-07-06
CF12N760 tendency of mass fraction of stratiform cloud ice in air due to heterogeneous nucleation from cloud liquid DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. Heterogeneous nucleation occurs when a small particle of a substance other than water acts as a freezing or condensation nucleus. 2010-03-11
CFV13A7 tendency of mass fraction of stratiform cloud ice in air due to heterogeneous nucleation from cloud liquid water The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Heterogeneous nucleation occurs when a small particle of a substance other than water acts as a freezing or condensation nucleus. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CF12N761 tendency of mass fraction of stratiform cloud ice in air due to heterogeneous nucleation from water vapor The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Heterogeneous nucleation occurs when a small particle of a substance other than water acts as a freezing or condensation nucleus. 2019-03-04
CF12N762 tendency of mass fraction of stratiform cloud ice in air due to homegeneous nucleation DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. Homogeneous nucleation occurs when a small number of water molecules combine to form a freezing or condensation nucleus. 2013-03-23
CF23EOCS tendency of mass fraction of stratiform cloud ice in air due to homogeneous nucleation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Homogeneous nucleation occurs when a small number of water molecules combine to form a freezing or condensation nucleus. 2019-03-04
CF12N763 tendency of mass fraction of stratiform cloud ice in air due to icefall Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2009-07-06
CF12N764 tendency of mass fraction of stratiform cloud ice in air due to melting to cloud liquid DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2010-03-11
CFV13A8 tendency of mass fraction of stratiform cloud ice in air due to melting to cloud liquid water The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CF12N765 tendency of mass fraction of stratiform cloud ice in air due to melting to rain Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2009-07-06
CF12N766 tendency of mass fraction of stratiform cloud ice in air due to riming from cloud liquid DEPRECATED Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Riming is the rapid freezing of supercooled water onto a surface. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2010-03-11
CFV13A9 tendency of mass fraction of stratiform cloud ice in air due to riming from cloud liquid water The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Riming is the rapid freezing of supercooled water onto a surface. "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CF12N767 tendency of mass fraction of stratiform cloud ice in air due to riming from rain Mass fraction is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. Riming is the rapid freezing of supercooled water onto a surface. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2009-07-06
CF14N76 tendency of mass fraction of stratiform cloud liquid water in air The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. 2020-03-09
CF12N768 tendency of mass fraction of stratiform cloud liquid water in air due to accretion to rain The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction mass_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Accretion is the growth of a hydrometeor by collision with cloud droplets or ice crystals. "Rain" means drops of water falling through the atmosphere that have a diameter greater than 0.5 mm. 2020-03-09
CF12N769 tendency of mass fraction of stratiform cloud liquid water in air due to accretion to snow The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y" where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Accretion is the growth of a hydrometeor by collision with cloud droplets or ice crystals. 2020-03-09
CF12N770 tendency of mass fraction of stratiform cloud liquid water in air due to advection The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2020-03-09
CF12N771 tendency of mass fraction of stratiform cloud liquid water in air due to autoconversion The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Autoconversion is the process of collision and coalescence which results in the formation of precipitation particles from cloud water droplets or ice crystals. 2020-03-09
CF14N77 tendency of mass fraction of stratiform cloud liquid water in air due to bergeron findeisen process to cloud ice The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The Bergeron-Findeisen process is the conversion of cloud liquid water to cloud ice arising from the fact that water vapor has a lower equilibrium vapor pressure with respect to ice than it has with respect to liquid water at the same subfreezing temperature. 2020-03-09
CF14N78 tendency of mass fraction of stratiform cloud liquid water in air due to boundary layer mixing The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Boundary layer mixing" means turbulent motions that transport heat, water, momentum and chemical constituents within the atmospheric boundary layer and affect exchanges between the surface and the atmosphere. The atmospheric boundary layer is typically characterised by a well-mixed sub-cloud layer of order 500 metres, and by a more extended conditionally unstable layer with boundary-layer clouds up to 2 km. (Reference: IPCC Third Assessment Report, Working Group 1: The Scientific Basis, 7.2.2.3, https://archive.ipcc.ch/ipccreports/tar/wg1/273.htm). 2020-03-09
CF14N79 tendency of mass fraction of stratiform cloud liquid water in air due to cloud microphysics The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Cloud microphysics" is the sum of many cloud processes such as condensation, evaporation, homogeneous nucleation, heterogeneous nucleation, deposition, sublimation, the Bergeron-Findeisen process, riming, accretion, aggregation and icefall. The precise list of processes that are included in "cloud microphysics" can vary between models. Where possible, the data variable should be accompanied by a complete description of the processes included, for example, by using a comment attribute. Standard names also exist to describe the tendencies due to the separate processes. 2020-03-09
CF12N772 tendency of mass fraction of stratiform cloud liquid water in air due to condensation and evaporation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Condensation is the conversion of vapor into liquid. Evaporation is the conversion of liquid or solid into vapor. 2020-03-09
CF12N773 tendency of mass fraction of stratiform cloud liquid water in air due to condensation and evaporation from boundary layer mixing The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Condensation is the conversion of vapor into liquid. Evaporation is the conversion of liquid or solid into vapor. "Boundary layer mixing" means turbulent motions that transport heat, water, momentum and chemical constituents within the atmospheric boundary layer and affect exchanges between the surface and the atmosphere. The atmospheric boundary layer is typically characterised by a well-mixed sub-cloud layer of order 500 metres, and by a more extended conditionally unstable layer with boundary-layer clouds up to 2 km. (Reference: IPCC Third Assessment Report, Working Group 1: The Scientific Basis, 7.2.2.3, https://archive.ipcc.ch/ipccreports/tar/wg1/273.htm). 2020-03-09
CF12N774 tendency of mass fraction of stratiform cloud liquid water in air due to condensation and evaporation from convection The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Condensation is the conversion of vapor into liquid. Evaporation is the conversion of liquid or solid into vapor. 2020-03-09
CF12N775 tendency of mass fraction of stratiform cloud liquid water in air due to condensation and evaporation from longwave heating The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Condensation is the conversion of vapor into liquid. Evaporation is the conversion of liquid or solid into vapor. The term "longwave" means longwave radiation. 2020-03-09
CF12N776 tendency of mass fraction of stratiform cloud liquid water in air due to condensation and evaporation from pressure change The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Condensation is the conversion of vapor into liquid. Evaporation is the conversion of liquid or solid into vapor. 2020-03-09
CF12N777 tendency of mass fraction of stratiform cloud liquid water in air due to condensation and evaporation from shortwave heating The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Condensation is the conversion of vapor into liquid. Evaporation is the conversion of liquid or solid into vapor. The term "shortwave" means shortwave radiation. 2020-03-09
CF12N778 tendency of mass fraction of stratiform cloud liquid water in air due to condensation and evaporation from turbulence The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Condensation is the conversion of vapor into liquid. Evaporation is the conversion of liquid or solid into vapor. 2020-03-09
CFV13N33 tendency of mass fraction of stratiform cloud liquid water in air due to convective detrainment The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2020-03-09
CF12N779 tendency of mass fraction of stratiform cloud liquid water in air due to heterogeneous nucleation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Heterogeneous nucleation occurs when a small particle of a substance other than water acts as a freezing or condensation nucleus. 2020-03-09
CF12N780 tendency of mass fraction of stratiform cloud liquid water in air due to homogeneous nucleation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Homogeneous nucleation occurs when a small number of water molecules combine to form a freezing or condensation nucleus. 2020-03-09
CF12N781 tendency of mass fraction of stratiform cloud liquid water in air due to melting from cloud ice The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2020-03-09
CF12N782 tendency of mass fraction of stratiform cloud liquid water in air due to riming The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mass fraction" is used in the construction "mass_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It means the ratio of the mass of X to the mass of Y (including X). A chemical species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Cloud liquid water" refers to the liquid phase of cloud water. A diameter of 0.2 mm has been suggested as an upper limit to the size of drops that shall be regarded as cloud drops; larger drops fall rapidly enough so that only very strong updrafts can sustain them. Any such division is somewhat arbitrary, and active cumulus clouds sometimes contain cloud drops much larger than this. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Cloud_ drop. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Riming is the rapid freezing of supercooled water onto a surface. 2020-03-09
CF12S55 tendency of middle atmosphere moles of carbon monoxide "tendency_ of_ X" means derivative of X with respect to time. The construction "middle_ atmosphere_ moles_ of_ X" means the total number of moles of X in the troposphere and stratosphere, i.e. summed over that part of the atmospheric column and over the entire globe. The chemical formula of carbon monoxide is CO. 2009-07-06
CF12S56 tendency of middle atmosphere moles of hcc140a The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "middle_ atmosphere_ moles_ of_ X" means the total number of moles of X contained in the troposphere and stratosphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of HCC140a, also called methyl chloroform, is CH3CCl3. The IUPAC name for HCC140a is 1,1,1-trichloroethane. 2019-05-14
CF12S57 tendency of middle atmosphere moles of methane "tendency_ of_ X" means derivative of X with respect to time. The construction "middle_ atmosphere_ moles_ of_ X" means the total number of moles of X in the troposphere and stratosphere, i.e. summed over that part of the atmospheric column and over the entire globe. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12S58 tendency of middle atmosphere moles of methyl bromide "tendency_ of_ X" means derivative of X with respect to time. The construction "middle_ atmosphere_ moles_ of_ X" means the total number of moles of X in the troposphere and stratosphere, i.e. summed over that part of the atmospheric column and over the entire globe. The chemical formula for methyl bromide is CH3Br. The IUPAC name for methyl bromide is bromomethane. 2009-07-06
CF12S59 tendency of middle atmosphere moles of methyl chloride "tendency_ of_ X" means derivative of X with respect to time. The construction "middle_ atmosphere_ moles_ of_ X" means the total number of moles of X in the troposphere and stratosphere, i.e. summed over that part of the atmospheric column and over the entire globe. The chemical formula for methyl chloride is CH3Cl. The IUPAC name for methyl chloride is chloromethane. 2009-07-06
CF12S60 tendency of middle atmosphere moles of molecular hydrogen "tendency_ of_ X" means derivative of X with respect to time. The construction "middle_ atmosphere_ moles_ of_ X" means the total number of moles of X in the troposphere and stratosphere, i.e. summed over that part of the atmospheric column and over the entire globe. The chemical formula for molecular hydrogen is H2. 2009-07-06
CF14N80 tendency of mole concentration of aragonite expressed as carbon in sea water due to biological production The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. Standard names also exist for calcite, another polymorph of calcium carbonate. 2018-12-17
CF14N81 tendency of mole concentration of aragonite expressed as carbon in sea water due to dissolution The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. Standard names also exist for calcite, another polymorph of calcium carbonate. 2018-12-17
CF14N82 tendency of mole concentration of calcite expressed as carbon in sea water due to biological production The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. 2018-12-17
CF14N83 tendency of mole concentration of calcite expressed as carbon in sea water due to dissolution The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. 2018-12-17
CF14N84 tendency of mole concentration of dissolved inorganic carbon in sea water due to biological processes The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2018-12-17
CF14N85 tendency of mole concentration of dissolved inorganic iron in sea water due to biological processes The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dissolved inorganic iron" means iron ions, in oxidation states of both Fe2+ and Fe3+, in solution. 2018-12-17
CF14N86 tendency of mole concentration of dissolved inorganic nitrogen in sea water due to biological processes The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Inorganic nitrogen" describes a family of chemical species which, in an ocean model, usually includes nitrite, nitrate and ammonium which act as nitrogen nutrients. "Inorganic nitrogen" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2018-12-17
CF14N87 tendency of mole concentration of dissolved inorganic phosphate in sea water due to biological processes DEPRECATED 'Mole concentration' means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dissolved inorganic phosphorus/phosphate" means phosphate ions in solution. The chemical formula of the phosphate anion is PO4 with a charge of minus three. 2010-07-26
CFV15A28 tendency of mole concentration of dissolved inorganic phosphorus in sea water due to biological processes The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dissolved inorganic phosphorus" means the sum of all inorganic phosphorus in solution (including phosphate, hydrogen phosphate, dihydrogen phosphate, and phosphoric acid). 2018-12-17
CF14N88 tendency of mole concentration of dissolved inorganic silicate in sea water due to biological processes DEPRECATED 'Mole concentration' means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as 'nitrogen' or a phrase such as 'nox_ expressed_ as_ nitrogen'. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dissolved inorganic silicon/silicate" means silicate ions in solution. 2010-07-26
CFV15A29 tendency of mole concentration of dissolved inorganic silicon in sea water due to biological processes The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dissolved inorganic silicon" means the sum of all inorganic silicon in solution (including silicic acid and its first dissociated anion SiO(OH)3-). 2018-12-17
CF14N89 tendency of mole concentration of dissolved iron in sea water due to dissolution from inorganic particles The quantity with standard name tendency_ of_ mole_ concentration_ of_ dissolved_ iron_ in_ sea_ water_ due_ to_ dissolution_ from_ inorganic_ particles is the change in concentration caused by the processes of dissolution, remineralization and desorption of iron back to the dissolved phase.The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2019-02-04
CF14N90 tendency of mole concentration of dissolved iron in sea water due to grazing of phytoplankton The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Grazing of phytoplankton" means the grazing of phytoplankton by zooplankton. 2018-12-17
CF14N91 tendency of mole concentration of dissolved iron in sea water due to scavenging by inorganic particles The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-12-17
CF14N92 tendency of mole concentration of iron in sea water due to biological production The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-12-17
R3Z9T14A tendency of mole concentration of ox in air due to chemical and photolytic production The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The term "ox" means a combination of three radical species containing 1 or 3 oxygen atoms: O + O1d + O3. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The phrase "chemical and photolytic production" means the result of all chemical and photolytic reactions within the medium (here, atmosphere) that produce a certain amount of the particular species. 2018-06-11
WBWKDWDA tendency of mole concentration of ox in air due to chemical destruction The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The term "ox" means a combination of three radical species containing 1 or 3 oxygen atoms: O + O1d + O3. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Chemical destruction" means the result of all chemical reactions within the medium (here, atmosphere) that remove a certain amount of a particular species from the medium. 2018-06-11
0NGA1E0E tendency of mole concentration of particulate organic matter expressed as carbon in sea water due to grazing of phytoplankton The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Grazing of phytoplankton" means the grazing of phytoplankton by zooplankton. 2018-12-17
CF14N93 tendency of mole concentration of particulate organic matter expressed as carbon in sea water due to net primary production The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Net primary production is the excess of gross primary production (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. In the oceans, carbon production per unit volume is often found at a number of depths at a given horizontal location. That quantity can then be integrated to calculate production per unit area at the location. Standard names for production per unit area use the term "productivity". 2018-12-17
CF14N94 tendency of mole concentration of particulate organic matter expressed as carbon in sea water due to net primary production by calcareous phytoplankton The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. In the oceans, carbon production per unit volume is often found at a number of depths at a given horizontal location. That quantity can then be integrated to calculate production per unit area at the location. Standard names for production per unit area use the term "productivity". "Calcareous phytoplankton" are phytoplankton that produce calcite. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. 2018-12-17
CF14N95 tendency of mole concentration of particulate organic matter expressed as carbon in sea water due to net primary production by diatoms The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. In the oceans, carbon production per unit volume is often found at a number of depths at a given horizontal location. That quantity can then be integrated to calculate production per unit area at the location. Standard names for production per unit area use the term "productivity". Diatoms are single-celled phytoplankton with an external skeleton made of silica. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
LIFX17LQ tendency of mole concentration of particulate organic matter expressed as carbon in sea water due to net primary production by diazotrophic phytoplankton The phrase "tendency_ of_ X" means derivative of X with respect to time. "Mole concentration" means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical species or biological group denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction "A_ expressed_ as_ B", where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. In the oceans, carbon production per unit volume is often found at a number of depths at a given horizontal location. That quantity can then be integrated to calculate production per unit area at the location. Standard names for production per unit area use the term "productivity". Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. Diazotrophic phytoplankton are phytoplankton (predominantly from Phylum Cyanobacteria) that are able to fix molecular nitrogen (gas or solute) in addition to nitrate and ammonium. 2020-03-09
CF14N96 tendency of mole concentration of particulate organic matter expressed as carbon in sea water due to net primary production by diazotrophs DEPRECATED The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. In the oceans, carbon production per unit volume is often found at a number of depths at a given horizontal location. That quantity can then be integrated to calculate production per unit area at the location. Standard names for production per unit area use the term "productivity". In ocean modelling, diazotrophs are phytoplankton of the phylum cyanobacteria distinct from other phytoplankton groups in their ability to fix nitrogen gas in addition to nitrate and ammonium. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2020-03-09
CF14N97 tendency of mole concentration of particulate organic matter expressed as carbon in sea water due to net primary production by miscellaneous phytoplankton The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. In the oceans, carbon production per unit volume is often found at a number of depths at a given horizontal location. That quantity can then be integrated to calculate production per unit area at the location. Standard names for production per unit area use the term "productivity". Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. "Miscellaneous phytoplankton" are all those phytoplankton that are not diatoms, diazotrophs, calcareous phytoplankton, picophytoplankton or other separately named components of the phytoplankton population. 2018-12-17
CF14N98 tendency of mole concentration of particulate organic matter expressed as carbon in sea water due to net primary production by picophytoplankton The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. In the oceans, carbon production per unit volume is often found at a number of depths at a given horizontal location. That quantity can then be integrated to calculate production per unit area at the location. Standard names for production per unit area use the term "productivity". Picophytoplankton are phytoplankton of less than 2 micrometers in size. Phytoplankton are algae that grow where there is sufficient light to support photosynthesis. 2018-12-17
CF14N99 tendency of mole concentration of particulate organic matter expressed as carbon in sea water due to nitrate utilization Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Nitrate utilization" means net primary production of carbon by phytoplankton based on nitrate alone. "Production of carbon" means the production of biomass expressed as the mass of carbon which it contains. Net primary production is the excess of gross primary production (the rate of synthesis of biomass from inorganic precursors) by autotrophs ("producers"), for example, photosynthesis in plants or phytoplankton, over the rate at which the autotrophs themselves respire some of this biomass. In the oceans, carbon production per unit volume is often found at a number of depths at a given horizontal location. That quantity can then be integrated to calculate production per unit area at the location. Standard names for production per unit area use the term "productivity". "tendency_ of_ X" means derivative of X with respect to time. The chemical formula for the nitrate anion is NO3-. 2013-11-28
7AGZZT2Q tendency of mole concentration of particulate organic matter expressed as carbon in sea water due to remineralization "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called "molarity", and is used in the construction "mole_ concentration_ of_ X_ in_ Y", where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Remineralization is the degradation of organic matter into inorganic forms of carbon, nitrogen, phosphorus and other micronutrients, which consumes oxygen and releases energy. 2017-04-24
CF14N100 tendency of mole concentration of silicon in sea water due to biological production The phrase "tendency_ of_ X" means derivative of X with respect to time. Mole concentration means number of moles per unit volume, also called"molarity", and is used in the construction mole_ concentration_ of_ X_ in_ Y, where X is a material constituent of Y. A chemical or biological species denoted by X may be described by a single term such as "nitrogen" or a phrase such as "nox_ expressed_ as_ nitrogen". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-12-17
CFV8N87 tendency of moles of carbon monoxide in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of carbon monoxide is CO. 2009-07-06
CFV8N88 tendency of moles of carbon monoxide in middle atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ middle_ atmosphere" means the total number of moles of X contained in the troposphere and stratosphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of carbon monoxide is CO. 2009-07-06
CFV8N89 tendency of moles of carbon monoxide in troposphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ troposphere" means the total number of moles of X contained in the troposphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of carbon monoxide is CO. 2009-07-06
CFV8N90 tendency of moles of carbon tetrachloride in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of carbon tetrachloride is CCl4. 2009-07-06
CFV8N92 tendency of moles of cfc113 in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of CFC113 is CCl2FCClF2. The IUPAC name for CFC113 is 1,1,2-trichloro-1,2,2-trifluoro-ethane. 2009-07-06
CFV8N93 tendency of moles of cfc114 in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of CFC114 is CClF2CClF2. The IUPAC name for CFC114 is 1,2-dichloro-1,1,2,2-tetrafluoro-ethane. 2009-07-06
CFV8N94 tendency of moles of cfc115 in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of CFC115 is CClF2CF3. The IUPAC name for CFC115 is 1-chloro-1,1,2,2,2-pentafluoro-ethane. 2009-07-06
CFV8N91 tendency of moles of cfc11 in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of CFC11 is CFCl3. The IUPAC name for CFC11 is trichloro-fluoro-methane. 2009-07-06
CFV8N95 tendency of moles of cfc12 in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of CFC12 is CF2Cl2. The IUPAC name for CFC12 is dichloro-difluoro-methane. 2009-07-06
CFV8N96 tendency of moles of halon1202 in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of halon1202 is CBr2F2. The IUPAC name for halon 1202 is dibromo-difluoro-methane. 2009-07-06
CFV8N97 tendency of moles of halon1211 in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of halon1211 is CBrClF2. The IUPAC name for halon 1211 is bromo-chloro-difluoro-methane. 2009-07-06
CFV8N98 tendency of moles of halon1301 in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of halon1301 is CBrF3. The IUPAC name for halon 1301 is bromo-trifluoro-methane. 2009-07-06
CFV8N99 tendency of moles of halon2402 in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of halon2402 is C2Br2F2. The IUPAC name for halon 2402 is 1,2-dibromo-1,1,2,2-tetrafluoro-ethane. 2009-07-06
CFV8N100 tendency of moles of hcc140a in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of HCC140a is CH3CCl3. The IUPAC name for HCC 140a is 1,1,1-trichloroethane. 2009-07-06
CFV8N101 tendency of moles of hcc140a in middle atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ middle_ atmosphere" means the total number of moles of X contained in the troposphere and stratosphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of HCC140a is CH3CCl3. The IUPAC name for HCC 140a is 1,1,1-trichloroethane. 2009-07-06
CFV8N102 tendency of moles of hcc140a in troposphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ troposphere" means the total number of moles of X contained in the troposphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of HCC140a is CH3CCl3. The IUPAC name for HCC 140a is 1,1,1-trichloroethane. 2009-07-06
CFV8N103 tendency of moles of hcfc22 in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of HCFC22 is CHClF2. The IUPAC name for HCFC 22 is chloro-difluoro-methane. 2009-07-06
CFV8N104 tendency of moles of hcfc22 in troposphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ troposphere" means the total number of moles of X contained in the troposphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of HCFC22 is CHClF2. The IUPAC name for HCFC 22 is chloro-difluoro-methane. 2009-07-06
CFV8N105 tendency of moles of methane in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of methane is CH4. 2009-07-06
CFV8N106 tendency of moles of methane in middle atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ middle_ atmosphere" means the total number of moles of X contained in the troposphere and stratosphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of methane is CH4. 2009-07-06
CFV8N107 tendency of moles of methane in troposphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ troposphere" means the total number of moles of X contained in the troposphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of methane is CH4. 2009-07-06
CFV8N108 tendency of moles of methyl bromide in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of methyl bromide is CH3Br. 2009-07-06
CFV8N109 tendency of moles of methyl bromide in middle atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ middle_ atmosphere" means the total number of moles of X contained in the troposphere and stratosphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of methyl bromide is CH3Br. 2009-07-06
CFV8N110 tendency of moles of methyl bromide in troposphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ troposphere" means the total number of moles of X contained in the troposphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of methyl bromide is CH3Br. 2009-07-06
CFV8N111 tendency of moles of methyl chloride in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of methyl chloride is CH3Cl. 2009-07-06
CFV8N112 tendency of moles of methyl chloride in middle atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ middle_ atmosphere" means the total number of moles of X contained in the troposphere and stratosphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of methyl chloride is CH3Cl. 2009-07-06
CFV8N113 tendency of moles of methyl chloride in troposphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ troposphere" means the total number of moles of X contained in the troposphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of methyl chloride is CH3Cl. 2009-07-06
CFV8N114 tendency of moles of molecular hydrogen in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of molecular hydrogen is H2. 2009-07-06
CFV8N115 tendency of moles of molecular hydrogen in middle atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ middle_ atmosphere" means the total number of moles of X contained in the troposphere and stratosphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of molecular hydrogen is H2. 2009-07-06
CFV8N116 tendency of moles of molecular hydrogen in troposphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "moles_ of_ X_ in_ troposphere" means the total number of moles of X contained in the troposphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of molecular hydrogen is H2. 2009-07-06
CFV8N117 tendency of moles of nitrous oxide in atmosphere DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. The construction "moles_ of_ X_ in_ atmosphere" means the total number of moles of X contained in the entire atmosphere, i.e, summed over the atmospheric column and over the entire globe. The chemical formula of nitrous oxide is N2O. 2009-07-06
CFSN0144 tendency of northward wind 'tendency_ of_ X' means derivative of X with respect to time. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0145 tendency of northward wind due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0146 tendency of northward wind due to convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0147 tendency of northward wind due to diffusion The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Northward' indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFSN0148 tendency of northward wind due to gravity wave drag The phrase "tendency_ of_ X" means derivative of X with respect to time. "Northward" indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The quantity with standard name tendency_ of_ northward_ wind_ due_ to_ gravity_ wave_ drag is the total tendency of the northward wind due to gravity waves. It is the sum of the tendencies due to orographic and nonorographic gravity waves which have the standard names tendency_ of_ northward_ wind_ due_ to_ orographic_ gravity_ wave_ drag and tendency_ of_ northward_ wind_ due_ to_ nonorographic_ gravity_ wave_ drag, respectively. 2018-04-16
AOQ3DK89 tendency of northward wind due to nonorographic gravity wave drag The phrase "tendency_ of_ X" means derivative of X with respect to time. "Northward" indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Nonorographic" gravity waves refer to gravity waves which are not generated by flow over orography. The quantity with standard name tendency_ of_ northward_ wind_ due_ to_ gravity_ wave_ drag is the total tendency of the northward wind due to gravity waves. It is the sum of the tendencies due to orographic and nonorographic gravity waves which have the standard names tendency_ of_ northward_ wind_ due_ to_ orographic_ gravity_ wave_ drag and tendency_ of_ northward_ wind_ due_ to_ nonorographic_ gravity_ wave_ drag, respectively. 2018-05-29
OGLPX4OD tendency of northward wind due to orographic gravity wave drag The phrase "tendency_ of_ X" means derivative of X with respect to time. "Northward" indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Orographic gravity waves" refer to gravity waves which are generated by flow over orography. The quantity with standard name tendency_ of_ northward_ wind_ due_ to_ gravity_ wave_ drag is the total tendency of the northward wind due to gravity waves. It is the sum of the tendencies due to orographic and nonorographic gravity waves which have the standard names tendency_ of_ northward_ wind_ due_ to_ orographic_ gravity_ wave_ drag and tendency_ of_ northward_ wind_ due_ to_ nonorographic_ gravity_ wave_ drag, respectively. 2018-05-29
CFSN0149 tendency of ocean barotropic streamfunction 'tendency_ of_ X' means derivative of X with respect to time. 2006-09-26
CF12N783 tendency of ocean eddy kinetic energy content due to bolus transport DEPRECATED "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. Bolus transport in an ocean model means the part due to a scheme representing eddy-induced effects not included in the velocity field. 2017-11-28
3MUBQ4IM tendency of ocean eddy kinetic energy content due to parameterized eddy advection "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. 2017-11-28
I8R1394U tendency of ocean eddy kinetic energy content due to parameterized eddy advection DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. 2018-02-12
CF14N101 tendency of ocean mole content of aragonite expressed as carbon due to biological production "Content" indicates a quantity per unit area. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. Aragonite is a mineral that is a polymorph of calcium carbonate. The chemical formula of aragonite is CaCO3. Standard names also exist for calcite, another polymorph of calcium carbonate. 2010-05-12
CF14N102 tendency of ocean mole content of calcite expressed as carbon due to biological production "Content" indicates a quantity per unit area. The phrase 'expressed_ as' is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. Calcite is a mineral that is a polymorph of calcium carbonate. The chemical formula of calcite is CaCO3. Standard names also exist for aragonite, another polymorph of calcium carbonate. 2010-05-12
CF14N103 tendency of ocean mole content of carbon due to runoff and sediment dissolution The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Runoff is the liquid water which drains from land. If not specified, "runoff" refers to the sum of surface runoff and subsurface drainage. 2019-03-04
CF14N104 tendency of ocean mole content of carbon due to sedimentation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sedimentation" is the sinking of particulate matter to the floor of a body of water. 2019-02-04
CF14N105 tendency of ocean mole content of dissolved inorganic carbon The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2019-02-04
CF14N106 tendency of ocean mole content of dissolved inorganic carbon due to biological processes The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dissolved inorganic carbon" describes a family of chemical species in solution, including carbon dioxide, carbonic acid and the carbonate and bicarbonate anions. "Dissolved inorganic carbon" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2019-02-04
CF14N107 tendency of ocean mole content of dissolved inorganic iron "Content" indicates a quantity per unit area. "tendency_ of_ X" means derivative of X with respect to time. "Dissolved inorganic iron" means iron ions, in oxidation states of both Fe2+ and Fe3+, in solution. 2010-05-12
CF14N108 tendency of ocean mole content of dissolved inorganic iron due to biological processes The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dissolved inorganic iron" means iron ions, in oxidation states of both Fe2+ and Fe3+, in solution. 2019-02-04
CF14N109 tendency of ocean mole content of dissolved inorganic nitrogen "Content" indicates a quantity per unit area. "tendency_ of_ X" means derivative of X with respect to time. "Inorganic nitrogen" describes a family of chemical species which, in an ocean model, usually includes nitrite, nitrate and ammonium which act as nitrogen nutrients. "Inorganic nitrogen" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2010-05-12
CF14N110 tendency of ocean mole content of dissolved inorganic nitrogen due to biological processes "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Inorganic nitrogen" describes a family of chemical species which, in an ocean model, usually includes nitrite, nitrate and ammonium which act as nitrogen nutrients. "Inorganic nitrogen" is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2010-05-12
CF14N111 tendency of ocean mole content of dissolved inorganic phosphorus "Content" indicates a quantity per unit area. "tendency_ of_ X" means derivative of X with respect to time. "Dissolved inorganic phosphorus" means the sum of all inorganic phosphorus in solution (including phosphate, hydrogen phosphate, dihydrogen phosphate, and phosphoric acid). 2017-05-22
CF14N112 tendency of ocean mole content of dissolved inorganic phosphorus due to biological processes "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dissolved inorganic phosphorus" means the sum of all inorganic phosphorus in solution (including phosphate, hydrogen phosphate, dihydrogen phosphate, and phosphoric acid). 2017-05-22
CF14N113 tendency of ocean mole content of dissolved inorganic silicon "Content" indicates a quantity per unit area. "tendency_ of_ X" means derivative of X with respect to time. "Dissolved inorganic silicon" means the sum of all inorganic silicon in solution (including silicic acid and its first dissociated anion SiO(OH)3-). 2017-06-26
CF14N114 tendency of ocean mole content of dissolved inorganic silicon due to biological processes "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Dissolved inorganic silicon" means the sum of all inorganic silicon in solution (including silicic acid and its first dissociated anion SiO(OH)3-). 2017-06-26
CF14N115 tendency of ocean mole content of elemental nitrogen due to denitrification and sedimentation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Denitrification" is the conversion of nitrate into gaseous compounds such as nitric oxide, nitrous oxide and molecular nitrogen which are then emitted to the atmosphere. "Sedimentation" is the sinking of particulate matter to the floor of a body of water. 2019-02-04
CF14N116 tendency of ocean mole content of elemental nitrogen due to deposition and fixation and runoff The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Deposition of nitrogen into the ocean is the sum of dry and wet deposition of nitrogen species onto the ocean surface from the atmosphere. "Nitrogen fixation" means the production of ammonia from nitrogen gas. Organisms that fix nitrogen are termed "diazotrophs". Diazotrophic phytoplankton can fix atmospheric nitrogen, thus increasing the content of nitrogen in the ocean. Runoff is the liquid water which drains from land. If not specified, "runoff" refers to the sum of surface runoff and subsurface drainage. 2019-02-04
CF14N117 tendency of ocean mole content of elemental nitrogen due to fixation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Nitrogen fixation" means the production of ammonia from nitrogen gas. Organisms that fix nitrogen are termed "diazotrophs". Diazotrophic phytoplankton can fix atmospheric nitrogen, thus increasing the content of nitrogen in the ocean. 2019-02-04
2XXHRQ6K tendency of ocean mole content of inorganic carbon "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Inorganic carbon" describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. 2017-03-27
RC6GMP96 tendency of ocean mole content of inorganic carbon due to runoff and sediment dissolution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Inorganic carbon" describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Runoff is the liquid water which drains from land. If not specified, "runoff" refers to the sum of surface runoff and subsurface drainage. 2017-03-27
EN0OQ3F0 tendency of ocean mole content of inorganic carbon due to sedimentation "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Inorganic carbon" describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sedimentation" is the sinking of particulate matter to the floor of a body of water. 2017-03-27
CF14N118 tendency of ocean mole content of iron due to biological production "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2010-05-12
CF14N119 tendency of ocean mole content of iron due to deposition and runoff and sediment dissolution The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Runoff is the liquid water which drains from land. If not specified, "runoff" refers to the sum of surface runoff and subsurface drainage. 2019-03-04
CF14N120 tendency of ocean mole content of iron due to sedimentation "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2010-05-12
RX78V0HA tendency of ocean mole content of nitrogen due to biological production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Nitrogen" summarizes all chemical species containing nitrogen atoms. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2017-04-24
OTMMR1LR tendency of ocean mole content of organic carbon due to runoff and sediment dissolution "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Organic carbon" describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Runoff is the liquid water which drains from land. If not specified, "runoff" refers to the sum of surface runoff and subsurface drainage. 2017-03-27
X2LMWDLH tendency of ocean mole content of organic carbon due to sedimentation "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Organic carbon" describes a family of chemical species and is the term used in standard names for all species belonging to the family that are represented within a given model. The list of individual species that are included in a quantity having a group chemical standard name can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sedimentation" is the sinking of particulate matter to the floor of a body of water. 2017-03-27
V89TYK08 tendency of ocean mole content of oxidized nitrogen compounds expressed as nitrogen due to deposition "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Deposition of nitrogen into the ocean is the sum of dry and wet deposition of the considered species onto the ocean surface from the atmosphere. "Oxidized nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state greater than zero. Usually, particle bound and gaseous nitrogen compounds, such as nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrate (NO3-), peroxynitric acid (HNO4), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
IU71U84R tendency of ocean mole content of oxidized nitrogen compounds expressed as nitrogen due to dry deposition "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "dry_ deposition" is the sum of turbulent deposition and gravitational settling of the considered species onto the ocean surface from the atmosphere. "Oxidized nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state greater than zero. Usually, particle bound and gaseous nitrogen compounds, such as nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrate (NO3-), peroxynitric acid (HNO4), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
2XMAA1D7 tendency of ocean mole content of oxidized nitrogen compounds expressed as nitrogen due to wet deposition "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "wet_ deposition" means deposition by precipitation. "Oxidized nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state greater than zero. Usually, particle bound and gaseous nitrogen compounds, such as nitrogen monoxide (NO), nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), nitric acid (HNO3), nitrate (NO3-), peroxynitric acid (HNO4), bromine nitrate (BrONO2), chlorine nitrate (ClONO2) and organic nitrates (most notably peroxyacetyl nitrate, sometimes referred to as PAN, (CH3COO2NO2)), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
ORS2IBGX tendency of ocean mole content of phosphorus due to biological production "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2016-11-15
26N8RSR1 tendency of ocean mole content of reduced nitrogen compounds expressed as nitrogen due to deposition "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Deposition of nitrogen into the ocean is the sum of dry and wet deposition of nitrogen species onto the ocean surface from the atmosphere. "Reduced nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state less than zero. Usually, particle bound and gaseous nitrogen compounds, primarily ammonium (NH4+) and ammonia (NH3), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
WQ6K7R8J tendency of ocean mole content of reduced nitrogen compounds expressed as nitrogen due to dry deposition "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "dry_ deposition" is the sum of turbulent deposition and gravitational settling of the considered species onto the ocean surface from the atmosphere. "Reduced nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state less than zero. Usually, particle bound and gaseous nitrogen compounds, primarily ammonium (NH4+) and ammonia (NH3), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
AGDXAJND tendency of ocean mole content of reduced nitrogen compounds expressed as nitrogen due to wet deposition "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "wet_ deposition" means deposition by precipitation. "Reduced nitrogen compounds" means all chemical species containing nitrogen atoms with an oxidation state less than zero. Usually, particle bound and gaseous nitrogen compounds, primarily ammonium (NH4+) and ammonia (NH3), are included. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. 2017-06-26
CF14N121 tendency of ocean mole content of silicon due to biological production The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "ocean content" of a quantity refers to the vertical integral from the surface to the bottom of the ocean. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2019-02-04
CF12N784 tendency of ocean potential energy content "Content" indicates a quantity per unit area. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) "tendency_ of_ X" means derivative of X with respect to time. 2009-07-06
CF12N785 tendency of ocean potential energy content due to background "Content" indicates a quantity per unit area. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) "Due to background" means caused by a time invariant imposed field which may be either constant over the globe or spatially varying, depending on the ocean model used. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2009-07-06
CF12N786 tendency of ocean potential energy content due to tides "Content" indicates a quantity per unit area. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) "Due to tides" means due to all astronomical gravity changes which manifest as tides. No distinction is made between different tidal components. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. 2009-07-06
CFSN0150 tendency of potential energy content of atmosphere layer due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) 2006-09-26
CFV10N44 tendency of potential energy content of ocean layer due to convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) 2008-10-21
CFV10N45 tendency of potential energy content of ocean layer due to diffusion The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Layer" means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. Potential energy is the sum of the gravitational potential energy relative to the geoid and the centripetal potential energy. (The geopotential is the specific potential energy.) 2008-10-21
CFV16A58 tendency of sea ice amount due to basal melting The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-07-03
CFV16A59 tendency of sea ice amount due to congelation ice accumulation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Congelation ice" means the freezing of sea water onto the underside of thin, new sea ice that has been formed by small areas of frazil ice crystals joining together into a continuous layer at the sea surface. Congelation ice forms under calm water conditions; it thickens and stabilizes the layer of sea ice and produces a smooth bottom surface. 2018-07-03
9GNSLLJN tendency of sea ice amount due to conversion of snow to sea ice The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Conversion of snow to sea ice" occurs when the mass of snow accumulated on an area of sea ice is sufficient to cause the ice to become mostly submerged. Waves can then wash over the ice and snow surface and freeze into a layer that becomes "snow ice". 2018-07-03
CFV16A60 tendency of sea ice amount due to frazil ice accumulation in leads The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Frazil" consists of needle like crystals of ice, typically between three and four millimeters in diameter, which form as sea water begins to freeze. Salt is expelled during the freezing process and frazil ice consists of nearly pure fresh water. Leads are stretches of open water within wider areas of sea ice. 2018-07-03
CFV16A61 tendency of sea ice amount due to lateral growth of ice floes The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. An ice floe is a flat expanse of sea ice, generally taken to be less than 10 km across. "Lateral growth of ice floe" means the accumulation of ice at the extreme edges of the ice area. 2018-07-03
TWW9BNXJ tendency of sea ice amount due to lateral melting The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-07-03
4FD7C4WE tendency of sea ice amount due to sea ice dynamics The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice dynamics" refers to advection of sea ice. 2018-07-03
D1C1GI9O tendency of sea ice amount due to sea ice thermodynamics The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice thermodynamics" refers to the addition or subtraction of mass due to surface and basal fluxes, i.e., due to melting, sublimation and fusion. 2018-07-03
CFV16A62 tendency of sea ice amount due to snow conversion DEPRECATED "Amount" means mass per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "Snow to sea ice conversion" occurs when the mass of snow accumulated on an area of sea ice is sufficient to cause the ice to become mostly submerged. Waves can then wash over the ice and snow surface and freeze into a layer that becomes "snow ice". 2018-07-03
CFV16A63 tendency of sea ice amount due to surface melting The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The surface called "surface" means the lower boundary of the atmosphere. 2018-07-03
CFV8N118 tendency of sea ice area fraction due to dynamics The phrase "tendency_ of_ X" means derivative of X with respect to time. "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. Sea ice area fraction is area of the sea surface occupied by sea ice. It is also called "sea ice concentration". "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice dynamics" refers to the motion of sea ice. 2019-05-14
CFV16A64 tendency of sea ice area fraction due to ridging The phrase "tendency_ of_ X" means derivative of X with respect to time. "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. Sea ice area fraction is area of the sea surface occupied by sea ice. It is also called "sea ice concentration". "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sea ice "ridging" occurs in rough sea conditions. The motion of the sea surface can cause areas of sea ice to deform and fold resulting in ridged upper and lower surfaces. The ridges can be as much as twenty metres thick if thick ice is deformed. 2019-05-14
CFV8N119 tendency of sea ice area fraction due to thermodynamics The phrase "tendency_ of_ X" means derivative of X with respect to time. "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. Sea ice area fraction is area of the sea surface occupied by sea ice. It is also called "sea ice concentration". "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice thermodynamics" refers to the addition or subtraction of mass due to surface and basal fluxes. 2019-05-14
CFV8N120 tendency of sea ice thickness due to dynamics The phrase "tendency_ of_ X" means derivative of X with respect to time. "Thickness" means the vertical extent of a layer. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice dynamics" refers to the motion of sea ice. 2018-07-03
CFSN0151 tendency of sea ice thickness due to thermodynamics The phrase "tendency_ of_ X" means derivative of X with respect to time. "Thickness" means the vertical extent of a layer. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms named by omitting the phrase. "Sea ice thermodynamics" refers to the addition or subtraction of mass due to surface and basal fluxes. 2018-07-03
ZJ5I0YQC tendency of sea surface height above mean sea level "Sea surface height" is a time-varying quantity. "tendency_ of_ X" means derivative of X with respect to time. "Height_ above_ X" means the vertical distance above the named surface X. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. The standard name for the height of the sea surface above the geoid is sea_ surface_ height_ above_ geoid. The standard name for the height of the sea surface above the reference ellipsoid is sea_ surface_ height_ above_ reference_ ellipsoid. 2017-06-26
RQ2Q233Z tendency of sea surface height above sea level DEPRECATED Sea_ level means mean sea level, which is close to the geoid in sea areas. "Sea surface height" is a time-varying quantity. "tendency_ of_ X" means derivative of X with respect to time. 2017-06-26
CF14N122 tendency of sea water alkalinity expressed as mole equivalent due to biological processes The phrase "tendency_ of_ X" means derivative of X with respect to time. sea_ water_ alkalinity_ expressed_ as_ mole_ equivalent is the total alkalinity equivalent concentration (including carbonate, nitrogen, silicate, and borate components). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2019-03-04
FU30XQ0P tendency of sea water conservative temperature expressed as heat content The phrase "tendency_ of_ X" means derivative of X with respect to time. This tendency encompasses all processes that impact on the time changes for the heat content within a grid cell. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the conservative temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. 2018-07-03
XKQKCLKL tendency of sea water conservative temperature expressed as heat content due to parameterized dianeutral mixing The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the conservative temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dianeutral mixing" means mixing across surfaces of neutral buoyancy. "Parameterized" means the part due to a scheme representing processes which are not explicitly resolved by the model. 2019-06-17
NYYTH6BM tendency of sea water conservative temperature expressed as heat content due to parameterized eddy advection The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the conservative temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. Additionally, when the parameterized advective process is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic. The convergence of a skew-flux is identical (in the continuous formulation) to the convergence of an advective flux, making their tendencies the same. 2018-07-03
V3NLUKPK tendency of sea water conservative temperature expressed as heat content due to parameterized eddy dianeutral mixing DEPRECATED The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the conservative temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Eddy dianeutral mixing" means dianeutral mixing, i.e. mixing across neutral directions caused by the unresolved turbulent motion of eddies of all types (e.g., breaking gravity waves, boundary layer turbulence, etc.). 2019-06-17
9C19988Y tendency of sea water conservative temperature expressed as heat content due to parameterized mesoscale eddy advection The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the conservative temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized mesoscale eddy advection occurs on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddy advection is represented in ocean models using schemes such as the Gent-McWilliams scheme. There are also standard names for parameterized_ submesoscale_ eddy_ advection which, along with parameterized_ mesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. Additionally, when the parameterized advective process is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic. The convergence of a skew-flux is identical (in the continuous formulation) to the convergence of an advective flux, making their tendencies the same. 2018-07-03
TWUAGBPA tendency of sea water conservative temperature expressed as heat content due to parameterized mesoscale eddy diffusion The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the conservative temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized mesoscale eddy diffusive processes include diffusion along neutral directions in the interior of the ocean and horizontal diffusion in the surface boundary layer. The processes occur on a spatial scale of many tens of kilometres and an evolutionary time of weeks. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the conservative temperature of the sea water in the grid cell. 2018-07-03
MEMEQZOA tendency of sea water conservative temperature expressed as heat content due to parameterized submesoscale eddy advection The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the conservative temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized submesoscale eddy advection occurs on a spatial scale of the order of 1 km horizontally. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. There are also standard names for parameterized_ mesoscale_ eddy_ advection which, along with parameterized_ submesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. Additionally, when the parameterized advective process is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic. The convergence of a skew-flux is identical (in the continuous formulation) to the convergence of an advective flux, making their tendencies the same. 2018-07-03
LEM7A0FJ tendency of sea water conservative temperature expressed as heat content due to residual mean advection The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the conservative temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Conservative Temperature is defined as part of the Thermodynamic Equation of Seawater 2010 (TEOS-10) which was adopted in 2010 by the International Oceanographic Commission (IOC). Conservative Temperature is specific potential enthalpy (which has the standard name sea_ water_ specific_ potential_ enthalpy) divided by a fixed value of the specific heat capacity of sea water, namely cp_ 0 = 3991.86795711963 J kg-1 K-1. Conservative Temperature is a more accurate measure of the "heat content" of sea water, by a factor of one hundred, than is potential temperature. Because of this, it can be regarded as being proportional to the heat content of sea water per unit mass. Reference: www.teos-10.org; McDougall, 2003 doi: 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The phrase "residual_ mean_ advection" refers to the sum of the model's resolved advective transport plus any parameterized advective transport. Parameterized advective transport includes processes such as parameterized mesoscale and submesoscale transport, as well as any other advectively parameterized transport. When the parameterized advective transport is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic, since the convergence of skew-fluxes are identical (in the continuous formulation) to the convergence of advective fluxes. 2018-07-03
1CXOH2R4 tendency of sea water potential temperature expressed as heat content The phrase "tendency_ of_ X" means derivative of X with respect to time. This tendency encompasses all processes that impact on the time changes for the heat content within a grid cell. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the potential temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. 2018-07-03
A13CL568 tendency of sea water potential temperature expressed as heat content due to parameterized dianeutral mixing The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the potential temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dianeutral mixing" means mixing across surfaces of neutral buoyancy. "Parameterized" means the part due to a scheme representing processes which are not explicitly resolved by the model. 2019-06-17
H0DWGOJF tendency of sea water potential temperature expressed as heat content due to parameterized eddy advection The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the potential temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. Additionally, when the parameterized advective process is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic. The convergence of a skew-flux is identical (in the continuous formulation) to the convergence of an advective flux, making their tendencies the same. 2018-07-03
LM0A4IV4 tendency of sea water potential temperature expressed as heat content due to parameterized eddy dianeutral mixing DEPRECATED The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the potential temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Eddy dianeutral mixing" means dianeutral mixing, i.e. mixing across neutral directions caused by the unresolved turbulent motion of eddies of all types (e.g., breaking gravity waves, boundary layer turbulence, etc.). 2019-06-17
S2TLXU7V tendency of sea water potential temperature expressed as heat content due to parameterized mesoscale eddy advection The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the potential temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized mesoscale eddy advection occurs on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddy advection is represented in ocean models using schemes such as the Gent-McWilliams scheme. There are also standard names for parameterized_ submesoscale_ eddy_ advection which, along with parameterized_ mesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. Additionally, when the parameterized advective process is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic. The convergence of a skew-flux is identical (in the continuous formulation) to the convergence of an advective flux, making their tendencies the same. 2018-07-03
W2B5LE25 tendency of sea water potential temperature expressed as heat content due to parameterized mesoscale eddy diffusion The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the potential temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized mesoscale eddy diffusive processes include diffusion along neutral directions in the interior of the ocean and horizontal diffusion in the surface boundary layer. The processes occur on a spatial scale of many tens of kilometres and an evolutionary time of weeks. 2018-07-03
8VKNPRH6 tendency of sea water potential temperature expressed as heat content due to parameterized submesoscale eddy advection The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the potential temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized submesoscale eddy advection occurs on a spatial scale of the order of 1 km horizontally. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. There are also standard names for parameterized_ mesoscale_ eddy_ advection which, along with parameterized_ submesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. Additionally, when the parameterized advective process is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic. The convergence of a skew-flux is identical (in the continuous formulation) to the convergence of an advective flux, making their tendencies the same. 2018-07-03
KXWFCXD1 tendency of sea water potential temperature expressed as heat content due to residual mean advection The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "expressed_ as_ heat_ content" means that this quantity is calculated as the specific heat capacity times density of sea water multiplied by the potential temperature of the sea water in the grid cell and integrated over depth. If used for a layer heat content, coordinate bounds should be used to define the extent of the layers. If no coordinate bounds are specified, it is assumed that the integral is calculated over the entire vertical extent of the medium, e.g, if the medium is sea water the integral is assumed to be calculated over the full depth of the ocean. Potential temperature is the temperature a parcel of air or sea water would have if moved adiabatically to sea level pressure. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The phrase "residual_ mean_ advection" refers to the sum of the model's resolved advective transport plus any parameterized advective transport. Parameterized advective transport includes processes such as parameterized mesoscale and submesoscale transport, as well as any other advectively parameterized transport. When the parameterized advective transport is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic, since the convergence of skew-fluxes are identical (in the continuous formulation) to the convergence of advective fluxes. 2018-07-03
CF12N787 tendency of sea water salinity "tendency_ of_ X" means derivative of X with respect to time. Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term &amp;apos;salinity&amp;apos; is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and normally given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2012-04-27
CFV8N121 tendency of sea water salinity due to advection "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term &amp;apos;salinity&amp;apos; is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and normally given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2012-04-27
CFV8N122 tendency of sea water salinity due to bolus advection DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. Bolus advection in an ocean model means the part due to a scheme representing eddy-induced effects not included in the velocity field. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term &amp;apos;salinity&amp;apos; is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and normally given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2017-11-28
CFV8N123 tendency of sea water salinity due to horizontal mixing "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Horizontal mixing" means any horizontal transport other than by advection and parameterized eddy advection, usually represented as horizontal diffusion in ocean models. Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and normally given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2018-02-12
PS23TRUE tendency of sea water salinity due to parameterized eddy advection "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and normally given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2017-11-28
CFV8N124 tendency of sea water salinity due to sea ice thermodynamics The phrase "tendency_ of_ X" means derivative of X with respect to time. Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and normally given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice thermodynamics" refers to the addition or subtraction of sea ice mass due to surface and basal fluxes, i.e. due to melting, sublimation and fusion. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFV8N125 tendency of sea water salinity due to vertical mixing "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Vertical mixing" means any vertical transport other than by advection and parameterized eddy advection, represented by a combination of vertical diffusion, turbulent mixing and convection in ocean models. Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and normally given as 1e-3 or 0.001 i.e. parts per thousand. There are standard names for the more precisely defined salinity quantities: sea_ water_ knudsen_ salinity, S_ K (used for salinity observations between 1901 and 1966), sea_ water_ cox_ salinity, S_ C (used for salinity observations between 1967 and 1977), sea_ water_ practical_ salinity, S_ P (used for salinity observations from 1978 to the present day), sea_ water_ absolute_ salinity, S_ A, sea_ water_ preformed_ salinity, S_ *, and sea_ water_ reference_ salinity. Practical Salinity is reported on the Practical Salinity Scale of 1978 (PSS-78), and is usually based on the electrical conductivity of sea water in observations since the 1960s. Conversion of data between the observed scales follows: S_ P = (S_ K - 0.03) * (1.80655 / 1.805) and S_ P = S_ C, however the accuracy of the latter is dependent on whether chlorinity or conductivity was used to determine the S_ C value, with this inconsistency driving the development of PSS-78. The more precise standard names should be used where appropriate for both modelled and observed salinities. In particular, the use of sea_ water_ salinity to describe salinity observations made from 1978 onwards is now deprecated in favor of the term sea_ water_ practical_ salinity which is the salinity quantity stored by national data centers for post-1978 observations. The only exception to this is where the observed salinities are definitely known not to be recorded on the Practical Salinity Scale. The unit "parts per thousand" was used for sea_ water_ knudsen_ salinity and sea_ water_ cox_ salinity. 2018-02-12
Z007WQ0Z tendency of sea water salinity expressed as salt content "Content" indicates a quantity per unit area. "tendency_ of_ X" means derivative of X with respect to time. This tendency encompasses all processes that impact on the time changes for the salt content within a grid cell. 2017-11-28
TOGASZOW tendency of sea water salinity expressed as salt content due to parameterized dianeutral mixing The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Dianeutral mixing" means mixing across surfaces of neutral buoyancy. "Parameterized" means the part due to a scheme representing processes which are not explicitly resolved by the model. 2019-06-17
MCH3ULQ5 tendency of sea water salinity expressed as salt content due to parameterized eddy advection The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. Additionally, when the parameterized advective process is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic. The convergence of a skew-flux is identical (in the continuous formulation) to the convergence of an advective flux, making their tendencies the same. 2017-11-28
X62TUKSM tendency of sea water salinity expressed as salt content due to parameterized eddy dianeutral mixing DEPRECATED The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Eddy dianeutral mixing" means dianeutral mixing, i.e. mixing across neutral directions caused by the unresolved turbulent motion of eddies of all types (e.g., breaking gravity waves, boundary layer turbulence, etc.). 2019-06-17
QGCQI0I8 tendency of sea water salinity expressed as salt content due to parameterized mesoscale eddy advection The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized mesoscale eddy advection occurs on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddy advection is represented in ocean models using schemes such as the Gent-McWilliams scheme. There are also standard names for parameterized_ submesoscale_ eddy_ advection which, along with parameterized_ mesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. Additionally, when the parameterized advective process is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic. The convergence of a skew-flux is identical (in the continuous formulation) to the convergence of an advective flux, making their tendencies the same. 2017-11-28
VTPPM9AP tendency of sea water salinity expressed as salt content due to parameterized mesoscale eddy diffusion The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized mesoscale eddy diffusive processes include diffusion along neutral directions in the interior of the ocean and horizontal diffusion in the surface boundary layer. The processes occur on a spatial scale of many tens of kilometres and an evolutionary time of weeks. 2017-11-28
XQZIONP9 tendency of sea water salinity expressed as salt content due to parameterized submesoscale eddy advection The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized submesoscale eddy advection occurs on a spatial scale of the order of 1 km horizontally. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. There are also standard names for parameterized_ mesoscale_ eddy_ advection which, along with parameterized_ submesoscale_ eddy_ advection, contributes to the total parameterized eddy advection. Additionally, when the parameterized advective process is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic. The convergence of a skew-flux is identical (in the continuous formulation) to the convergence of an advective flux, making their tendencies the same. 2017-11-28
STLMB8PH tendency of sea water salinity expressed as salt content due to residual mean advection The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The phrase "residual_ mean_ advection" refers to the sum of the model's resolved advective transport plus any parameterized advective transport. Parameterized advective transport includes processes such as parameterized mesoscale and submesoscale transport, as well as any other advectively parameterized transport. When the parameterized advective transport is represented in the model as a skew-diffusion rather than an advection, then the parameterized skew diffusion should be included in this diagnostic, since the convergence of skew-fluxes are identical (in the continuous formulation) to the convergence of advective fluxes. 2017-11-28
CF12N788 tendency of sea water temperature "tendency_ of_ X" means derivative of X with respect to time. Sea water temperature is the in situ temperature of the sea water. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2012-04-27
CFV8N126 tendency of sea water temperature due to advection "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sea water temperature is the in situ temperature of the sea water. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2012-04-27
CFV8N127 tendency of sea water temperature due to bolus advection DEPRECATED "tendency_ of_ X" means derivative of X with respect to time. Bolus advection in an ocean model means the part due to a scheme representing eddy-induced effects not included in the velocity field. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sea water temperature is the in situ temperature of the sea water. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2017-11-28
CFV8N128 tendency of sea water temperature due to horizontal mixing "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Horizontal mixing" means any horizontal transport other than by advection and parameterized eddy advection, usually represented as horizontal diffusion in ocean models. Sea water temperature is the in situ temperature of the sea water. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2018-02-12
G9SFNEYA tendency of sea water temperature due to parameterized eddy advection "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized eddy advection in an ocean model means the part due to a scheme representing parameterized eddy-induced advective effects not included in the resolved model velocity field. Parameterized eddy advection can be represented on various spatial scales and there are standard names for parameterized_ mesoscale_ eddy_ advection and parameterized_ submesoscale_ eddy_ advection which both contribute to the total parameterized eddy advection. Sea water temperature is the in situ temperature of the sea water. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2017-11-28
CFV8N129 tendency of sea water temperature due to vertical mixing "tendency_ of_ X" means derivative of X with respect to time. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Vertical mixing" means any vertical transport other than by advection and parameterized eddy advection, represented by a combination of vertical diffusion, turbulent mixing and convection in ocean models. Sea water temperature is the in situ temperature of the sea water. For observed data, depending on the period during which the observation was made, the measured in situ temperature was recorded against standard "scales". These historical scales include the International Practical Temperature Scale of 1948 (IPTS-48; 1948-1967), the International Practical Temperature Scale of 1968 (IPTS-68, Barber, 1969; 1968-1989) and the International Temperature Scale of 1990 (ITS-90, Saunders 1990; 1990 onwards). Conversion of data between these scales follows t68 = t48 - (4.4 x 10e-6) * t48(100 - t - 48); t90 = 0.99976 * t68. Observations made prior to 1948 (IPTS-48) have not been documented and therefore a conversion cannot be certain. Differences between t90 and t68 can be up to 0.01 at temperatures of 40 C and above; differences of 0.002-0.007 occur across the standard range of ocean temperatures (-10 - 30 C). The International Equation of State of Seawater 1980 (EOS-80, UNESCO, 1981) and the Practical Salinity Scale (PSS-78) were both based on IPTS-68, while the Thermodynamic Equation of Seawater 2010 (TEOS-10) is based on ITS-90. References: Barber, 1969, doi: 10.1088/0026-1394/5/2/001; UNESCO, 1981; Saunders, 1990, WOCE Newsletter, 10, September 1990. 2018-02-12
UROY29L6 tendency of soil and vegetation mass content of nitrogen compounds expressed as nitrogen due to fixation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. On land, "nitrogen fixation" means the uptake of nitrogen gas directly from the atmosphere. The representation of fixed nitrogen is model dependent, with the nitrogen entering either vegetation, soil or both. "Vegetation" means any living plants e.g. trees, shrubs, grass. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-04-16
FROZ28YJ tendency of soil mass content of nitrogen compounds expressed as nitrogen due to fertilization The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. The "soil content" of a quantity refers to the vertical integral from the surface down to the bottom of the soil model. For the content between specified levels in the soil, standard names including "content_ of_ soil_ layer" are used. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. The list of individual species that are included in this quantity can vary between models. Where possible, the data variable should be accompanied by a complete description of the species represented, for example, by using a comment attribute. "Fertilization" means the addition of artificial fertilizers and animal manure to soil for the purpose of increasing plant nutrient concentrations. 2018-04-16
CFSN0152 tendency of specific humidity 'tendency_ of_ X' means derivative of X with respect to time. 'specific' means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 2006-09-26
CFSN0153 tendency of specific humidity due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'specific' means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 2006-09-26
BONZCG5H tendency of specific humidity due to boundary layer mixing The phrase "tendency_ of_ X" means derivative of X with respect to time. "Specific" means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Boundary layer mixing" means turbulent motions that transport heat, water, momentum and chemical constituents within the atmospheric boundary layer and affect exchanges between the surface and the atmosphere. The atmospheric boundary layer is typically characterised by a well-mixed sub-cloud layer of order 500 metres, and by a more extended conditionally unstable layer with boundary-layer clouds up to 2 km. (Reference: IPCC Third Assessment Report, Working Group 1: The Scientific Basis, 7.2.2.3, https://archive.ipcc.ch/ipccreports/tar/wg1/273.htm). 2020-03-09
CFSN0154 tendency of specific humidity due to convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'specific' means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 2006-09-26
CFSN0155 tendency of specific humidity due to diffusion The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'specific' means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 2006-09-26
CFSN0825 tendency of specific humidity due to large scale precipitation DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "tendency_ of_ X" means derivative of X with respect to time. "specific" means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 2010-03-11
CFSN0156 tendency of specific humidity due to model physics The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'specific' means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. 2006-09-26
SMTGYH2X tendency of specific humidity due to stratiform cloud and precipitation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Specific" means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Precipitation" in the earth's atmosphere means precipitation of water in all phases. A variable with the standard name of tendency_ of_ specific_ humidity_ due_ to_ stratiform_ cloud_ and_ precipitation should contain the effects of all processes which convert stratiform clouds and precipitation to or from water vapor. 2018-08-06
CFV13N34 tendency of specific humidity due to stratiform cloud and precipitation and boundary layer mixing The phrase "tendency_ of_ X" means derivative of X with respect to time. Specific humidity is the mass fraction of water vapor in (moist) air. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Precipitation" in the earth's atmosphere means precipitation of water in all phases. "Boundary layer mixing" means turbulent motions that transport heat, water, momentum and chemical constituents within the atmospheric boundary layer and affect exchanges between the surface and the atmosphere. The atmospheric boundary layer is typically characterised by a well-mixed sub-cloud layer of order 500 metres, and by a more extended conditionally unstable layer with boundary-layer clouds up to 2 km. (Reference: IPCC Third Assessment Report, Working Group 1: The Scientific Basis, 7.2.2.3, https://archive.ipcc.ch/ipccreports/tar/wg1/273.htm). 2020-03-09
CFV13A10 tendency of specific humidity due to stratiform precipitation The phrase "tendency_ of_ X" means derivative of X with respect to time. Specific humidity is the mass fraction of water vapor in (moist) air. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In an atmosphere model, stratiform cloud is that produced by large-scale convergence (not the convection schemes). "Precipitation" in the earth's atmosphere means precipitation of water in all phases. 2018-08-06
CFSN0157 tendency of surface air pressure The surface called "surface" means the lower boundary of the atmosphere. "tendency_ of_ X" means derivative of X with respect to time. Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
OQO6FOZC tendency of surface ice amount due to sublimation DEPRECATED The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sublimation is the conversion of solid into vapor. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. 2018-07-10
CFSN0158 tendency of surface snow amount The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. Surface snow amount refers to the amount on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
G6BFNI8N tendency of surface snow amount due to conversion of snow to sea ice The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. Surface snow amount refers to the amount on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Conversion of snow to sea ice" occurs when the mass of snow accumulated on an area of sea ice is sufficient to cause the ice to become mostly submerged. Waves can then wash over the ice and snow surface and freeze into a layer that becomes "snow ice". "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2021-01-18
NRYJFQUX tendency of surface snow amount due to drifting into sea The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. Surface snow amount refers to the amount on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2021-01-18
XPK0NRX8 tendency of surface snow amount due to sea ice dynamics The quantity with standard name tendency_ of_ surface_ snow_ amount_ due_ to_ sea_ ice_ dynamics is the rate of change of snow amount caused by advection of the sea ice upon which the snow is lying. The phrase "tendency_ of_ X" means derivative of X with respect to time. "Amount" means mass per unit area. Surface snow amount refers to the amount on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice dynamics" refers to advection of sea ice. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2021-01-18
V3K6HFXT tendency of surface snow amount due to sublimation DEPRECATED The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "surface_ snow" means snow lying on the surface. "Amount" means mass per unit area. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sublimation is the conversion of solid into vapor. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. 2018-07-10
AONHB29Z tendency of surface snow and ice amount due to sublimation DEPRECATED The phrase "tendency_ of_ X" means derivative of X with respect to time. The phrase "surface_ snow" means snow lying on the surface. "Amount" means mass per unit area. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Sublimation is the conversion of solid into vapor. 2018-07-10
H3WXLXZJ tendency of thermal energy content of surface snow due to rainfall temperature excess above freezing The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. Thermal energy is the total vibrational energy, kinetic and potential, of all the molecules and atoms in a substance. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. The quantity with standard name tendency_ of_ thermal_ energy_ content_ of_ surface_ snow_ due_ to_ rainfall_ temperature_ excess_ above_ freezing is the heat energy carried by rainfall reaching the surface. It is calculated relative to the heat that would be carried by rainfall reaching the surface at zero degrees Celsius. It is calculated as the product QrainCpTrain, where Qrain is the mass flux of rainfall reaching the surface (kg m-2 s-1), Cp is the specific heat capacity of water and Train is the temperature in degrees Celsius of the rain water reaching the surface. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2021-01-18
CF12S61 tendency of troposphere moles of carbon monoxide "tendency_ of_ X" means derivative of X with respect to time. The construction "troposphere_ moles_ of_ X" means the total number of moles of X in the troposphere, i.e. summed over that part of the atmospheric column and over the entire globe. The chemical formula of carbon monoxide is CO. 2009-07-06
CF12S62 tendency of troposphere moles of hcc140a The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "troposphere_ moles_ of_ X" means the total number of moles of X contained in the troposphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of HCC140a, also called methyl chloroform, is CH3CCl3. The IUPAC name for HCC140a is 1,1,1-trichloroethane. 2019-05-14
CF12S63 tendency of troposphere moles of hcfc22 The phrase "tendency_ of_ X" means derivative of X with respect to time. The construction "troposphere_ moles_ of_ X" means the total number of moles of X contained in the troposphere, i.e, summed over that part of the atmospheric column and over the entire globe. The chemical formula of HCFC22 is CHClF2. The IUPAC name for HCFC22 is chloro(difluoro)methane. 2019-05-14
CF12S64 tendency of troposphere moles of methane "tendency_ of_ X" means derivative of X with respect to time. The construction "troposphere_ moles_ of_ X" means the total number of moles of X in the troposphere, i.e. summed over that part of the atmospheric column and over the entire globe. The chemical formula for methane is CH4. Methane is a member of the group of hydrocarbons known as alkanes. There are standard names for the alkane group as well as for some of the individual species. 2009-07-06
CF12S65 tendency of troposphere moles of methyl bromide "tendency_ of_ X" means derivative of X with respect to time. The construction "troposphere_ moles_ of_ X" means the total number of moles of X in the troposphere, i.e. summed over that part of the atmospheric column and over the entire globe. The chemical formula for methyl bromide is CH3Br. The IUPAC name for methyl bromide is bromomethane. 2009-07-06
CF12S66 tendency of troposphere moles of methyl chloride "tendency_ of_ X" means derivative of X with respect to time. The construction "troposphere_ moles_ of_ X" means the total number of moles of X in the troposphere, i.e. summed over that part of the atmospheric column and over the entire globe. The chemical formula for methyl chloride is CH3Cl. The IUPAC name for methyl chloride is chloromethane. 2009-07-06
CF12S67 tendency of troposphere moles of molecular hydrogen "tendency_ of_ X" means derivative of X with respect to time. The construction "troposphere_ moles_ of_ X" means the total number of moles of X in the troposphere, i.e. summed over that part of the atmospheric column and over the entire globe. The chemical formula for molecular hydrogen is H2. 2009-07-06
CFSN0159 tendency of upward air velocity 'tendency_ of_ X' means derivative of X with respect to time. A velocity is a vector quantity. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Upward air velocity is the vertical component of the 3D air velocity vector. 2006-09-26
CFSN0131 tendency of upward air velocity due to advection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. A velocity is a vector quantity. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Upward air velocity is the vertical component of the 3D air velocity vector. 2006-09-26
O4P2N51U tendency of vegetation mass content of nitrogen compounds expressed as nitrogen due to fixation The phrase "tendency_ of_ X" means derivative of X with respect to time. "Content" indicates a quantity per unit area. "Vegetation" means any living plants e.g. trees, shrubs, grass. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. The phrase "expressed_ as" is used in the construction A_ expressed_ as_ B, where B is a chemical constituent of A. It means that the quantity indicated by the standard name is calculated solely with respect to the B contained in A, neglecting all other chemical constituents of A. "Nitrogen compounds" summarizes all chemical species containing nitrogen atoms. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. On land, "nitrogen fixation" means the uptake of nitrogen gas directly from the atmosphere. The representation of fixed nitrogen is model dependent, with the nitrogen entering either plants, soil or both. 2018-05-15
CFSN0132 tendency of water vapor content of atmosphere layer DEPRECATED 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
CFSN0133 tendency of water vapor content of atmosphere layer due to convection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
CFSN0134 tendency of water vapor content of atmosphere layer due to deep convection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
CFSN0135 tendency of water vapor content of atmosphere layer due to shallow convection DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
CFSN0136 tendency of water vapor content of atmosphere layer due to turbulence DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary variable) as well. 2011-07-21
CFSN0137 tendency of wind speed due to convection The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Speed is the magnitude of velocity. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) The wind speed is the magnitude of the wind velocity. 2006-09-26
CFSN0138 tendency of wind speed due to gravity wave drag The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'tendency_ of_ X' means derivative of X with respect to time. Speed is the magnitude of velocity. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) The wind speed is the magnitude of the wind velocity. 2006-09-26
IBM1DBIU thermal conductivity of frozen ground Thermal conductivity is the constant k in the formula q = -k grad T where q is the heat transfer per unit time per unit area of a surface normal to the direction of transfer and grad T is the temperature gradient. Thermal conductivity is a property of the material. 2021-09-20
CFV15A30 thermal energy content of surface snow "Content" indicates a quantity per unit area. Thermal energy is the total vibrational energy, kinetic and potential, of all the molecules and atoms in a substance. Surface snow refers to the snow on the solid ground or on surface ice cover, but excludes, for example, falling snowflakes and snow on plants. 2021-01-18
P80D44S1 thermodynamic phase of cloud water particles at cloud top A variable with the standard name of thermodynamic_ phase_ of_ cloud_ water_ particles_ at_ cloud_ top contains integers which can be translated to strings using flag_ values and flag_ meanings attributes. Alternatively, the data variable may contain strings which indicate the thermodynamic phase. These strings are standardised. Values must be chosen from the following list: liquid; ice; mixed; clear_ sky; super_ cooled_ liquid_ water; unknown. "Water" means water in all phases. The phrase "cloud_ top" refers to the top of the highest cloud. 2020-09-14
T3YXCX0I thermosteric change in mean sea level Thermosteric sea level change is the part caused by change in sea water density due to change in temperature i.e. thermal expansion. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. Zero mean sea level change is an arbitrary level. The sum of the quantities with standard names thermosteric_ change_ in_ mean_ sea_ level and halosteric_ change_ in_ mean_ sea_ level has the standard name steric_ change_ in_ mean_ sea_ level. 2017-06-26
Y5UYGUUV thermosteric change in sea surface height "Sea surface height" is a time-varying quantity. The thermosteric change in sea surface height is the change in height that a water column having standard temperature zero degrees Celsius would undergo when its temperature is changed to the observed value. The sum of the quantities with standard names thermosteric_ change_ in_ sea_ surface_ height and halosteric_ change_ in_ sea_ surface_ height is the total steric change in the water column height, which has the standard name of steric_ change_ in_ sea_ surface_ height. 2017-07-24
CFSN0139 thickness of convective rainfall amount 'Amount' means mass per unit area. The construction thickness_ of_ [X_ ]rainfall_ amount means the accumulated 'depth' of rainfall i.e. the thickness of a layer of liquid water having the same mass per unit area as the rainfall amount. 2006-09-26
CFSN0140 thickness of convective snowfall amount 'Amount' means mass per unit area. The construction thickness_ of_ [X_ ]snowfall_ amount means the accumulated 'depth' of snow which fell i.e. the thickness of the layer of snow at its own density. There are corresponding standard names for liquid water equivalent (lwe) thickness. 2006-09-26
NS6434A4 thickness of ice on sea ice melt pond "Thickness" means the vertical extent of a layer. Melt ponds occur on top of the existing sea ice. The water in melt ponds can refreeze at the surface, giving rise to a layer of ice on the melt pond, which is turn resting on the sea_ ice below. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0141 thickness of large scale rainfall amount DEPRECATED 'Amount' means mass per unit area. The construction thickness_ of_ [X_ ]rainfall_ amount means the accumulated 'depth' of rainfall i.e. the thickness of a layer of liquid water having the same mass per unit area as the rainfall amount. 2010-07-26
CFSN0142 thickness of large scale snowfall amount DEPRECATED 'Amount' means mass per unit area. The construction thickness_ of_ [X_ ]snowfall_ amount means the accumulated 'depth' of snow which fell i.e. the thickness of the layer of snow at its own density. There are corresponding standard names for liquid water equivalent (lwe) thickness. 2010-07-26
BBAH2116 thickness of liquid water cloud "Thickness" means the vertical extent of a layer. 2011-07-21
CFSN0143 thickness of rainfall amount 'Amount' means mass per unit area. The construction thickness_ of_ [X_ ]rainfall_ amount means the accumulated 'depth' of rainfall i.e. the thickness of a layer of liquid water having the same mass per unit area as the rainfall amount. 2006-09-26
CFSN0113 thickness of snowfall amount 'Amount' means mass per unit area. The construction thickness_ of_ [X_ ]snowfall_ amount means the accumulated 'depth' of snow which fell i.e. the thickness of the layer of snow at its own density. There are corresponding standard names for liquid water equivalent (lwe) thickness. 2006-09-26
25SUENIW thickness of soil surface organic layer Depth or height of the organic soil horizon (O or H horizons per the World Reference Base soil classification system), measured from the soil surface down to the mineral horizon. Organic layers are commonly composed of a succession of litter of recognizable origin, of partly decomposed litter, and of highly decomposed (humic) organic material. 2023-04-24
CFV15A31 thickness of stratiform rainfall amount "Amount" means mass per unit area. The construction thickness_ of_ [X_ ]rainfall_ amount means the accumulated "depth" of rainfall i.e. the thickness of a layer of liquid water having the same mass per unit area as the rainfall amount. Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. 2010-07-26
CFV15A32 thickness of stratiform snowfall amount "Amount" means mass per unit area. The construction thickness_ of_ [X_ ]snowfall_ amount means the accumulated "depth" of snow which fell i.e. the thickness of the layer of snow at its own density. There are corresponding standard names for liquid water equivalent (lwe) thickness. Stratiform precipitation, whether liquid or frozen, is precipitation that formed in stratiform cloud. 2010-07-26
CFSN0114 thunderstorm probability 'probability_ of_ X' means the chance that X is true or of at least one occurrence of X. Space and time coordinates must be used to indicate the area and time-interval to which a probability applies. 2006-09-26
OY1ZBMF2 tidal sea surface height above lowest astronomical tide "Sea surface height" is a time-varying quantity. "Height_ above_ X" means the vertical distance above the named surface X. "Lowest astronomical tide" describes a local vertical reference based on the lowest water level that can be expected to occur under average meteorological conditions and under any combination of astronomical conditions. The tidal component of sea surface height describes the predicted variability of the sea surface due to astronomic forcing (chiefly lunar and solar cycles) and shallow water resonance of tidal components; for example as generated based on harmonic analysis, or resulting from the application of harmonic tidal series as boundary conditions to a numerical tidal model. 2018-08-06
63YV3QTG tidal sea surface height above mean higher high water "Sea surface height" is a time-varying quantity. "Height_ above_ X" means the vertical distance above the named surface X. "Mean higher high water" is the arithmetic mean of the higher high water height of each tidal day observed at a station over a Tidal Datum Epoch, which is a period of time that is usually greater than 18.6 years to include a full lunar cycle. Tidal datums in certain regions with anomalous sea level changes may be calculated using a shorter, or modified, Tidal Datum Epoch (e.g. 5 years). To specify the tidal datum epoch to which the quantity applies, provide a scalar coordinate variable with standard name reference_ epoch. 2020-10-13
HTBE8J95 tidal sea surface height above mean low water springs "Sea surface height" is a time-varying quantity. "Height_ above_ X" means the vertical distance above the named surface X. "Mean low water springs" describes a local vertical reference based on the time mean of the low water levels during spring tides (the tides each lunar month with the greatest difference between high and low water that happen during full and new moons phases) expected to occur under average meteorological conditions and under any combination of astronomical conditions. The tidal component of sea surface height describes the predicted variability of the sea surface due to astronomic forcing (chiefly lunar and solar cycles) and shallow water resonance of tidal components; for example as generated based on harmonic analysis, or resulting from the application of harmonic tidal series as boundary conditions to a numerical tidal model. 2020-02-03
YKB1QMEE tidal sea surface height above mean lower low water "Sea surface height" is a time-varying quantity. "Height_ above_ X" means the vertical distance above the named surface X. "Mean lower low water" is the arithmetic mean of the lower low water height of each tidal day observed at a station over a Tidal Datum Epoch, which is a period of time that is usually greater than 18.6 years to include a full lunar cycle. Tidal datums in certain regions with anomalous sea level changes may be calculated using a shorter, or modified, Tidal Datum Epoch (e.g. 5 years). To specify the tidal datum epoch to which the quantity applies, provide a scalar coordinate variable with standard name reference_ epoch. 2020-10-13
SJGDJ1U7 tidal sea surface height above mean sea level "Sea surface height" is a time-varying quantity. "Height_ above_ X" means the vertical distance above the named surface X. "Mean sea level" means the time mean of sea surface elevation at a given location over an arbitrary period sufficient to eliminate the tidal signals. The tidal component of sea surface height describes the predicted variability of the sea surface due to astronomic forcing (chiefly lunar and solar cycles) and shallow water resonance of tidal components; for example as generated based on harmonic analysis, or resulting from the application of harmonic tidal series as boundary conditions to a numerical tidal model. 2018-08-06
CFSN0115 time 2006-09-26
VHPVF15J time of maximum flood depth The quantity with standard name time_ of_ maximum_ flood_ depth is the time elapsed between the breaking of a levee (origin of flood water simulation) and the instant when the flood depth reaches its maximum during the simulation for a given point in space. Flood water is water that covers land which is normally not covered by water. 2016-05-17
D5JZ7N44 time sample difference due to collocation time_ sample_ difference_ due_ to_ collocation is the difference in time between two events that are collocated. Two events are deemed to be collocated based on some set of spatial, temporal, and viewing geometry criteria. 2013-06-27
XYA93BA0 time when flood water falls below threshold The quantity with standard name time_ when_ flood_ water_ falls_ below_ threshold is the time elapsed between the breaking of a levee (origin of flood water simulation) and the instant when the depth falls below a given threshold for the last time, having already risen to its maximum depth, at a given point in space. If a threshold is supplied, it should be specified by associating a coordinate variable or scalar coordinate variable with the data variable and giving the coordinate variable a standard name of flood_ water_ thickness. The values of the coordinate variable are the threshold values for the corresponding subarrays of the data variable. If no threshold is specified, its value is taken to be zero. Flood water is water that covers land which is normally not covered by water. 2016-05-17
QHP3LD5T time when flood water rises above threshold The quantity with standard name time_ when_ flood_ water_ rises_ above_ threshold is the time elapsed between the breaking of a levee (origin of flood water simulation) and the instant when the depth first rises above a given threshold at a given point in space. If a threshold is supplied, it should be specified by associating a coordinate variable or scalar coordinate variable with the data variable and giving the coordinate variable a standard name of flood_ water_ thickness. The values of the coordinate variable are the threshold values for the corresponding subarrays of the data variable. If no threshold is specified, its value is taken to be zero. Flood water is water that covers land which is normally not covered by water. 2016-05-17
GTUW0M08 to direction of air velocity relative to sea water The quantity with standard name to_ direction_ of_ air_ velocity_ relative_ to_ sea_ water is the difference between the direction of motion of the air and the near-surface current. The phrase "to_ direction" is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. The components of the relative velocity vector have standard names eastward_ air_ velocity_ relative_ to_ sea_ water and northward_ air_ velocity_ relative_ to_ sea_ water. A vertical coordinate variable or scalar coordinate variable with standard name "depth" should be used to indicate the depth of sea water velocity used in the calculation. Similarly, a vertical coordinate variable or scalar coordinate with standard name "height" should be used to indicate the height of the the wind component. 2021-01-18
58FC3UBA to direction of surface downward stress The phrase "to_ direction" is used in the construction X_ to_ direction and indicates the direction towards which the vector of X is headed. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). "Surface stress" means the shear stress (force per unit area) exerted by the wind at the surface. A downward stress is a downward flux of momentum. Over large bodies of water, wind stress can drive near-surface currents. 2021-01-18
CFSN0116 toa adjusted longwave forcing The abbreviation "toa" means top of atmosphere. The term "longwave" means longwave radiation. Adjusted forcing is the radiative flux change caused by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.) after allowance for stratospheric temperature adjustment. A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFSN0117 toa adjusted radiative forcing The abbreviation "toa" means top of atmosphere. Adjusted forcing is the radiative flux change caused by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.) after allowance for stratospheric temperature adjustment. A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFSN0118 toa adjusted shortwave forcing The abbreviation "toa" means top of atmosphere. The term "shortwave" means shortwave radiation. Adjusted forcing is the radiative flux change caused by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.) after allowance for stratospheric temperature adjustment. A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CF12N789 toa bidirectional reflectance "Bidirectional_ reflectance" depends on the angles of incident and measured radiation. Reflectance is the ratio of the energy of the reflected to the incident radiation. A coordinate variable of radiation_ wavelength or radiation_ frequency can be used to specify the wavelength or frequency, respectively, of the radiation. "toa" means top of atmosphere. toa_ bidirectional_ reflectance includes a factor to account for the cosine of the solar zenith angle but does not include any integration over solid angle. 2013-02-12
CF12N790 toa brightness temperature The brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area. "toa" means top of atmosphere. 2009-07-06
CF12N791 toa brightness temperature assuming clear sky The brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "toa" means top of atmosphere. 2009-07-06
JZXMHK7I toa brightness temperature bias at standard scene due to intercalibration toa_ brightness_ temperature_ bias_ at_ standard_ scene_ due_ to_ intercalibration is the difference between top-of-atmosphere (TOA) brightness temperature of the reference sensor and TOA brightness temperature of the monitored sensor. This TOA brightness temperature difference is a measure of the calibration difference between the monitored and reference sensors. The standard scene is a target area with typical Earth surface and atmospheric conditions that is accepted as a reference. Brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area at a given wavenumber. TOA brightness temperature of the standard scene is calculated using a radiative transfer simulation for a given viewing geometry. The resultant top-of-atmosphere spectral radiance is then integrated with each sensor's spectral response function and converted to equivalent brightness temperature. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2013-06-27
YPV7QQQG toa brightness temperature of standard scene "toa" means top of atmosphere. The brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area at a given wavenumber. The standard scene is a target area with typical Earth surface and atmospheric conditions that is accepted as a reference. The toa radiance of the standard scene is calculated using a radiative transfer model for a given viewing geometry. The resultant toa spectral radiance is then integrated with a sensor's spectral response function and converted to equivalent brightness temperature. 2013-06-27
CFV8N130 toa cloud radiative effect The abbreviation "toa" means top of atmosphere. Cloud radiative effect is also commonly known as "cloud radiative forcing". It is the sum of the quantities with standard names toa_ shortwave_ cloud_ radiative_ effect and toa_ longwave_ cloud_ radiative_ effect. A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFSN0119 toa incoming shortwave flux 'shortwave' means shortwave radiation. 'toa' means top of atmosphere. The TOA incoming shortwave flux is the radiative flux from the sun i.e. the 'downwelling' TOA shortwave flux. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0120 toa instantaneous longwave forcing The abbreviation "toa" means top of atmosphere. The term "longwave" means longwave radiation. Instantaneous forcing is the radiative flux change caused instantaneously by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.). A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFSN0121 toa instantaneous radiative forcing The abbreviation "toa" means top of atmosphere. Instantaneous forcing is the radiative flux change caused instantaneously by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.). A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFSN0122 toa instantaneous shortwave forcing The abbreviation "toa" means top of atmosphere. The term "shortwave" means shortwave radiation. Instantaneous forcing is the radiative flux change caused instantaneously by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.). A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFV8N131 toa longwave cloud radiative effect The abbreviation "toa" means top of atmosphere. The term "longwave" means longwave radiation. Cloud radiative effect is also commonly known as "cloud radiative forcing". It is the difference in radiative flux resulting from the presence of clouds. A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. The quantity with standard name toa_ longwave_ cloud_ radiative_ effect is the difference between those with standard names toa_ outgoing_ longwave_ flux_ assuming_ clear_ sky and toa_ outgoing_ longwave_ flux. 2019-05-14
K2I54UFY toa longwave dust ambient aerosol particles direct radiative effect assuming clear sky "toa" means top of atmosphere. The term "longwave" means longwave radiation. "X_ direct_ radiative_ effect" refers to the instantaneous radiative impact of X on the Earth's energy balance, excluding secondary effects such as changes in cloud cover which may be caused by X. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-06-11
CFSN0784 toa net downward longwave flux "longwave" means longwave radiation. "toa" means top of atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2007-03-13
CFV11N13 toa net downward longwave flux assuming clear sky A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "longwave" means longwave radiation. "toa" means top of atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-11-11
CFSN0123 toa net downward radiative flux 'toa' means top of atmosphere. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). Radiative flux is the sum of shortwave and longwave radiative fluxes. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0124 toa net downward shortwave flux 'shortwave' means shortwave radiation. 'toa' means top of atmosphere. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0125 toa net downward shortwave flux assuming clear sky A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'shortwave' means shortwave radiation. 'toa' means top of atmosphere. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0126 toa net upward longwave flux 'longwave' means longwave radiation. 'toa' means top of atmosphere. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Net upward radiation is the difference between radiation from below (upwelling) and radiation from above (downwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0127 toa net upward longwave flux assuming clear sky A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'longwave' means longwave radiation. 'toa' means top of atmosphere. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Net upward radiation is the difference between radiation from below (upwelling) and radiation from above (downwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0128 toa net upward shortwave flux 'shortwave' means shortwave radiation. 'toa' means top of atmosphere. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Net upward radiation is the difference between radiation from below (upwelling) and radiation from above (downwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0129 toa outgoing longwave flux 'longwave' means longwave radiation. 'toa' means top of atmosphere. The TOA outgoing longwave flux is the upwelling thermal radiative flux, often called the 'outgoing longwave radiation' or 'OLR'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0130 toa outgoing longwave flux assuming clear sky A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'longwave' means longwave radiation. 'toa' means top of atmosphere. The TOA outgoing longwave flux is the upwelling thermal radiative flux, often called the 'outgoing longwave radiation' or 'OLR'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
KJOSGDPU toa outgoing longwave flux due to volcanic ambient aerosol particles assuming clear sky "toa" means top of atmosphere. The term "longwave" means longwave radiation. The TOA outgoing longwave flux is the upwelling thermal radiative flux, often called the "outgoing longwave radiation" or "OLR". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". Volcanic aerosols include both volcanic ash and secondary products such as sulphate aerosols formed from gaseous emissions of volcanic eruptions. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 2018-05-15
0PVCZPS1 toa outgoing radiance per unit wavelength "toa" means top of atmosphere. The TOA outgoing radiance is the upwelling radiance, i.e., toward outer space. Radiance is the radiative flux in a particular direction, per unit of solid angle. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2013-06-27
OC8HSAPJ toa outgoing radiance per unit wavelength due to solar induced fluorescence The abbreviation "toa" means top of atmosphere. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Some of the solar energy absorbed by pigment systems of plant leaves during photosynthesis is re-emitted as fluorescence. This is called solar-induced chlorophyll fluorescence (SIF). It is a radiance that can be measured on a global scale at various wavelengths and by multiple space borne instruments. SIF is considered a measurement of the photosynthetic machinery in plants and can provide a direct approach for the diagnosis of the actual functional status of vegetation. It is therefore considered a functional proxy of terrestrial gross primary productivity which has the standard name gross_ primary_ productivity_ of_ biomass_ expressed_ as_ carbon. SIF spans the wavelength range 600 - 800 nm. 2019-03-04
KHMXC8A3 toa outgoing radiance per unit wavenumber "toa" means top of atmosphere. The TOA outgoing radiance is the upwelling radiance, i.e., toward outer space. Radiance is the radiative flux in a particular direction, per unit of solid angle. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2013-06-27
L757Q4Z5 toa outgoing radiance per unit wavenumber mean within collocation scene toa_ outgoing_ radiance_ per_ unit_ wavenumber_ mean_ within_ collocation_ scene is an average of observations of the quantity with standard name toa_ outgoing_ radiance_ per_ unit_ wavenumber from a sensor's adjacent field-of-views within a collocation scene. "toa" means top of atmosphere. The TOA outgoing radiance is the upwelling radiance, i.e., toward outer space. Radiance is the radiative flux in a particular direction, per unit of solid angle. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The "collocation scene" is a grouping of a sensor's adjacent field-of-views centered on a collocation target. The size of the collocation scene is typically about twice that of the collocation target. The "collocation target" is an area on the Earth's surface at which observations from at least two sensors are collected. Its size is defined by the sensor with the largest field-of-view footprint. Two events are deemed to be collocated based on some set of spatial, temporal, and viewing geometry criteria. 2013-06-27
SEIUIE5L toa outgoing radiance per unit wavenumber mean within collocation target toa_ outgoing_ radiance_ per_ unit_ wavenumber_ mean_ within_ collocation_ target is an average of observations of the quantity with standard name toa_ outgoing_ radiance_ per_ unit_ wavenumber from a sensor's adjacent field-of-views within a collocation target. "toa" means top of atmosphere. The TOA outgoing radiance is the upwelling radiance, i.e., toward outer space. Radiance is the radiative flux in a particular direction, per unit of solid angle. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The "collocation target" is an area on the Earth's surface at which observations from at least two sensors are collected. Its size is defined by the sensor with the largest field-of-view footprint. Two events are deemed to be collocated based on some set of spatial, temporal, and viewing geometry criteria. 2013-06-27
L8U3XV9W toa outgoing radiance per unit wavenumber stdev within collocation scene toa_ outgoing_ radiance_ per_ unit_ wavenumber_ stdev_ within_ collocation_ scene is the standard deviation of observations of the quantity with standard name toa_ outgoing_ radiance_ per_ unit_ wavenumber from a sensor's adjacent field-of-views within a collocation scene. "toa" means top of atmosphere. The TOA outgoing radiance is the upwelling radiance, i.e., toward outer space. Radiance is the radiative flux in a particular direction, per unit of solid angle. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The "collocation scene" is a grouping of a sensor's adjacent field-of-views centered on a collocation target. The size of the collocation scene is typically about twice that of the collocation target. The "collocation target" is an area on the Earth's surface at which observations from at least two sensors are collected. Its size is defined by the sensor with the largest field-of-view footprint. Two events are deemed to be collocated based on some set of spatial, temporal, and viewing geometry criteria. 2013-06-27
T77TU7NY toa outgoing radiance per unit wavenumber stdev within collocation target toa_ outgoing_ radiance_ per_ unit_ wavenumber_ stdev_ within_ collocation_ target is the standard deviation of observations of the quantity with standard name toa_ outgoing_ radiance_ per_ unit_ wavenumber from a sensor's adjacent field-of-views within a collocation target. "toa" means top of atmosphere. The TOA outgoing radiance is the upwelling radiance, i.e., toward outer space. Radiance is the radiative flux in a particular direction, per unit of solid angle. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The "collocation target" is an area on the Earth's surface at which observations from at least two sensors are collected. Its size is defined by the sensor with the largest field-of-view footprint. Two events are deemed to be collocated based on some set of spatial, temporal, and viewing geometry criteria. 2013-06-27
CFSN0092 toa outgoing shortwave flux 'shortwave' means shortwave radiation. 'toa' means top of atmosphere. The TOA outgoing shortwave flux is the reflected and scattered solar radiative flux i.e. the 'upwelling' TOA shortwave flux, sometimes called the 'outgoing shortwave radiation' or 'OSR'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
QV8NTU29 toa outgoing shortwave flux assuming clean clear sky DEPRECATED The abbreviation "toa" means top of atmosphere. The term "shortwave" means shortwave radiation. The TOA outgoing shortwave flux is the reflected and scattered solar radiative flux i.e. the "upwelling" TOA shortwave flux, sometimes called the "outgoing shortwave radiation" or "OSR". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clean sky" means in the absence of atmospheric aerosol. "Clear sky" means in the absence of clouds. 2018-05-30
CFSN0093 toa outgoing shortwave flux assuming clear sky A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 'shortwave' means shortwave radiation. 'toa' means top of atmosphere. The TOA outgoing shortwave flux is the reflected and scattered solar radiative flux i.e. the 'upwelling' TOA shortwave flux, sometimes called the 'outgoing shortwave radiation' or 'OSR'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
JNVL2P7J toa outgoing shortwave flux assuming clear sky and no aerosol The abbreviation "toa" means top of atmosphere. The term "shortwave" means shortwave radiation. The TOA outgoing shortwave flux is the reflected and scattered solar radiative flux i.e. the "upwelling" TOA shortwave flux, sometimes called the "outgoing shortwave radiation" or "OSR". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-05-30
J6PCRA9X toa outgoing shortwave flux assuming no aerosol The abbreviation "toa" means top of atmosphere. The term "shortwave" means shortwave radiation. The TOA outgoing shortwave flux is the reflected and scattered solar radiative flux i.e. the "upwelling" TOA shortwave flux, sometimes called the "outgoing shortwave radiation" or "OSR". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 2018-05-29
CZPO1D2P toa outgoing shortwave flux due to volcanic ambient aerosol particles assuming clear sky The abbreviation "toa" means top of atmosphere. The term "shortwave" means shortwave radiation. The TOA outgoing shortwave flux is the reflected and scattered solar radiative flux i.e. the "upwelling" TOA shortwave flux, sometimes called the "outgoing shortwave radiation" or "OSR". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". Volcanic aerosols include both volcanic ash and secondary products such as sulphate aerosols formed from gaseous emissions of volcanic eruptions. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. 2018-05-15
CFV8N132 toa shortwave cloud radiative effect The abbreviation "toa" means top of atmosphere. The term "shortwave" means shortwave radiation. Cloud radiative effect is also commonly known as "cloud radiative forcing". It is the difference in radiative flux resulting from the presence of clouds. A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. The quantity with standard name toa_ shortwave_ cloud_ radiative_ effect is the difference between those with standard names toa_ net_ downward_ shortwave_ flux and toa_ net_ downward_ shortwave_ flux_ assuming_ clear_ sky. 2019-05-14
F7F6R7IA tracer lifetime The quantity with standard name tracer_ lifetime is the total length of time a passive tracer exists within a medium. Passive tracers are used in models to study processes such as transport and deposition. 2015-01-07
CFSN0094 transpiration amount "Amount" means mass per unit area. Transpiration is the process by which liquid water in plant stomata is transferred as water vapor into the atmosphere. 2023-02-06
CFSN0095 transpiration flux In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Transpiration is the process by which liquid water in plant stomata is transferred as water vapor into the atmosphere. 2023-02-06
6VIC2GCT tropical cyclone eye brightness temperature The quantity with standard name tropical_ cyclone_ eye_ brightness_ temperature is the warmest brightness temperature value in the eye region of a tropical cyclone (0 - 24 km from the storm center) derived using the Advanced Dvorak Technique, based on satellite observations. Reference: Olander, T. L., & Velden, C. S., The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery (2007). American Meteorological Society Weather and Forecasting, 22, 287-298. The brightness temperature of a body is the temperature of a black body which radiates the same power per unit solid angle per unit area. 2019-02-04
I3G165NV tropical cyclone maximum sustained wind speed The quantity with standard name tropical_ cyclone_ maximum_ sustained_ wind_ speed is the maximum sustained wind speed of a tropical cyclone, sustained over a period of one minute at the surface of the earth, derived using the Advanced Dvorak Technique based on satellite observations. Reference: Olander, T. L., & Velden, C. S., The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery (2007). American Meteorological Society Weather and Forecasting, 22, 287-298. 2019-02-04
CFSN0096 tropopause adjusted longwave forcing The term "longwave" means longwave radiation. Adjusted forcing is the radiative flux change caused by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.) after allowance for stratospheric temperature adjustment. A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFSN0097 tropopause adjusted radiative forcing Adjusted forcing is the radiative flux change caused by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.) after allowance for stratospheric temperature adjustment. A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFSN0098 tropopause adjusted shortwave forcing The term "shortwave" means shortwave radiation. Adjusted forcing is the radiative flux change caused by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.) after allowance for stratospheric temperature adjustment. A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFSN0099 tropopause air pressure Air pressure is the force per unit area which would be exerted when the moving gas molecules of which the air is composed strike a theoretical surface of any orientation. 2017-07-24
CFSN0100 tropopause air temperature Air temperature is the bulk temperature of the air, not the surface (skin) temperature. 2006-09-26
CFSN0101 tropopause altitude Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 2006-09-26
CFSN0102 tropopause downwelling longwave flux Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "longwave" means longwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFSN0103 tropopause instantaneous longwave forcing The term "longwave" means longwave radiation. Instantaneous forcing is the radiative flux change caused instantaneously by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.). A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFSN0104 tropopause instantaneous radiative forcing Instantaneous forcing is the radiative flux change caused instantaneously by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.). A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFSN0105 tropopause instantaneous shortwave forcing The term "shortwave" means shortwave radiation. Instantaneous forcing is the radiative flux change caused instantaneously by an imposed change in radiative forcing agent (greenhouse gases, aerosol, solar radiation, etc.). A positive radiative forcing or radiative effect is equivalent to a downward radiative flux and contributes to a warming of the earth system. 2019-05-14
CFSN0106 tropopause net downward longwave flux 'longwave' means longwave radiation. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0107 tropopause net downward shortwave flux 'shortwave' means shortwave radiation. 'Downward' indicates a vector component which is positive when directed downward (negative upward). Net downward radiation is the difference between radiation from above (downwelling) and radiation from below (upwelling). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0108 tropopause upwelling shortwave flux The term "shortwave" means shortwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
E5I5O9MF troposphere mole content of bromine monoxide "Content" indicates a quantity per unit area. The "troposphere content" of a quantity refers to the vertical integral from the surface to the tropopause. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for bromine_ monoxide is BrO. 2013-03-23
9SZ49G42 troposphere mole content of formaldehyde "Content" indicates a quantity per unit area. The "troposphere content" of a quantity refers to the vertical integral from the surface to the tropopause. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for formaldehyde is CH2O. The IUPAC name for formaldehyde is methanal. 2013-03-23
IC72FRSN troposphere mole content of glyoxal "Content" indicates a quantity per unit area. The "troposphere content" of a quantity refers to the vertical integral from the surface to the tropopause. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for glyoxal is CHOCHO. The IUPAC name for glyoxal is ethanedial. 2013-03-23
50C00M7N troposphere mole content of iodine monoxide "Content" indicates a quantity per unit area. The "troposphere content" of a quantity refers to the vertical integral from the surface to the tropopause. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for iodine_ monoxide is IO. 2013-03-23
NVBBWGZJ troposphere mole content of nitrogen dioxide "Content" indicates a quantity per unit area. The "troposphere content" of a quantity refers to the vertical integral from the surface to the tropopause. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for nitrogen_ dioxide is NO2. 2013-03-23
TTE2HM2Q troposphere mole content of ozone "Content" indicates a quantity per unit area. The "troposphere content" of a quantity refers to the vertical integral from the surface to the tropopause. For the content between specified levels in the atmosphere, standard names including content_ of_ atmosphere_ layer are used. The chemical formula for ozone is O3. The IUPAC name for ozone is trioxygen. 2013-03-23
BUV28LAX troposphere mole content of sulfur dioxide "Content" indicates a quantity per unit area. The "troposphere content" of a quantity refers to the vertical integral from the surface to the tropopause. For the content between specified levels in the atmosphere, standard names including "content_ of_ atmosphere_ layer" are used. The chemical formula for sulfur dioxide is SO2. 2019-03-04
TVCXOW3Y turbulent mixing length of sea water "Turbulent mixing length" is used in models to describe the average distance over which a fluid parcel can travel while retaining properties that allow the parcel to be distinguished from its immediate environment. "Turbulent mixing" means chaotic fluctuations of the fluid flow. 2019-02-04
WYB1LR85 ultraviolet index The "Ultraviolet Index" (UVI) is a measure of the amount of solar ultraviolet radiation that reaches the surface of the earth depending on factors such as time of day and cloud cover. It is often used to alert the public of the need to limit sun exposure and use sun creams to protect the skin. Each point on the Index scale is equivalent to 25 mW m-2 of UV radiation (reference: Australian Bureau of Meteorology, http://www.bom.gov.au/uv/about_ uv_ index.shtml). The UVI range is expressed as a numeric value from 0 to 20 and sometimes graphically as bands of color indicating the attendant risk of skin damage. A UVI of 0-2 is described as 'Low' (represented graphically in green); a UVI of 11 or greater is described as "Extreme" (represented graphically in purple). The higher the UVI, the greater the potential health risk to humans and the less time it takes for harm to occur. To specify the amount of cloud cover at which the data variable applies, provide a scalar coordinate variable with standard name "cloud_ area_ fraction". Standard names are also defined for the quantities ultraviolet_ index_ assuming_ clear_ sky and ultraviolet_ index_ assuming_ overcast_ sky. 2016-05-17
MXPA4R9T ultraviolet index assuming clear sky The "Ultraviolet Index" (UVI) is a measure of the amount of solar ultraviolet radiation that reaches the surface of the earth depending on factors such as time of day and cloud cover. It is often used to alert the public of the need to limit sun exposure and use sun creams to protect the skin. Each point on the Index scale is equivalent to 25 mW m-2 of UV radiation (reference: Australian Bureau of Meteorology, http://www.bom.gov.au/uv/about_ uv_ index.shtml). The UVI range is expressed as a numeric value from 0 to 20 and sometimes graphically as bands of color indicating the attendant risk of skin damage. A UVI of 0-2 is described as 'Low' (represented graphically in green); a UVI of 11 or greater is described as "Extreme" (represented graphically in purple). The higher the UVI, the greater the potential health risk to humans and the less time it takes for harm to occur. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. Standard names are also defined for the quantities ultraviolet_ index and ultraviolet_ index_ assuming_ overcast_ sky. 2016-05-17
PRLBXY56 ultraviolet index assuming overcast sky The "Ultraviolet Index" (UVI) is a measure of the amount of solar ultraviolet radiation that reaches the surface of the earth depending on factors such as time of day and cloud cover. It is often used to alert the public of the need to limit sun exposure and use sun creams to protect the skin. Each point on the Index scale is equivalent to 25 mW m-2 of UV radiation (reference: Australian Bureau of Meteorology, http://www.bom.gov.au/uv/about_ uv_ index.shtml). The UVI range is expressed as a numeric value from 0 to 20 and sometimes graphically as bands of color indicating the attendant risk of skin damage. A UVI of 0-2 is described as 'Low' (represented graphically in green); a UVI of 11 or greater is described as "Extreme" (represented graphically in purple). The higher the UVI, the greater the potential health risk to humans and the less time it takes for harm to occur. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Overcast" means a fractional sky cover of 95% or more when at least a portion of this amount is attributable to clouds or obscuring phenomena (such as haze, dust, smoke, fog, etc.) aloft. (Reference: AMS Glossary: http://glossary.ametsoc.org/wiki/Main_ Page). Standard names are also defined for the quantities ultraviolet_ index and ultraviolet_ index_ assuming_ clear_ sky. 2016-05-17
FK6NPY5L universal thermal climate index DEPRECATED Universal Thermal Comfort Index (UTCI) is an equivalent temperature of the actual thermal condition. Reference: utci.org. It is the air temperature of a reference condition causing the same dynamic physiological response in a human body considering its energy budget, physiology and clothing adaptation. 2023-07-05
NER6AM3X universal thermal comfort index Universal Thermal Comfort Index (UTCI) is an equivalent temperature of the actual thermal condition. Reference: utci.org. It is the air temperature of a reference condition causing the same dynamic physiological response in a human body considering its energy budget, physiology and clothing adaptation. 2023-07-05
CFSN0109 upward air velocity A velocity is a vector quantity. "Upward" indicates a vector component which is positive when directed upward (negative downward). Upward air velocity is the vertical component of the 3D air velocity vector. The standard name downward_ air_ velocity may be used for a vector component with the opposite sign convention. 2016-03-08
CFSNA010 upward air velocity expressed as tendency of sigma DEPRECATED 'tendency_ of_ X' means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the 'material derivative' or 'convective derivative'. The Lagrangian tendency of sigma plays the role of the upward component of air velocity when the atmosphere sigma coordinate (a dimensionless atmosphere vertical coordinate) is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of sigma; downwards is positive. See Appendix D of the CF convention for information about dimensionless vertical coordinates. 2006-09-26
5P16J83X upward derivative of eastward wind The quantity with standard name upward_ derivative_ of_ eastward_ wind is the derivative of the eastward component of wind with respect to height. The phrase "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "upward", "downward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. A positive value indicates that X is increasing with distance along the positive direction of the axis. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). 2020-09-14
LP9IUJ8J upward derivative of northward wind The quantity with standard name upward_ derivative_ of_ northward_ wind is the derivative of the northward component of wind speed with respect to height. The phrase "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "upward", "downward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. A positive value indicates that X is increasing with distance along the positive direction of the axis. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). 2020-09-14
CKJA8KK3 upward derivative of wind from direction The quantity with standard name upward_ derivative_ of_ wind_ from_ direction is the derivative of wind from_ direction with respect to height. The phrase "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "upward", "downward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. A positive value indicates that X is increasing with distance along the positive direction of the axis. The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. In meteorological reports, the direction of the wind vector is usually (but not always) given as the direction from which it is blowing ("wind_ from_ direction") (westerly, northerly, etc.). In other contexts, such as atmospheric modelling, it is often natural to give the direction in the usual manner of vectors as the heading or the direction to which it is blowing ("wind_ to_ direction") (eastward, southward, etc.). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity"). 2020-09-14
CFSN0110 upward dry static energy flux due to diffusion The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'Upward' indicates a vector component which is positive when directed upward (negative downward). Dry static energy is the sum of enthalpy and potential energy (itself the sum of gravitational and centripetal potential energy). Enthalpy can be written either as (1) CpT, where Cp is heat capacity at constant pressure, T is absolute temperature, or (2) U+pV, where U is internal energy, p is pressure and V is volume. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFV9S5 upward eastward momentum flux in air due to nonorographic eastward gravity waves The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Upward" indicates a vector component which is positive when directed upward (negative downward). "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Upward eastward" indicates the ZX component of a tensor. An upward eastward momentum flux is an upward flux of eastward momentum, which accelerates the upper medium eastward and the lower medium westward. Momentum flux is dimensionally equivalent to stress and pressure. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The total upward eastward momentum flux due to gravity waves is the sum of the fluxes due to orographic gravity waves and nonorographic waves. The upward eastward momentum flux due to orographic gravity waves has the standard name upward_ eastward_ momentum_ flux_ in_ air_ due_ to_ orographic_ gravity_ waves. The total upward eastward momentum flux due to nonorographic gravity waves is the sum of the fluxes due to eastward and westward propagating waves. The latter has the standard name upward_ eastward_ momentum_ flux_ in_ air_ due_ to_ nonorographic_ westward_ gravity_ waves. 2008-06-10
CFV9S6 upward eastward momentum flux in air due to nonorographic westward gravity waves The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Upward" indicates a vector component which is positive when directed upward (negative downward). "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Upward eastward" indicates the ZX component of a tensor. An upward eastward momentum flux is an upward flux of eastward momentum, which accelerates the upper medium eastward and the lower medium westward. Momentum flux is dimensionally equivalent to stress and pressure. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The total upward eastward momentum flux due to gravity waves is the sum of the fluxes due to orographic gravity waves and nonorographic waves. The upward eastward momentum flux due to orographic gravity waves has the standard name upward_ eastward_ momentum_ flux_ in_ air_ due_ to_ orographic_ gravity_ waves. The total upward eastward momentum flux due to nonorographic gravity waves is the sum of the fluxes due to eastward and westward propagating waves. The former has the standard name upward_ eastward_ momentum_ flux_ in_ air_ due_ to_ nonorographic_ eastward _ gravity_ waves. 2008-06-10
CFV9S7 upward eastward momentum flux in air due to orographic gravity waves The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Upward" indicates a vector component which is positive when directed upward (negative downward). "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Upward eastward" indicates the ZX component of a tensor. An upward eastward momentum flux is an upward flux of eastward momentum, which accelerates the upper medium eastward and the lower medium westward. Momentum flux is dimensionally equivalent to stress and pressure. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The total upward eastward momentum flux due to gravity waves is the sum of the fluxes due to orographic gravity waves and nonorographic waves. The total upward eastward momentum flux due to nonorographic gravity waves is the sum of the fluxes due to eastward and westward propagating waves. These quantities have the standard names upward_ eastward_ momentum_ flux_ in_ air_ due_ to_ nonorographic_ eastward_ gravity_ waves and upward_ eastward_ momentum_ flux_ in_ air_ due_ to_ nonorographic_ westward_ gravity_ waves, respectively. 2008-06-10
CFSN0111 upward eastward stress at sea ice base "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. "Eastward" indicates a vector component which is positive when directed eastward (negative westward). "Upward" indicates a vector component which is positive when directed upward (negative downward). "Upward eastward" indicates the ZX component of a tensor. An upward eastward stress is an upward flux of eastward momentum, which accelerates the upper medium eastward and the lower medium westward. 2018-07-03
CFV8N133 upward eliassen palm flux DEPRECATED "Eliassen Palm flux" is a widely used vector in the meridional plane, and the divergence of this flux appears as a forcing in the Transformed Eulerian mean formulation of the zonal mean zonal wind equation. "Upward" indicates a vector component which is positive when directed upward (negative downward). 2008-06-10
CFV9S8 upward eliassen palm flux in air "Eliassen Palm flux" is a widely used vector in the meridional plane, and the divergence of this flux appears as a forcing in the Transformed Eulerian mean formulation of the zonal mean zonal wind equation. "Upward" indicates a vector component which is positive when directed upward (negative downward). 2008-06-10
CFV8N134 upward flux of eastward momentum due to nonorographic eastward gravity waves DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Upward indicates a vector component which is positive when directed upward (negative downward). Momentum flux is dimensionally equivalent to stress and pressure. It is a tensor quantity. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The total upward momentum flux due to gravity waves is the sum of the fluxes due to orographic gravity waves and nonorographic waves. The upward momentum flux due to orographic gravity waves has the standard name upward_ flux_ of_ eastward_ momentum_ due_ to_ orographic_ gravity_ waves. The total upward momentum flux due to nonorographic gravity waves is the sum of the fluxes due to eastward and westward propagating waves. The latter has the standard name upward_ flux_ of_ eastward_ momentum_ due_ to_ nonorographic_ westward _ gravity_ waves. 2008-06-10
CFV8N135 upward flux of eastward momentum due to nonorographic westward gravity waves DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Upward indicates a vector component which is positive when directed upward (negative downward). Momentum flux is dimensionally equivalent to stress and pressure. It is a tensor quantity. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The total upward momentum flux due to gravity waves is the sum of the fluxes due to orographic gravity waves and nonorographic waves. The upward momentum flux due to orographic gravity waves has the standard name upward_ flux_ of_ eastward_ momentum_ due_ to_ orographic_ gravity_ waves. The total upward momentum flux due to nonorographic gravity waves is the sum of the fluxes due to eastward and westward propagating waves. The former has the standard name upward_ flux_ of_ eastward_ momentum_ due_ to_ nonorographic_ eastward _ gravity_ waves. 2008-06-10
CFV8N136 upward flux of eastward momentum due to orographic gravity waves DEPRECATED The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Upward indicates a vector component which is positive when directed upward (negative downward). Momentum flux is dimensionally equivalent to stress and pressure. It is a tensor quantity. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The total upward momentum flux due to gravity waves is the sum of the fluxes due to orographic gravity waves and nonorographic waves. The total upward momentum flux due to nonorographic gravity waves is the sum of the fluxes due to eastward and westward propagating waves. These quantities have the standard names upward_ flux_ of_ eastward_ momentum_ due_ to_ nonorographic_ eastward _ gravity_ waves and upward_ flux_ of_ eastward_ momentum_ due_ to_ nonorographic_ westward _ gravity_ waves, respectively. 2008-06-10
D7BDD06R upward geothermal heat flux at ground level in land ice "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. "ground_ level" means the land surface (including beneath snow, ice and surface water, if any). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Upward" indicates a vector component which is positive when directed upward (negative downward). The quantity with standard name upward_ geothermal_ heat_ flux_ at_ ground_ level_ in_ land_ ice is the upward heat flux at the interface between the ice and bedrock. It does not include any heat flux from the ocean into an ice shelf. 2017-01-24
CF12N792 upward geothermal heat flux at sea floor "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2009-07-06
CFSN0112 upward heat flux at ground level in snow ground_ level means the land surface (beneath the snow and surface water, if any). 'Upward' indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0075 upward heat flux at ground level in soil ground_ level means the land surface (beneath the snow and surface water, if any). 'Upward' indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0076 upward heat flux in air 'Upward' indicates a vector component which is positive when directed upward (negative downward). The vertical heat flux in air is the sum of all heat fluxes i.e. radiative, latent and sensible. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
1QS91H7N upward heat flux in sea water due to convection "Upward" indicates a vector component which is positive when directed upward (negative downward). The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2013-06-27
GJJDHHIB upward latent heat flux in air "Upward" indicates a vector component which is positive when directed upward (negative downward). The latent heat flux is the exchange of heat across a surface on account of evaporation and condensation (including sublimation and deposition). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2012-09-19
5E2BOV5V upward latent heat flux into air due to transpiration "Upward" indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Transpiration is the process by which liquid water in plant stomata is transferred as water vapor into the atmosphere. The latent heat flux due to transpiration is the release of latent heat from plant surfaces to the air due to the release of water vapor. 2023-02-06
CFSN0077 upward mass flux of air 'Upward' indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0078 upward northward stress at sea ice base "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. "Northward" indicates a vector component which is positive when directed northward (negative southward). "Upward" indicates a vector component which is positive when directed upward (negative downward). "Upward northward" indicates the ZY component of a tensor. An upward northward stress is an upward flux of northward momentum, which accelerates the upper medium northward and the lower medium southward. 2018-07-03
CF12N793 upward ocean mass transport "Upward" indicates a vector component which is positive when directed upward (negative downward). 2009-07-06
CFSN0079 upward sea ice basal heat flux "Upward" indicates a vector component which is positive when directed upward (negative downward). The sea ice basal heat flux is the vertical heat flux (apart from radiation i.e. "diffusive") in sea water at the base of the sea ice. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFSN0080 upward sea water velocity A velocity is a vector quantity. 'Upward' indicates a vector component which is positive when directed upward (negative downward). 2006-09-26
J1F4A574 upward sea water velocity due to parameterized mesoscale eddies A velocity is a vector quantity. "Upward" indicates a vector component which is positive when directed upward (negative downward). The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Parameterized mesoscale eddies occur on a spatial scale of many tens of kilometres and an evolutionary time of weeks. Reference: James C. McWilliams 2016, Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 472, issue 2189. DOI: 10.1098/rspa.2016.0117. Parameterized mesoscale eddies are represented in ocean models using schemes such as the Gent-McWilliams scheme. 2017-11-28
EFEBIIFI upward sensible heat flux in air "Upward" indicates a vector component which is positive when directed upward (negative downward). The sensible heat flux, also called "turbulent" heat flux, is the exchange of heat caused by the motion of air. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2012-09-19
Z1FWE30L upward transformed eulerian mean air velocity A velocity is a vector quantity. "Upward" indicates a vector component which is positive when directed upward (negative downward). Upward air velocity is the vertical component of the 3D air velocity vector. The "Transformed Eulerian Mean" refers to a formulation of the mean equations which incorporates some eddy terms into the definition of the mean, described in Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. 2018-05-29
CQHVO6JQ upward upward derivative of geopotential A quantity with standard name Xward_ Yward_ derivative_ of_ geopotential is a second spatial derivative of geopotential in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Upward" indicates a vector component which is positive when directed upward (negative downward). "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. 2016-04-05
CFSN0081 upward water vapor flux in air 'Upward' indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0082 upward water vapor flux in air due to diffusion The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 'Upward' indicates a vector component which is positive when directed upward (negative downward). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFV16A65 upward x stress at sea ice base "Upward" indicates a vector component which is positive when directed upward (negative downward). "x" indicates a vector component along the grid x-axis, positive with increasing x. "Upward x" indicates the ZX component of a tensor. An upward x stress is an upward flux of x-ward momentum, which accelerates the upper medium in the positive x direction and the lower medium in the negative x direction. 2018-07-03
CFV16A66 upward y stress at sea ice base "Upward" indicates a vector component which is positive when directed upward (negative downward). "y" indicates a vector component along the grid y-axis, positive with increasing y. "Upward y" indicates the ZY component of a tensor. An upward y-ward stress is an upward flux of momentum, which accelerates the upper medium in the positive y direction and the lower medium in the negative y direction. 2018-07-03
CFSN0083 upwelling longwave flux in air The term "longwave" means longwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
CFV13N35 upwelling longwave flux in air assuming clear sky The term "longwave" means longwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
CFSN0084 upwelling longwave radiance in air The term "longwave" means longwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
0F95XPEG upwelling radiance per unit wavelength in air Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
3LRQADLT upwelling radiative flux per unit wavelength in air Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
WGFWBWG7 upwelling radiative flux per unit wavelength in sea water Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A coordinate variable for radiation wavelength should be given the standard name radiation_ wavelength. 2018-07-03
CFSN0085 upwelling shortwave flux in air The term "shortwave" means shortwave radiation. Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-07-03
10QV8U2K upwelling shortwave flux in air assuming clean clear sky DEPRECATED Upwelling radiation is radiation from below. It does not mean "net upward". The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clean sky" means in the absence of atmospheric aerosol. "Clear sky" means in the absence of clouds. 2018-05-30
CFV13N36 upwelling shortwave flux in air assuming clear sky Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase assuming_ condition indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
RIJSEZI9 upwelling shortwave flux in air assuming clear sky and no aerosol Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Clear sky" means in the absence of clouds. 2018-07-03
CFSN0086 upwelling shortwave radiance in air Upwelling radiation is radiation from below. It does not mean "net upward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. The term "shortwave" means shortwave radiation. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2018-07-03
CFSN0087 upwelling spectral radiance in air DEPRECATED Upwelling radiation is radiation from below. It does not mean 'net upward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. Radiance is the radiative flux in a particular direction, per unit of solid angle. The direction towards which it is going must be specified, for instance with a coordinate of zenith_ angle. If the radiation does not depend on direction, a standard name of isotropic radiance should be chosen instead. 2013-06-27
CFSN0088 upwelling spectral radiative flux in air DEPRECATED Upwelling radiation is radiation from below. It does not mean 'net upward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2013-06-27
CFSN0089 upwelling spectral radiative flux in sea water DEPRECATED Upwelling radiation is radiation from below. It does not mean 'net upward'. 'spectral' means per unit wavelength or as a function of wavelength; spectral quantities are sometimes called 'monochromatic'. Radiation wavelength has standard name radiation_ wavelength. When thought of as being incident on a surface, a radiative flux is sometimes called 'irradiance'. In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called 'vector irradiance'. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2013-06-27
CFSN0090 vegetation area fraction "Area fraction" is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Vegetation" means any plants e.g. trees, shrubs, grass. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. 2019-05-14
CFSN0091 vegetation carbon content "Content" indicates a quantity per unit area. "Vegetation" means any plants e.g. trees, shrubs, grass. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. 2018-05-15
Q41TRR91 vegetation mass content of 13C "Content" indicates a quantity per unit area. "Vegetation" means any living plants e.g. trees, shrubs, grass. "C" means the element carbon and "13C" is the stable isotope "carbon-13", having six protons and seven neutrons. 2018-03-13
EKQ5TD8H vegetation mass content of 14C "Content" indicates a quantity per unit area. "Vegetation" means any living plants e.g. trees, shrubs, grass. "C" means the element carbon and "14C" is the radioactive isotope "carbon-14", having six protons and eight neutrons and used in radiocarbon dating. 2018-03-13
UD9LI0GN vegetation mass content of nitrogen "Content" indicates a quantity per unit area. "Vegetation" means any living plants e.g. trees, shrubs, grass. The term "plants" refers to the kingdom of plants in the modern classification which excludes fungi. Plants are autotrophs i.e. "producers" of biomass using carbon obtained from carbon dioxide. 2018-05-15
CFSNA009 vertical air velocity expressed as tendency of pressure DEPRECATED 'tendency_ of_ X' means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the 'material derivative' or 'convective derivative'. The Lagrangian tendency of air pressure, often called 'omega', plays the role of the upward component of air velocity when air pressure is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of air pressure; downwards is positive. 2006-09-26
CFSNA011 vertical air velocity expressed as tendency of sigma DEPRECATED 'tendency_ of_ X' means derivative of X with respect to time. The Lagrangian tendency of a quantity is its rate of change following the motion of the fluid, also called the 'material derivative' or 'convective derivative'. The Lagrangian tendency of sigma plays the role of the upward component of air velocity when the atmosphere sigma coordinate (a dimensionless atmosphere vertical coordinate) is being used as the vertical coordinate. If the vertical air velocity is upwards, it is negative when expressed as a tendency of sigma; downwards is positive. See Appendix D of the CF convention for information about dimensionless vertical coordinates. 2006-09-26
CFV10N46 vertical component of ocean xy tracer diffusivity The vertical_ component_ of_ ocean_ xy_ tracer_ diffusivity means the vertical component of the diffusivity of tracers in the ocean due to lateral mixing. This quantity could appear in formulations of lateral diffusivity in which "lateral" does not mean "iso-level", e.g. it would not be used for isopycnal diffusivity. "Tracer diffusivity" means the diffusivity of heat and salinity due to motion which is not resolved on the grid scale of the model. 2008-10-21
M3RBLOZY vertical drainage amount in soil "Drainage" is the process of removal of excess water from soil by gravitational flow. "Amount" means mass per unit area. The vertical drainage amount in soil is the amount of water that drains through the bottom of a soil column extending from the surface to a specified depth. 2023-04-24
J0A8LEY4 vertical navigation clearance above waterway surface "Vertical navigation clearance" is the vertical distance between the surface of a navigable waterway and a hazard above it such as a bridge. It is a time-varying quantity because the clearance distance is due to all processes that change the position of either the surface or the hazard. "Waterway surface" means the upper boundary of any body of navigable water. 2019-12-09
CF12N794 virtual salt flux correction The virtual_ salt_ flux_ into_ sea_ water_ due_ to_ process is the salt flux that would have the same effect on the sea surface salinity as water_ flux_ out_ of_ sea_ water_ due_ to_ process. Flux correction is also called "flux adjustment". A positive flux correction is downward i.e. added to the ocean. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2009-07-06
CFV10N47 virtual salt flux into sea water The virtual_ salt_ flux_ into_ sea_ water is the salt flux that would have the same effect on the sea surface salinity as the water_ flux_ out_ of_ sea_ water. It includes the effects of precipitation, evaporation, river outflow, sea-ice and any water flux relaxation(s) and correction(s) that may have been applied. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-10-21
CF12N795 virtual salt flux into sea water due to evaporation The virtual_ salt_ flux_ into_ sea_ water_ due_ to_ process is the salt flux that would have the same effect on the sea surface salinity as water_ flux_ out_ of_ sea_ water_ due_ to_ process. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called "sublimation".) In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2009-07-06
CFV10N48 virtual salt flux into sea water due to newtonian relaxation The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The virtual_ salt_ flux_ into_ sea_ water_ due_ to_ newtonian_ relaxation is the salt flux that would have the same effect on the sea surface salinity as water_ flux_ out_ of_ sea_ water_ due_ to_ newtonian_ relaxation. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-10-21
CF12N796 virtual salt flux into sea water due to rainfall The virtual_ salt_ flux_ into_ sea_ water_ due_ to_ process is the salt flux that would have the same effect on the sea surface salinity as water_ flux_ out_ of_ sea_ water_ due_ to_ process. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2009-07-06
CF12N797 virtual salt flux into sea water due to sea ice thermodynamics The virtual_ salt_ flux_ into_ sea_ water_ due_ to_ process is the salt flux that would have the same effect on the sea surface salinity as water_ flux_ out_ of_ sea_ water_ due_ to_ process. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice thermodynamics" refers to the addition or subtraction of mass due to surface and basal fluxes, i.e., due to melting, sublimation and fusion. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CF12N798 virtual salt flux into sea water from rivers The virtual_ salt_ flux_ into_ sea_ water_ due_ to_ process is the salt flux that would have the same effect on the sea surface salinity as water_ flux_ out_ of_ sea_ water_ due_ to_ process. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "River" refers to water in the fluvial system (stream and floodplain). 2018-05-29
CFSN0060 virtual temperature The virtual temperature of air is the temperature at which the dry air constituent of a parcel of moist air would have the same density as the moist air at the same pressure. 2006-09-26
CFSN0061 visibility in air The visibility is the distance at which something can be seen. 2006-09-26
3TUNI9CM volume absorption coefficient in air due to dried aerosol particles DEPRECATED The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with "specific_ " instead of "volume_ ". The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths unless a coordinate of "radiation_ wavelength" or "radiation_ frequency" is included to specify the wavelength. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Dried_ aerosol" means that the aerosol sample has been dried from the ambient state, but that the dry state (relative humidity less than 40 per cent) has not necessarily been reached. To specify the relative humidity at which the sample was measured, provide a scalar coordinate variable with the standard name of "relative_ humidity". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2024-01-18
8ZU8GLEX volume absorption coefficient of radiative flux in air due to dried aerosol particles The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with "specific_ " instead of "volume_ ". The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths unless a coordinate of "radiation_ wavelength" or "radiation_ frequency" is included to specify the wavelength. Radiative flux is the sum of shortwave and longwave radiative fluxes. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Dried_ aerosol" means that the aerosol sample has been dried from the ambient state, but that the dry state (relative humidity less than 40 per cent) has not necessarily been reached. To specify the relative humidity at which the sample was measured, provide a scalar coordinate variable with the standard name of "relative_ humidity". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2024-01-18
CFSN0062 volume absorption coefficient of radiative flux in sea water Radiative flux is the sum of shortwave and longwave radiative fluxes. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with specific_ instead of volume_ . The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength is included to specify the wavelength. 2006-09-26
CFSN0063 volume absorption coefficient of radiative flux in sea water due to dissolved organic matter The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. Radiative flux is the sum of shortwave and longwave radiative fluxes. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with specific_ instead of volume_ . The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength is included to specify the wavelength. 2006-09-26
1RANU8Z1 volume attenuated backwards scattering coefficient of radiative flux in air Attenuation is the sum of absorption and scattering. Attenuation is sometimes called "extinction". The attenuated backwards scattering function includes the effects of two-way attenuation by the medium between a radar source and receiver. The volume scattering function is the fraction of incident radiative flux scattered into unit solid angle per unit path length. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeding pi/2 radians. A scattering_ angle should not be specified with this quantity. 2024-01-18
RYO3XKQ6 volume attenuated backwards scattering coefficient of radiative flux in air assuming no aerosol or cloud Attenuation is the sum of absorption and scattering. Attenuation is sometimes called "extinction". The attenuated backwards scattering coefficient includes the effects of two-way attenuation by the medium between a radar source and receiver. The volume scattering coefficient is the fraction of incident radiative flux scattered into unit solid angle per unit path length. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeding pi/2 radians. A scattering_ angle should not be specified with this quantity. The scattering coefficient is assumed to be an integral over all wavelengths unless a coordinate of "radiation_ wavelength" or "radiation_ frequency" is included to specify the wavelength. Coefficients with canonical units of m2 s-1, i.e. multiplied by density, have standard names with "specific_ " instead of "volume_ ". Radiative flux is the sum of shortwave and longwave radiative fluxes. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. 2024-01-18
CF12N799 volume attenuated backwards scattering function in air DEPRECATED Attenuation is the sum of absorption and scattering. Attenuation is sometimes called "extinction". The attenuated backwards scattering function includes the effects of two-way attenuation by the medium between a radar source and receiver. The volume scattering function is the fraction of incident radiative flux scattered into unit solid angle per unit path length. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeding pi/2 radians. A scattering_ angle should not be specified with this quantity. 2024-01-18
CF12N800 volume attenuated backwards scattering function in air assuming no aerosol or cloud DEPRECATED Attenuation is the sum of absorption and scattering. Attenuation is sometimes called "extinction". The attenuated backwards scattering function includes the effects of two-way attenuation by the medium between a radar source and receiver. The volume scattering function is the fraction of incident radiative flux scattered into unit solid angle per unit path length. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeding pi/2 radians. A scattering_ angle should not be specified with this quantity. A phrase "assuming_ condition" indicates that the named quantity is the value which would obtain if all aspects of the system were unaltered except for the assumption of the circumstances specified by the condition. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. 2024-01-18
CFSN0064 volume attenuation coefficient of downwelling radiative flux in sea water Downwelling radiation is radiation from above. It does not mean "net downward". The sign convention is that "upwelling" is positive upwards and "downwelling" is positive downwards. Radiative flux is the sum of shortwave and longwave radiative fluxes. When thought of as being incident on a surface, a radiative flux is sometimes called "irradiance". In addition, it is identical with the quantity measured by a cosine-collector light-meter and sometimes called "vector irradiance". In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with specific_ instead of volume_ . The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength is included to specify the wavelength. Attenuation is the sum of absorption and scattering. Attenuation is sometimes called "extinction". Also called "diffuse" attenuation, the attenuation of downwelling radiative flux refers to the decrease with decreasing height or increasing depth of the downwelling component of radiative flux, regardless of incident direction. 2018-07-03
CKK0ISKE volume backwards scattering coefficient in air due to dried aerosol particles DEPRECATED The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with specific_ instead of volume_ . Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeds pi/2 radians. A scattering_ angle should not be specified with this quantity. The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength is included to specify the wavelength. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Dried_ aerosol" means that the aerosol sample has been dried from the ambient state, but that the dry state (relative humidity less than 40 per cent) has not necessarily been reached. To specify the relative humidity at which the sample was measured, provide a scalar coordinate variable with the standard name of "relative_ humidity". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2024-01-18
AXDBCNBI volume backwards scattering coefficient of radiative flux by ranging instrument in air due to ambient aerosol particles Volume backwards scattering coefficient by ranging instrument is the fraction of radiative flux, per unit path length and per unit solid angle, scattered at 180 degrees angle respect to the incident radiation and obtained through ranging techniques like lidar and radar. Backwards scattering coefficient is assumed to be related to the same wavelength of incident radiation. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2023-04-24
FU0RGRUM volume backwards scattering coefficient of radiative flux in air due to dried aerosol particles The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with specific_ instead of volume_ . Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeds pi/2 radians. A scattering_ angle should not be specified with this quantity. The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength is included to specify the wavelength. Radiative flux is the sum of shortwave and longwave radiative fluxes. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Dried_ aerosol" means that the aerosol sample has been dried from the ambient state, but that the dry state (relative humidity less than 40 per cent) has not necessarily been reached. To specify the relative humidity at which the sample was measured, provide a scalar coordinate variable with the standard name of "relative_ humidity". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2024-01-18
CFSN0065 volume backwards scattering coefficient of radiative flux in sea water Radiative flux is the sum of shortwave and longwave radiative fluxes. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with specific_ instead of volume_ . The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength is included to specify the wavelength. Scattering of radiation is its deflection from its incident path without loss of energy. Backwards scattering refers to the sum of scattering into all backward angles i.e. scattering_ angle exceeding pi/2 radians. A scattering_ angle should not be specified with this quantity. 2006-09-26
CFSN0066 volume beam attenuation coefficient of radiative flux in sea water Radiative flux is the sum of shortwave and longwave radiative fluxes. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with specific_ instead of volume_ . The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength is included to specify the wavelength. Attenuation is the sum of absorption and scattering. Attenuation is sometimes called 'extinction'. Beam attenuation refers to the decrease of radiative flux along the direction of the incident path. It is distinguished from attenuation of the downwelling component of radiative flux from any incident direction, also called 'diffuse' attenuation. 2006-09-26
FTSHPRON volume beam attenuation coefficient of radiative flux in sea water corrected for pure water attenuance Radiative flux is the sum of shortwave and longwave radiative fluxes. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength is included to specify the wavelength. Attenuation is the sum of absorption and scattering. Attenuation is sometimes called "extinction". Beam attenuation refers to the decrease of radiative flux along the direction of the incident path. It is distinguished from attenuation of the downwelling component of radiative flux from any incident direction, also called "diffuse" attenuation. The phrase "corrected for pure water attenuance" means the attenuation coefficient has been adjusted/calibrated to remove the influence of absorption/scattering by the water itself. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with specific_ instead of volume_ . 2017-11-28
HWVJLD32 volume extinction angstrom exponent in air due to ambient aerosol particles The volume extinction Angstrom exponent is the Angstrom exponent obtained for the aerosol extinction instead that for the aerosol optical thickness. It is alpha in the following equation relating aerosol extinction (ext) at the wavelength lambda to aerosol extinction at a different wavelength lambda0: ext(lambda) = ext(lambda0) * [lambda/lambda0] ** (-1 * alpha). "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2023-04-24
BBAD2119 volume extinction coefficient in air due to ambient aerosol DEPRECATED The volume extinction coefficient is the fractional change of radiative flux per unit path length. Extinction is the sum of absorption and scattering, sometimes called "attenuation". "Extinction" is the term most commonly used at optical wavelengths whereas "attenuation" is more often used at radio and radar wavelengths. "Aerosol" means the susp ended liquid or solid particles in air (except cloud droplets). "Ambient aerosol" is aerosol that has taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the aerosol. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single ter m in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
I4M0PBUO volume extinction coefficient in air due to ambient aerosol particles The volume extinction coefficient is the fractional change of radiative flux per unit path length. Extinction is the sum of absorption and scattering, sometimes called "attenuation". "Extinction" is the term most commonly used at optical wavelengths whereas "attenuation" is more often used at radio and radar wavelengths. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2015-01-07
VPQ3SQPJ volume extinction coefficient in air due to cloud particles The volume extinction coefficient is the fractional change of radiative flux per unit path length. Extinction is the sum of absorption and scattering, sometimes called "attenuation". "Extinction" is the term most commonly used at optical wavelengths whereas "attenuation" is more often used at radio and radar wavelengths. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Cloud particles" means suspended liquid or ice water droplets. A coordinate of radiation_ wavelength or radiation_ frequency should be included to specify either the wavelength or frequency. 2016-05-17
CFSN0067 volume fraction of clay in soil "Volume fraction" is used in the construction volume_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. 2019-06-17
CFSNA042 volume fraction of condensed water in soil "Volume fraction" is used in the construction "volume_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The phrase "condensed_ water" means liquid and ice. 2019-06-17
CFSNA043 volume fraction of condensed water in soil at critical point "Volume fraction" is used in the construction "volume_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The phrase "condensed_ water" means liquid and ice. When soil moisture equals or exceeds the critical point, evapotranspiration takes place at the potential rate and is controlled by the ambient meteorological conditions (temperature, wind, relative humidity). Potential evapotranspiration is the rate at which evapotranspiration would occur under ambient conditions from a uniformly vegetated area when the water supply is not limiting. 2019-06-17
CFSNA044 volume fraction of condensed water in soil at field capacity "Volume fraction" is used in the construction "volume_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The phrase "condensed_ water" means liquid and ice. The field capacity of soil is the maximum content of water it can retain against gravitational drainage. 2019-06-17
CFSNA045 volume fraction of condensed water in soil at wilting point "Volume fraction" is used in the construction "volume_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The phrase "condensed_ water" means liquid and ice. The wilting point of soil is the water content below which plants cannot extract sufficient water to balance their loss through transpiration. 2019-06-17
CFSN0826 volume fraction of condensed water in soil pores "Volume fraction" is used in the construction "volume_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Condensed water" means liquid and ice. The quantity with standard name volume_ fraction_ of_ condensed_ water_ in_ soil_ pores is the ratio of the volume of condensed water in soil pores to the volume of the pores themselves. 2019-06-17
CFSN0068 volume fraction of frozen water in soil "Volume fraction" is used in the construction "volume_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The phrase "frozen_ water" means ice. 2019-09-17
S7ROPP0K volume fraction of oxygen in sea floor sediment pore water "Volume fraction" is used in the construction "volume_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. "Sea floor sediment" is sediment deposited at the sea bed. "Water" means water in all phases. 2024-01-18
CF12N801 volume fraction of oxygen in sea water "Volume fraction" is used in the construction "volume_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. 2019-06-17
CFSN0069 volume fraction of sand in soil "Volume fraction" is used in the construction "volume_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. 2019-06-17
CFSN0070 volume fraction of silt in soil "Volume fraction" is used in the construction "volume_ fraction_ of_ X_ in_ Y", where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. 2019-06-17
CFSN0071 volume fraction of water in soil DEPRECATED 'Water' means water in all phases. 'Volume fraction' is used in the construction volume_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. 2007-05-15
CFSN0783 volume fraction of water in soil at critical point DEPRECATED "Water" means water in all phases. "Volume fraction" is used in the construction volume_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. When soil moisture equals or exceeds the critical point evapotranspiration takes place at the potential rate and is controlled by the ambient meteorological conditions (temperature, wind, relative humidity). Evapotranspiration is the sum of evaporation and plant transpiration. Potential evapotranspiration is the rate at which evapotranspiration would occur under ambient conditions from a uniformly vegetated area when the water supply is not limiting. 2007-05-15
CFSN0072 volume fraction of water in soil at field capacity DEPRECATED 'Water' means water in all phases. 'Volume fraction' is used in the construction volume_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The field capacity of soil is the maximum content of water it can retain against gravitational drainage. 2007-05-15
G54IR8IP volume fraction of water in soil at saturation "Volume fraction" is used in the construction volume_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. It is evaluated as the volume of X divided by the volume of Y (including X). It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. The volume_ fraction_ of_ water_ in_ soil_ at_ saturation is the volume fraction at which a soil has reached it's maximum water holding capacity. 2024-01-18
CFSN0073 volume fraction of water in soil at wilting point DEPRECATED 'Water' means water in all phases. 'Volume fraction' is used in the construction volume_ fraction_ of_ X_ in_ Y, where X is a material constituent of Y. The wilting point of soil is the water content below which plants cannot extract sufficient water to balance their loss through transpiration. 2007-05-15
CFSN0074 volume mixing ratio of oxygen at stp in sea water 'ratio_ of_ X_ to_ Y' means X/Y. 'stp' means standard temperature (0 degC) and pressure (101325 Pa). 2006-09-26
V2HU8K9D volume scattering coefficient in air due to ambient aerosol particles DEPRECATED The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with "specific_ " instead of "volume_ ". The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths unless a coordinate of "radiation_ wavelength" or "radiation_ frequency" is included to specify the wavelength. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exist in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity at which the quantity described by the standard name applies, provide a scalar coordinate variable with the standard name of "relative_ humidity". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-05-15
DPHLAB11 volume scattering coefficient in air due to dried aerosol particles DEPRECATED The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with "specific_ " instead of "volume_ ". The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths unless a coordinate of "radiation_ wavelength" or "radiation_ frequency" is included to specify the wavelength. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Dried_ aerosol" means that the aerosol sample has been dried from the ambient state before sizing, but that the dry state (relative humidity less than 40 per cent) has not necessarily been reached. To specify the relative humidity at which the sample was measured, provide a scalar coordinate variable with the standard name of "relative_ humidity". The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. 2018-05-15
JR2O2D6Z volume scattering coefficient of radiative flux in air due to ambient aerosol particles Radiative flux is the sum of shortwave and longwave radiative fluxes. Scattering of radiation is its deflection from its incident path without loss of energy. The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with "specific_ " instead of "volume_ ". The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths unless a coordinate of "radiation_ wavelength" or "radiation_ frequency" is included to specify the wavelength. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exist in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity at which the quantity described by the standard name applies, provide a scalar coordinate variable with the standard name of "relative_ humidity". 2018-05-15
69BZ39UQ volume scattering coefficient of radiative flux in air due to dried aerosol particles Radiative flux is the sum of shortwave and longwave radiative fluxes. Scattering of radiation is its deflection from its incident path without loss of energy. The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with "specific_ " instead of "volume_ ". The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths unless a coordinate of "radiation_ wavelength" or "radiation_ frequency" is included to specify the wavelength. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Dried_ aerosol" means that the aerosol sample has been dried from the ambient state before sizing, but that the dry state (relative humidity less than 40 per cent) has not necessarily been reached. To specify the relative humidity at which the sample was measured, provide a scalar coordinate variable with the standard name of "relative_ humidity". 2018-05-15
CFSN0045 volume scattering coefficient of radiative flux in sea water Radiative flux is the sum of shortwave and longwave radiative fluxes. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. The volume scattering/absorption/attenuation coefficient is the fractional change of radiative flux per unit path length due to the stated process. Coefficients with canonical units of m2 s-1 i.e. multiplied by density have standard names with specific_ instead of volume_ . The scattering/absorption/attenuation coefficient is assumed to be an integral over all wavelengths, unless a coordinate of radiation_ wavelength is included to specify the wavelength. Scattering of radiation is its deflection from its incident path without loss of energy. The (range of) direction(s) of scattering can be specified by a coordinate of scattering_ angle. 2006-09-26
BO70Y057 volume scattering function of radiative flux in air due to ambient aerosol particles Radiative flux is the sum of shortwave and longwave radiative fluxes. Scattering of radiation is its deflection from its incident path without loss of energy. The volume scattering function is the intensity (flux per unit solid angle) of scattered radiation per unit length of scattering medium, normalised by the incident radiation flux. The (range of) direction(s) of scattering can be specified by a coordinate of scattering_ angle. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the scattering applies at specific wavelengths or frequencies. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Aerosol" means the system of suspended liquid or solid particles in air (except cloud droplets) and their carrier gas, the air itself. "Ambient_ aerosol" means that the aerosol is measured or modelled at the ambient state of pressure, temperature and relative humidity that exists in its immediate environment. "Ambient aerosol particles" are aerosol particles that have taken up ambient water through hygroscopic growth. The extent of hygroscopic growth depends on the relative humidity and the composition of the particles. To specify the relative humidity and temperature at which the quantity described by the standard name applies, provide scalar coordinate variables with standard names of "relative_ humidity" and "air_ temperature". 2018-05-15
CFSN0046 volume scattering function of radiative flux in sea water Radiative flux is the sum of shortwave and longwave radiative fluxes. Scattering of radiation is its deflection from its incident path without loss of energy. The volume scattering function is the intensity (flux per unit solid angle) of scattered radiation per unit length of scattering medium, normalised by the incident radiation flux. The (range of) direction(s) of scattering can be specified by a coordinate of scattering_ angle. A coordinate variable of radiation_ wavelength or radiation_ frequency can be specified to indicate that the scattering applies at specific wavelengths or frequencies. 2018-05-15
CFSN0047 water content of atmosphere layer DEPRECATED 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 'Water' means water in all phases. 2011-07-21
CFSN0048 water evaporation amount 'Amount' means mass per unit area. 'Water' means water in all phases. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called 'sublimation'.) 2006-09-26
CFSN0049 water evaporation amount from canopy "Amount" means mass per unit area. "Water" means water in all phases. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called "sublimation".) "Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. Previously, the qualifier "where_ type" was used to specify that the quantity applies only to the part of the grid box of the named type. Names containing the where_ type qualifier are deprecated and newly created data should use the cell_ methods attribute to indicate the horizontal area to which the quantity applies. 2018-08-06
CFSNA020 water evaporation amount from canopy where land DEPRECATED 'Amount' means mass per unit area. 'Water' means water in all phases. 'Canopy' means the plant or vegetation canopy. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called 'sublimation'.) 2006-09-26
CFSN0050 water evaporation flux DEPRECATED 'Water' means water in all phases. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called 'sublimation'.) In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2018-07-03
CFSN0051 water evaporation flux from canopy "Water" means water in all phases. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called "sublimation".) In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. Previously, the qualifier where_ type was used to specify that the quantity applies only to the part of the grid box of the named type. Names containing the where_ type qualifier are deprecated and newly created data should use the cell_ methods attribute to indicate the horizontal area to which the quantity applies."Canopy" means the vegetative covering over a surface. The canopy is often considered to be the outer surfaces of the vegetation. Plant height and the distribution, orientation and shape of plant leaves within a canopy influence the atmospheric environment and many plant processes within the canopy. Reference: AMS Glossary http://glossary.ametsoc.org/wiki/Canopy. 2018-07-10
CFSN0052 water evaporation flux from canopy where land DEPRECATED Unless indicated, a quantity is assumed to apply to the whole area of each horizontal grid box. The qualifier where_ type specifies instead that the quantity applies only to the part of the grid box of the named type. 'Water' means water in all phases. 'Canopy' means the plant or vegetation canopy. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called 'sublimation'.) In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2008-11-11
CFSN0053 water evaporation flux from soil 'Water' means water in all phases. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called 'sublimation'.) In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CFSN0054 water evaporation flux where sea ice DEPRECATED Unless indicated, a quantity is assumed to apply to the whole area of each horizontal grid box. The qualifier where_ type specifies instead that the quantity applies only to the part of the grid box of the named type. 'Water' means water in all phases. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called 'sublimation'.) In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2008-11-11
M1O8Y5W6 water evapotranspiration amount "Evapotranspiration" means all water vapor fluxes into the atmosphere from the surface: liquid evaporation, sublimation, and transpiration. "Amount" means mass per unit area. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called "sublimation".) Transpiration is the process by which liquid water in plant stomata is transferred as water vapor into the atmosphere. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. 2023-02-06
OLT1W3WD water evapotranspiration flux Water means water in all phases. "Evapotranspiration" means all water vapor fluxes into the atmosphere from the surface: liquid evaporation, sublimation and transpiration. Evaporation is the conversion of liquid or solid into vapor. Transpiration is the process by which liquid water in plant stomata is transferred as water vapor into the atmosphere. (The conversion of solid alone into vapor is called "sublimation".) In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. Unless indicated in the cell_ methods attribute, a quantity is assumed to apply to the whole area of each horizontal grid box. 2023-02-06
CFSN0055 water flux correction DEPRECATED 'Water' means water in all phases. Flux correction is also called 'flux adjustment'. A positive flux correction is downward i.e. added to the ocean. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2023-10-16
CFSN0056 water flux into ocean DEPRECATED 'Water' means water in all phases. The water flux into the ocean is the freshwater entering the sea water as a result of precipitation, evaporation, river inflow, sea ice effects and water flux correction (if applied). In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2008-10-21
CFSN0057 water flux into ocean from rivers DEPRECATED 'Water' means water in all phases. The water flux or volume transport into the ocean from rivers is the inflow to the ocean, often applied to the surface in ocean models. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2008-10-21
CFV10S1 water flux into sea water "Water" means water in all phases. The water flux into sea water is the freshwater entering as a result of precipitation, evaporation, river inflow, sea ice effects and water flux relaxation and correction (if applied). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-10-21
G882GYEQ water flux into sea water due to flux adjustment "Water" means water in all phases. Flux correction is also called "flux adjustment". A positive flux correction is downward i.e. added to the ocean. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2023-10-16
CF12N802 water flux into sea water due to sea ice thermodynamics The water flux into sea water is the freshwater entering as a result of precipitation, evaporation, river inflow, sea ice effects and water flux correction (if applied). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice thermodynamics" refers to the addition or subtraction of mass due to surface and basal fluxes, i.e., due to melting, sublimation and fusion. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
2COXVAFT water flux into sea water due to surface drainage The water flux into the ocean is the freshwater entering the sea water as a result of precipitation, evaporation, river inflow, sea ice effects and water flux correction (if applied). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase "due_ to_ " process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Surface drainage" refers to all melt water forming at the sea ice surface and subsequently running into the sea. 2018-07-03
CF12N803 water flux into sea water from icebergs The water flux into sea water is the freshwater entering as a result of precipitation, evaporation, river inflow, sea ice effects and water flux correction (if applied). The water flux into sea water from icebergs is due to the melting of the iceberg. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2009-07-06
1KY8NWCO water flux into sea water from land ice "Land ice" means glaciers, ice-caps and ice-sheets resting on bedrock and also includes ice-shelves. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The water flux into sea water from land ice is the freshwater entering the ocean as a result of runoff from the surface and base of the ice and melting from the ice shelf base and vertical ice front. For an area-average, the cell_ methods attribute should be used to specify whether the average is over the area of the whole grid cell or the area of the ocean portion only. 2017-01-24
CFV10S2 water flux into sea water from rivers "Water" means water in all phases. The water flux or volume transport into sea water from rivers is the inflow to the ocean, often applied to the surface in ocean models. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "River" refers to water in the fluvial system (stream and floodplain). 2018-05-29
CF12N804 water flux into sea water from rivers and surface downward water flux "Water" means water in all phases, including frozen i.e. ice and snow. The surface called "surface" means the lower boundary of the atmosphere. "Downward" indicates a vector component which is positive when directed downward (negative upward). The surface water flux is the result of precipitation and evaporation. The water flux into sea water is the freshwater entering as a result of precipitation, evaporation, river inflow, sea ice effects and water flux correction (if applied). The water flux or volume transport into sea water from rivers is the inflow to the ocean, often applied to the surface in ocean models. "River" refers to water in the fluvial system (stream and floodplain). In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2018-05-29
CFV10N49 water flux into sea water without flux correction Water means water in all phases. The water_ flux_ into_ sea_ water_ without_ flux_ correction is the freshwater entering as a result of precipitation, evaporation, river inflow and sea ice effects. The total water flux including any flux relaxation(s) or correction(s) is described by the standard name water_ flux_ into_ sea_ water. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-10-21
CFV10N50 water flux out of sea ice and sea water "Water" means water in all phases. The water_ flux_ out_ of_ sea_ ice_ and_ sea_ water is the freshwater leaving the ocean as a result of precipitation, evaporation, river outflow and any water flux relaxation(s) and correction(s) that may have been applied. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. "Sea ice" means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. 2018-07-03
CFV10N51 water flux out of sea water The quantity water_ flux_ out_ of_ sea_ water is the quantity with standard name water_ flux_ into_ sea_ water multiplied by -1. "Water" means water in all phases. The water flux out of sea water is the freshwater leaving as a result of precipitation, evaporation, river outflow, sea-ice and any water flux relaxation(s) and correction(s) that may have been applied. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-10-21
CFV10N52 water flux out of sea water due to newtonian relaxation The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. The water_ flux_ out_ of_ sea_ water_ due_ to_ newtonian_ relaxation is the freshwater leaving as a result of the Newtonian relaxation of the sea surface salinity. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-10-21
CFV10N53 water flux out of sea water due to sea ice thermodynamics The water flux out of sea water is the freshwater leaving the sea water. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. "Sea ice thermodynamics" refers to the addition or subtraction of sea ice mass due to surface and basal fluxes, i.e. due to melting, sublimation and fusion. 2018-07-03
CFSN0058 water potential evaporation amount 'Amount' means mass per unit area. 'Water' means water in all phases. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called 'sublimation'.) Potential evaporation is the rate at which evaporation would take place under unaltered ambient conditions (temperature, relative humidity, wind, etc.) if the supply of water were unlimited, as if from an open water surface. 2006-09-26
CFSN0059 water potential evaporation flux 'Water' means water in all phases. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called 'sublimation'.) Potential evaporation is the rate at which evaporation would take place under unaltered ambient conditions (temperature, relative humidity, wind, etc.) if the supply of water were unlimited, as if from an open water surface. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
15A7IU51 water potential evapotranspiration amount Potential evapotranspiration is the rate at which evapotranspiration would occur under ambient conditions from a uniformly vegetated area when the water supply is not limiting. "Evapotranspiration" means all water vapor fluxes into the atmosphere from the surface: liquid evaporation, sublimation and transpiration. Transpiration is the process by which liquid water in plant stomata is transferred as water vapor into the atmosphere. Evaporation is the conversion of liquid or solid into vapor. (The conversion of solid alone into vapor is called "sublimation"). Amount means mass per unit area. 2023-02-06
CFSN0030 water sublimation flux 'Water' means water in all phases. Sublimation is the conversion of solid into vapor. In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2006-09-26
CF15N1 water surface height above reference datum 'Water surface height above reference datum' means the height of the upper surface of a body of liquid water, such as sea, lake or river, above an arbitrary reference datum. The altitude of the datum should be provided in a variable with standard name water_ surface_ reference_ datum_ altitude. The surface called "surface" means the lower boundary of the atmosphere. 2010-07-26
CF15N2 water surface reference datum altitude Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. 'Water surface reference datum altitude' means the altitude of the arbitrary datum referred to by a quantity with standard name 'water_ surface_ height_ above_ reference_ datum'. The surface called "surface" means the lower boundary of the atmosphere. 2010-07-26
9ZIU7TVP water table depth Depth is the vertical distance below the surface. The water table is the surface below which the soil is saturated with water such that all pore spaces are filled. 2018-03-13
CFSN0031 water vapor content of atmosphere layer DEPRECATED 'Content' indicates a quantity per unit area. 'Layer' means any layer with upper and lower boundaries that have constant values in some vertical coordinate. There must be a vertical coordinate variable indicating the extent of the layer(s). If the layers are model layers, the vertical coordinate can be model_ level_ number, but it is recommended to specify a physical coordinate (in a scalar or auxiliary coordinate variable) as well. 2011-07-21
CFV15A33 water vapor partial pressure in air The partial pressure of a gaseous constituent of air is the pressure that it would exert if all other gaseous constituents were removed, assuming the volume, the temperature, and its number of moles remain unchanged. 2018-12-17
CFSN0032 water vapor pressure DEPRECATED Vapor pressure is the partial pressure of a constituent of air, such as water, which exists as liquid or solid under 'normal' conditions. 'Water' is specified when the term is being applied to water. 2010-07-26
CFSN0033 water vapor saturation deficit DEPRECATED Water vapor saturation deficit is the difference between the saturation water vapor pressure and the actual water vapor pressure. 2010-07-26
CFV15A34 water vapor saturation deficit in air "Water vapor saturation deficit" is the difference between the saturation water vapor partial pressure and the actual water vapor partial pressure in air. 2019-03-04
BHMHISG2 water volume transport in river channel The water flux or volume transport in rivers is the amount of water flowing in the river channel and flood plain. "Water" means water in all phases. 2016-05-17
CFSN0034 water volume transport into ocean from rivers DEPRECATED 'Water' means water in all phases. The water flux or volume transport into the ocean from rivers is the inflow to the ocean, often applied to the surface in ocean models. 2008-10-21
CFV10S3 water volume transport into sea water from rivers "Water" means water in all phases. The water flux or volume transport into sea water from rivers is the inflow to the ocean, often applied to the surface in ocean models. "River" refers to water in the fluvial system (stream and floodplain). 2018-06-11
CFV8NS6 wave frequency Frequency is the number of oscillations of a wave per unit time. 2008-04-15
X1J62HH1 westward upward derivative of geopotential A quantity with standard name Xward_ Yward_ derivative_ of_ geopotential is a second spatial derivative of geopotential, P, in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Westward" indicates a vector component which is positive when directed westward (negative eastward). "Upward" indicates a vector component which is positive when directed upward (negative downward). "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. 2016-04-05
JPJT0K3C westward westward derivative of geopotential A quantity with standard name Xward_ Yward_ derivative_ of_ geopotential is a second spatial derivative of geopotential, P, in the direction specified by X and Y, i.e., d2P/dXdY. Geopotential is the sum of the specific gravitational potential energy relative to the geoid and the specific centripetal potential energy. "Westward" indicates a vector component which is positive when directed westward (negative eastward). "component_ derivative_ of_ X" means derivative of X with respect to distance in the component direction, which may be "northward", "southward", "eastward", "westward", "x" or "y". The last two indicate derivatives along the axes of the grid, in the case where they are not true longitude and latitude. 2016-04-05
A91BA0BW wet bulb potential temperature Wet bulb potential temperature is the temperature a parcel of air would have if moved dry adiabatically until it reaches saturation and thereafter moist adiabatically to sea level pressure. 2017-03-27
CFSN0035 wet bulb temperature 2006-09-26
KVEK5BDR wind chill of air temperature Air temperature is the bulk temperature of the air, not the surface (skin) temperature. The quantity with standard name wind_ chill_ of_ air_ temperature is the perceived air temperature when wind is factored in with the ambient air temperature (which makes it feel colder than the actual air temperature). Wind chill is based on the rate of heat loss from exposed skin caused by wind and cold. Wind chill temperature is only defined for ambient temperatures at or below 283.1 K and wind speeds above 1.34 m s-1. References: https://www.weather.gov/safety/cold-wind-chill-chart; WMO codes registry entry http://codes.wmo.int/grib2/codeflag/4.2/0-0-13. 2020-09-14
CFSN0036 wind from direction Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) In meteorological reports, the direction of the wind vector is usually (but not always) given as the direction from which it is blowing (wind_ from_ direction) (westerly, northerly, etc.). In other contexts, such as atmospheric modelling, it is often natural to give the direction in the usual manner of vectors as the heading or the direction to which it is blowing (wind_ to_ direction) (eastward, southward, etc.) 'from_ direction' is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. 2006-09-26
LIZMDSCX wind gust from direction The phrase "from_ direction" is used in the construction X_ from_ direction and indicates the direction from which the velocity vector of X is coming. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. A gust is a sudden brief period of high wind speed. In an observed time series of wind speed, the gust wind speed can be indicated by a cell_ methods of "maximum" for the time-interval. In an atmospheric model which has a parametrised calculation of gustiness, the gust wind speed may be separately diagnosed from the wind speed. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name "upward_ air_ velocity".) In meteorological reports, the direction of the wind vector is usually (but not always) given as the direction from which it is blowing ("wind_ from_ direction") (westerly, northerly, etc.). In other contexts, such as atmospheric modelling, it is often natural to give the direction in the usual manner of vectors as the heading or the direction to which it is blowing ("wind_ to_ direction") (eastward, southward, etc.). 2017-11-28
CFSN0037 wind mixing energy flux into ocean DEPRECATED Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) In accordance with common usage in geophysical disciplines, 'flux' implies per unit area, called 'flux density' in physics. 2008-10-21
CFV10S4 wind mixing energy flux into sea water Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2008-10-21
CFSN0038 wind speed Speed is the magnitude of velocity. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) The wind speed is the magnitude of the wind velocity. 2006-09-26
CFSN0039 wind speed of gust Speed is the magnitude of velocity. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) The wind speed is the magnitude of the wind velocity. A gust is a sudden brief period of high wind speed. In an observed timeseries of wind speed, the gust wind speed can be indicated by a cell_ methods of maximum for the time-interval. In an atmospheric model which has a parametrised calculation of gustiness, the gust wind speed may be separately diagnosed from the wind speed. 2006-09-26
PE61H7XY wind speed of gust due to convection Speed is the magnitude of velocity. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) The wind speed is the magnitude of the wind velocity. A gust is a sudden brief period of high wind speed. In an observed timeseries of wind speed, the gust wind speed can be indicated by a cell_ methods of maximum for the time-interval. In an atmospheric model which has a parametrised calculation of gustiness, the gust wind speed may be separately diagnosed from the wind speed. The specification of a physical process by the phrase "due_ to" process means that the quantity named is a single term in a list of terms, the maximum of which composes the general quantity named by omitting the phrase. 2023-07-05
1F90YEDV wind speed of gust due to turbulence Speed is the magnitude of velocity. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) The wind speed is the magnitude of the wind velocity. A gust is a sudden brief period of high wind speed. In an observed timeseries of wind speed, the gust wind speed can be indicated by a cell_ methods of maximum for the time-interval. In an atmospheric model which has a parametrised calculation of gustiness, the gust wind speed may be separately diagnosed from the wind speed. The specification of a physical process by the phrase "due_ to" process means that the quantity named is a single term in a list of terms, the maximum of which composes the general quantity named by omitting the phrase. 2023-07-05
CFSN0040 wind speed shear Speed is the magnitude of velocity. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) The wind speed is the magnitude of the wind velocity. Wind speed shear is the derivative of wind speed with respect to height. 2006-09-26
CFSN0041 wind to direction Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) In meteorological reports, the direction of the wind vector is usually (but not always) given as the direction from which it is blowing (wind_ from_ direction) (westerly, northerly, etc.). In other contexts, such as atmospheric modelling, it is often natural to give the direction in the usual manner of vectors as the heading or the direction to which it is blowing (wind_ to_ direction) (eastward, southward, etc.) "to_ direction" is used in the construction X_ to_ direction and indicates the direction towards which the velocity vector of X is headed. The direction is a bearing in the usual geographical sense, measured positive clockwise from due north. 2013-06-27
CFSNA029 wind wave period DEPRECATED A period is an interval of time, or the time-period of an oscillation. Wind waves are waves on the ocean surface. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2006-09-26
CFV16A67 wood carbon content DEPRECATED "Content" indicates a quantity per unit area. 2018-04-16
CFV16A68 wood debris carbon content DEPRECATED "Content" indicates a quantity per unit area. "Wood debris" means dead organic matter composed of coarse wood. It is distinct from litter. 2018-04-16
QDSSNHQK wood debris mass content of carbon "Content" indicates a quantity per unit area. "Wood debris" means dead organic matter composed of coarse wood. It is distinct from fine litter. The precise distinction between "fine" and "coarse" is model dependent. 2018-06-11
GA6K2IBR wood debris mass content of nitrogen "Content" indicates a quantity per unit area. "Wood debris" means dead organic matter composed of coarse wood. It is distinct from fine litter. The precise distinction between "fine" and "coarse" is model dependent. The sum of the quantities with standard names wood_ debris_ mass_ content_ of_ nitrogen, surface_ litter_ mass_ content_ of_ nitrogen and subsurface_ litter_ mass_ content_ of_ nitrogen is the total nitrogen mass content of dead plant material. 2018-04-16
CFV10N54 x derivative of ocean rigid lid pressure "component_ derivative_ of_ X" means the derivative of X with respect to distance in the component direction, which may be northward, southward, eastward, westward, x or y. The last two indicate derivatives along the axes of the grid, whether or not they are true longitude and latitude. x_ derivative_ of_ ocean_ rigid_ lid_ pressure means (d/dx) of the ocean surface pressure, as derived by a rigid lid approximation, keeping the other horizontal coordinate (y, presumably) constant. 2013-01-11
8Z9B60GH x heat flux in sea water due to advection "x" indicates a vector component along the grid x-axis, positive with increasing x. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2013-06-27
CFSNA016 x sea water velocity DEPRECATED A velocity is a vector quantity. 'x' indicates a vector component along the grid x-axis, when this is not true longitude, positive with increasing x. 2006-09-26
CFSN0042 x wind "x" indicates a vector component along the grid x-axis, positive with increasing x. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2013-01-11
SQIEG5TH x wind gust "x" indicates a vector component along the grid x-axis, positive with increasing x. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) A gust is a sudden brief period of high wind speed. In an observed timeseries of wind speed, the gust wind speed can be indicated by a cell_ methods of maximum for the time-interval. In an atmospheric model which has a parametrised calculation of gustiness, the gust wind speed may be separately diagnosed from the wind speed. 2017-11-28
CFV10N55 y derivative of ocean rigid lid pressure "component_ derivative_ of_ X" means the derivative of X with respect to distance in the component direction, which may be northward, southward, eastward, westward, x or y. The last two indicate derivatives along the axes of the grid, whether or not they are true longitude and latitude. y_ derivative_ of_ ocean_ rigid_ lid_ pressure means (d/dy) of the ocean surface pressure, as derived by a rigid lid approximation, keeping the other horizontal coordinate (x, presumably) constant. 2013-01-11
U5JCF4GZ y heat flux in sea water due to advection "y" indicates a vector component along the grid y-axis, positive with increasing y. The specification of a physical process by the phrase due_ to_ process means that the quantity named is a single term in a sum of terms which together compose the general quantity named by omitting the phrase. In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. 2013-06-27
CFSNA032 y sea water velocity DEPRECATED A velocity is a vector quantity. 'y' indicates a vector component along the grid y-axis, when this is not true latitude, positive with increasing y. 2006-09-26
CFSN0043 y wind "y" indicates a vector component along the grid y-axis, positive with increasing y. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) 2013-01-11
WZHM14H5 y wind gust "y" indicates a vector component along the grid y-axis, positive with increasing y. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_ air_ velocity.) A gust is a sudden brief period of high wind speed. In an observed time series of wind speed, the gust wind speed can be indicated by a cell_ methods of maximum for the time-interval. In an atmospheric model which has a parametrised calculation of gustiness, the gust wind speed may be separately diagnosed from the wind speed. 2017-11-28
CFSN0044 zenith angle Zenith angle is the angle to the local vertical; a value of zero is directly overhead. 2006-09-26